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1 Introduction

Let (Ω,F , P ) be a probability space.

Definition 1.1 A fractional Brownian motion with Hurst parameter H ∈ (0, 1], is an almost

surely continuous, centered Gaussian process (BH
t )t∈R with

Cov
(
BH
t , B

H
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R . (1.1)

For an in-depth introduction to fractional Brownian motions we refer the reader to Section 7.2
of Samorodnitsky and Taqqu (1994) or Chapter 4 of Embrechts and Maejima (2002). It is clear
that for all H ∈ (0, 1], BH

0 = 0 almost surely. Moreover, it can be deduced from (1.1) that
for all H ∈ (0, 1], (BH

t )t∈R has stationary increments and is H-selfsimilar, that is, for every

c > 0, (BH
ct )t∈R

d
= (cHBH

t )t∈R, where
d
= denotes equality of all finite-dimensional distributions.

(B
1
2
t )t∈R is a two-sided Brownian motion. In particular, it has independent increments. For

H ∈ (0, 12) ∪ (12 , 1), (B
H
t )t≥0 is not a semimartingale and it can be derived from (1.1) that for

all h ∈ R and 0 < t < s,

Cov
(
BH
h+t −BH

h , B
H
h+s+t −BH

h+s

)
= Cov

(
BH
t , B

H
s+t −BH

s

)

=
∞∑

n=1

t2n

(2n)!

(
2n−1∏

k=0

(2H − k)

)
s2H−2n ,

in particular, for every N = 1, 2, . . . , for all h ∈ R and t > 0,

Cov
(
BH
h+t −BH

h , B
H
h+s+t −BH

h+s

)

=
N∑

n=1

t2n

(2n)!

(
2n−1∏

k=0

(2H − k)

)
s2H−2n +O(s2H−2N−2) , as s→∞ . (1.2)

This shows that for H ∈ ( 12 , 1],

∞∑

n=0

Cov
(
BH
t , B

H
(n+1)t −BH

nt

)
=∞ ,

a phenomenon referred to as long-range dependence or long memory of the increments process
(
BH
(n+1)t −BH

nt

)∞
n=0

.

The classical Ornstein-Uhlenbeck process with parameters λ > 0 and σ > 0 starting at
x ∈ R, is the unique strong solution of the Langevin equation with Brownian motion noise

Xt = ξ − λ

∫ t

0
Xsds+ σB

1
2
t , t ≥ 0 , (1.3)

with initial condition ξ = x. It is given by the almost surely continuous Gaussian Markov
process

Y
1
2
,x

t := e−λt
(
x+ σ

∫ t

0
eλudB

1
2
u

)
, t ≥ 0 .

2



The unique strong solution of (1.3) with initial condition

ξ = σ

∫ 0

−∞
eλudB

1
2
u ,

is given by the restriction to non-negative t’s of the stationary, almost surely continuous,
centered Gaussian Markov process

Y
1
2
t := σ

∫ t

−∞
e−λ(t−u)dB

1
2
u , t ∈ R .

It can easily be checked that

Cov

(
Y

1
2
t , Y

1
2
t+s

)
=

σ2

2λ
e−λ|s| , t, s ∈ R .

This implies that (Y
1
2
t )t∈R is ergodic. Moreover, for all x ∈ R,

Y
1
2
t − Y

1
2
,x

t = e−λt
(
Y

1
2
0 − x

)
→ 0 , as t→∞ ,

almost surely. From this it can be derived that if (Yt)t≥0 is a stationary process that solves

(1.3) with any initial condition ξ ∈ L0(Ω), then (Yt)t≥0
d
= (Y

1
2
t )t≥0.

Now let α > 0. Then,

Z
1
2
t := e−λtB

1
2

αe2λt
, t ∈ R ,

is also a stationary, almost surely continuous, centered Gaussian process, and

Cov

(
Z

1
2
t , Z

1
2
t+s

)
= αe−λ|s| , t, s ∈ R .

Hence, for α = σ2

2λ , (Y
1
2
t )t∈R

d
= (Z

1
2
t )t∈R.

It is shown in Lamperti (1962) that for every H > 0, a stochastic process (Xt)t≥0 is H-
selfsimilar if and only if for all λ, α > 0, the process

X̂t = e−λtXα exp( λH t) , t ∈ R , (1.4)

is stationary. We call (1.4) the Lamperti transformation from selfsimilar processes to stationary
processes and (X̂t)t∈R the Lamperti transform of (Xt)t≥0.

For H = 1, fractional Brownian motion can be represented as follows:

B1t = tη , t ∈ R ,

where η is a standard normal random variable. For every initial condition ξ ∈ L0(Ω), the
equation,

Xt = ξ − λ

∫ t

0
Xsds+ σB1t , t ≥ 0 , (1.5)

can path-wise be reduced to the ordinary differential equations,

X ′
t(ω) = −λXt(ω) + ση(ω) , ω ∈ Ω ,

3



with initial conditions
X0(ω) = ξ(ω) , ω ∈ Ω ,

which have the unique solutions

Y
1,ξ
t (ω) := e−λt

{
ξ(ω)−

σ

λ
η(ω)

}
+
σ

λ
η(ω) , t ≥ 0 , ω ∈ Ω .

Equation (1.5) has only a stationary solution for the initial condition ξ = σ
λ
η. It is given by

Y 1t :=
σ

λ
η , t ≥ 0 ,

which, for all t ≥ 0, equals the Lamperti transform

Z1t := e−λtB1α exp(λt) = αη , t ∈ R ,

if α = σ
λ
.

This leads us to the question whether for H ∈ (0, 12) ∪ (12 , 1), the Langevin equation with
noise process (σBH

t )t≥0 has a stationary solution, if its distribution is unique and if it is equal
in some sense to the Lamperti transform

ZH
t := e−λtBH

α exp( λH t) , t ∈ R ,

for an appropriately chosen α > 0.
The structure of the paper is as follows. In Section 2 we show that for all H ∈ (0, 1],

the Langevin equation with fractional Brownian motion noise has for all initial conditions
ξ ∈ L0(Ω), a unique strong solution (Y H,ξ

t )t≥0. Moreover, there exists a stationary, almost
surely continuous, centered Gaussian process (Y H

t )t∈R such that (Y H
t )t≥0 solves the Langevin

equation with fractional Brownian motion noise, and every other stationary solution is equal
to (Y H

t )t≥0 in distribution. The decay of the auto-covariance function of (Y H
t )t∈R is for all

H ∈ (0, 12) ∪ (12 , 1) similar to that of the increments of (BH
t )t∈R (see (1.2)). In particular,

(Y H
t )t∈R is ergodic, and for H ∈ ( 12 , 1], it exhibits long-range dependence. In Section 3 we

show that for all H ∈ (0, 1) the auto-covariance function of (ZH
t )t∈R decays exponentially,

which implies that for H ∈ (0, 12) ∪ (12 , 1), (Y H
t )t∈R cannot have the same distribution as

(ZH
t )t∈R.

2 Fractional Ornstein-Uhlenbeck processes

Let λ, σ > 0 and ξ ∈ L0(Ω). Since the Langevin equation,

Xt = ξ − λ

∫ t

0
Xsds+Nt , t ≥ 0 ,

only involves an integral with respect to t, it can be solved path-wise for much more general
noise processes (Nt)t≥0 than Brownian motion. For example, it follows from Proposition A.1
that for each H ∈ (0, 1] and for every a ∈ [−∞,∞),

∫ t

a

eλudBH
u , t > a ,

4



exists as a path-wise Riemann-Stieltjes integral, which is almost surely continuous in t, and

Y
H,ξ
t := e−λt

(
ξ + σ

∫ t

0
eλudBH

u

)
, t ≥ 0 ,

is the unique almost surely continuous process that solves the equation,

Xt = ξ − λ

∫ t

0
Xsds+ σBH

t , t ≥ 0 . (2.1)

In particular, the restriction to positive t’s of the almost surely continuous process

Y H
t := σ

∫ t

−∞
e−λ(t−u)dBH

u , t ∈ R ,

solves (2.1) with initial condition ξ = Y H
0 . It is clear that (Y H

t )t∈R is a Gaussian process, and
it follows immediately from the stationarity of the increments of fractional Brownian motion
that it is stationary. Furthermore, as in the Brownian motion case, for every ξ ∈ L0(Ω),

Y H
t − Y

H,ξ
t = e−λt

(
Y H
0 − ξ

)
→ 0 , as t→∞ , almost surely,

which implies that every stationary solution of (2.1) has the same distribution as (Y H
t )t≥0. We

call (Y H,ξ
t )t≥0 a fractional Ornstein-Uhlenbeck process with initial condition ξ and (Y H

t )t∈R a
stationary fractional Ornstein-Uhlenbeck process.

In Pipiras and Taqqu (2000) it is shown that for H ∈ ( 12 , 1) and two real-valued measurable
functions

f, g ∈

{
f :

∫ ∞

−∞

∫ ∞

−∞
|f(u)| |f(v)| |u− v|2H−2 dudv <∞

}
,

the two integrals
∫∞
−∞ f(u)dBH

u ,
∫∞
−∞ g(u)dBH

u can in a consistent way be defined as limits of
integrals of elementary functions, and

E

[∫ ∞

−∞
f(u)dBH

u

∫ ∞

−∞
g(u)dBH

u

]
= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f(u)g(v) |u− v|2H−2 dudv .

For H ∈ (0, 12), the kernel |u− v|2H−2 cannot be integrated over the diagonal. However, if f
and g are regular enough and the intersection of their supports is of Lebesgue measure zero,
the same holds true. We will only need this result for the case where f and g are given by
f(u) = g(u) = eλu and their supports are disjoint intervals. However, the following lemma can
easily be generalized.

Lemma 2.1 Let H ∈ (0, 12) ∪ (12 , 1], λ > 0 and −∞ ≤ a < b ≤ c < d <∞. Then

E

[∫ b

a

eλudBH
u

∫ d

c

eλvdBH
v

]
= H(2H − 1)

∫ b

a

eλu
(∫ d

c

eλv(v − u)2H−2dv

)
du .
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Proof. We first assume b = 0 = c. By Proposition A.1 a) we get

E

[∫ 0

a

eλudBH
u

∫ d

0
eλvdBH

v

]

= E

[(
−eλaBH

a − λ

∫ 0

a

eλuBH
u du

)(
eλdBH

d − λ

∫ d

0
eλvBH

v dv

)]

= −
1

2
eλaeλd

[
(−a)2H + d2H − (d− a)2H

]

+
1

2
λeλa

∫ d

0
eλv
[
(−a)2H + v2H − (v − a)2H

]
dv

−
1

2
λeλd

∫ 0

a

eλu
[
(−u)2H + d2H − (d− u)2H

]
du

+
1

2
λ2
∫ d

0
eλv
(∫ 0

a

eλu
[
(−u)2H + v2H − (v − u)2H

]
du

)
dv .

After partial integration with respect to u, this becomes

−Heλd
∫ 0

a

eλu
[
(−u)2H−1 − (d− u)2H−1

]
du

+Hλ

∫ d

0
eλv
(∫ 0

a

eλu
[
(−u)2H−1 − (v − u)2H−1

]
du

)
dv ,

which, by partial integration with respect to v, is equal to

H(2H − 1)

∫ 0

a

eλu
(∫ d

0
eλv(v − u)2H−2dv

)
du .

Now we assume b = 0 < c. It follows from above that

E

[∫ 0

a

eλudBH
u

∫ d

c

eλvdBH
v

]
= E

[∫ 0

a

eλudBH
u

∫ d

0
eλvdBH

v −

∫ 0

a

eλudBH
u

∫ c

0
eλvdBH

v

]

= H(2H − 1)

[∫ 0

a

eλu
(∫ d

0
eλv(v − u)2H−2dv

)
du−

∫ 0

a

eλu
(∫ c

0
eλv(v − u)2H−2dv

)
du

]

= H(2H − 1)

∫ 0

a

eλu
(∫ d

c

eλv(v − u)2H−2dv

)
du .

For general −∞ ≤ a < b ≤ c < d < ∞, the process B̃H
t = BH

t+b − BH
b , t ∈ R, is again a

fractional Brownian motion. Therefore,

E

[∫ b

a

eλudBH
u

∫ d

c

eλvdBH
v

]
= E

[∫ 0

a−b
eλ(w+b)dB̃H

w

∫ d−b

c−b
eλ(x+b)dB̃H

x

]

= H(2H − 1)

∫ 0

a−b
eλ(w+b)

(∫ d−b

c−b
eλ(x+b)(x− w)2H−2dx

)
dw

= H(2H − 1)

∫ b

a

eλu
(∫ d

c

eλv(v − u)2H−2dv

)
du ,

and the proof is complete. ¤
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Lemma 2.2 Let β < 0. Then for each N = 0, 1, 2, . . . ,

ex
∫ ∞

x

e−yyβdy = xβ +
N∑

n=1

(
n−1∏

k=0

(β − k)

)
xβ−n +O(xβ−N−1) , as x→∞ ,

and

e−x
∫ x

1
eyyβdy = xβ +

N∑

n=1

(−1)n

(
n−1∏

k=0

(β − k)

)
xβ−n +O(xβ−N−1) , as x→∞ ,

where
∑0

n=1 means 0.

Proof. We have

ex
∫ ∞

x

e−yyβdy

= ex
(
e−xxβ + β

∫ ∞

x

e−yyβ−1dy

)
= . . .

= xβ + βxβ−1 + β(β − 1)xβ−2 + . . .+ β(β − 1) . . . (β −N + 1)xβ−N

+exβ(β − 1) . . . (β −N)

∫ ∞

x

e−yyβ−N−1dy ,

and

ex
∫ ∞

x

e−yyβ−N−1dy ≤ ex
∫ ∞

x

e−yxβ−N−1dy = xβ−N−1 ,

which proves the first assertion. On the other hand,

e−x
∫ x

1
eyyβdy

= e−x
(
exxβ − e− β

∫ x

1
eyyβ−1dy

)
= . . .

= xβ − βxβ−1 + . . .+ (−1)Nβ(β − 1) . . . (β −N + 1)xβ−N

−e−xe
{
1− β + . . .+ (−1)Nβ(β − 1) . . . (β −N + 1)

}

−e−x(−1)Nβ(β − 1) . . . (β −N)

∫ x

1
eyyβ−N−1dy ,

and

e−x
∫ x

1
eyyβ−N−1dy ≤ e−x

(∫ x
2

1
eydy +

∫ x

x
2

ey
(x
2

)β−N−1
dy

)
≤ e−

x
2 +

(x
2

)β−N−1
.

This proves the second part of the lemma. ¤

Theorem 2.3 Let H ∈ (0, 12) ∪ (12 , 1] and N = 1, 2, . . . . Then for fixed t ∈ R and s→∞,

Cov
(
Y H
t , Y H

t+s

)
=

1

2
σ2

N∑

n=1

λ−2n

(
2n−1∏

k=0

(2H − k)

)
s2H−2n +O(s2H−2N−2) .
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Proof. By Lemma 2.1,

Cov
(
Y H
t , Y H

t+s

)
= Cov

(
Y H
0 , Y H

s

)

= E

[
σ

∫ 0

−∞
eλudBH

u σ

∫ s

−∞
e−λ(s−v)dBH

v

]

= e−λsE

[
σ

∫ 0

−∞
eλudBH

u σ

∫ 1
λ

−∞
eλvdBH

v

]

+σ2H(2H − 1)e−λs
∫ 0

−∞
eλu

(∫ s

1
λ

eλv(v − u)2H−2dv

)
du

(by the change of variables: w = λu , x = λv)

=
σ2

λ2H
H(2H − 1)e−λs

∫ 0

−∞
ew
(∫ λs

1
ex(x− w)2H−2dx

)
dw +O(e−λs)

(by the change of variables: y = x− w , z = x+ w)

=
σ2

2λ2H
H(2H − 1)e−λs

{∫ λs

1
y2H−2

(∫ y

2−y
ezdz

)
dy

+

∫ ∞

λs

y2H−2
(∫ 2λs−y

2−y
ezdz

)
dy

}
+O(e−λs)

=
σ2

2λ2H
H(2H − 1)e−λs

×

{∫ λs

1
eyy2H−2dy +

∫ ∞

λs

e2λs−yy2H−2dy −

∫ ∞

1
e2−yy2H−2dy

}
+O(e−λs)

=
σ2

2λ2H
H(2H − 1)

{
e−λs

∫ λs

1
eyy2H−2dy + eλs

∫ ∞

λs

e−yy2H−2dy

}
+O(e−λs) .

The proof can now be concluded by applying Lemma 2.2. ¤

Theorem 2.3 shows that for H ∈ (0, 12) ∪ (12 , 1], the decay of

Cov
(
Y H
t , Y H

t+s

)
, for s→∞ ,

is very similar to the decay of

Cov
(
BH
h+t −BH

h , B
H
h+s+t −BH

h+s

)
, for s→∞

(see (1.2)). In particular, (Y H
t )t∈R is ergodic, and for H ∈ ( 12 , 1], it exhibits long-range depen-

dence.

Remark 2.4 Let s ∈ R. For all H ∈ (0, 1), the functions f(x) = 1{x≤0}e
λx and g(x) =

1{x≤s}e
λx belong to the inner product space Λ̃H defined on page 289 of Pipiras and Taqqu

(2000). Hence, for all t, s ∈ R, Cov
(
Y H
t , Y H

t+s

)
is equal to

σ2e−λs (f, g)Λ̃H = σ2
Γ(2H + 1) sin(πH)

2π

∫ ∞

−∞
eisx

|x|1−2H

λ2 + x2
dx . (2.2)

Therefore, the expression given in the the statement of Theorem 2.3 is an asymptotic expansion
of the right hand side in (2.2) as s→∞.
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The next corollary shows that for the solution (Y H,x
t )t≥0 of (2.1) with deterministic initial value

Y
H,x
0 = x ∈ R,

Cov
(
Y
H,x
t , Y

H,x
t+s

)
, for s→∞ ,

decays like a power function of the order 2H − 2 as well.

Corollary 2.5 Let H ∈ (0, 12) ∪ (12 , 1], x ∈ R and N = 1, 2, . . . . Then for fixed t ≥ 0 and

s→∞,

Cov
(
Y
H,x
t , Y

H,x
t+s

)

=
1

2
σ2

N∑

n=1

λ−2n

(
2n−1∏

k=0

(2H − k)

){
s2H−2n − e−λt(t+ s)2H−2n

}
+O(s2H−2N−2) .

Proof.

Cov
(
Y
H,x
t , Y

H,x
t+s

)

= E

[
σ

∫ t

0
e−λ(t−u)dBH

u σ

∫ t+s

0
e−λ(t+s−v)dBH

v

]

= E

[
σ

∫ t

0
e−λ(t−u)dBH

u σ

(∫ t+s

−∞
e−λ(t+s−v)dBH

v − e−λs
∫ 0

−∞
e−λ(t−v)dBH

v

)]

= E

[
σ

(∫ t

−∞
e−λ(t−u)dBH

u − e−λt
∫ 0

−∞
eλudBH

u

)(∫ t+s

−∞
e−λ(t+s−v)dBH

v

)]

−e−λsE

[
σ

∫ t

0
e−λ(t−u)dBH

u σ

∫ 0

−∞
e−λ(t−v)dBH

v

]

= Cov
(
Y H
t , Y H

t+s

)
− e−λtCov

(
Y H
0 , Y H

t+s

)
+O(e−λs) .

Now, the corollary follows from Theorem 2.3. ¤

3 The Lamperti transform of fractional Brownian motion

Let λ > 0 and α > 0. For each H ∈ (0, 1], we set

ZH
t := e−λtBH

α exp( λH t) , t ∈ R .

Theorem 3.1 Let H ∈ (0, 1] and t, s ∈ R. Then

Cov
(
ZH
t , Z

H
t+s

)
=

α2H

2

{
e−λ|s| +

∞∑

n=1

(−1)n−1
(
2H

n

)
e−λ(

n
H
−1)|s|

}
. (3.1)

Proof. Without loss of generality we can assume that s ≥ 0. Then,

Cov
(
ZH
t , Z

H
t+s

)
= e−λte−λ(t+s)

α2H

2

{
e2λ(t+s) + e2λt −

(
e
λ
H
(t+s) − e

λ
H
t
)2H}

9



=
α2H

2
eλs
{
1 + e−2λs −

(
1− e−

λ
H
s
)2H}

=
α2H

2
eλs

{
1 + e−2λs −

∞∑

n=0

(
2H

n

)(
−e−

λ
H
s
)n
}

=
α2H

2

{
e−λs +

∞∑

n=1

(−1)n−1
(
2H

n

)
e−λ(

n
H
−1)s

}
,

which proves the theorem. ¤

It follows from Theorem 3.1 that for every N = 1, 2, . . ., for each H ∈ (0, 1) and all t ∈ R,

Cov
(
ZH
t , Z

H
t+s

)
=

α2H

2

{
e−λ|s| +

N∑

n=1

(−1)n−1
(
2H

n

)
e−λ(

n
H
−1)|s|

}
+O

(
e−λ(

N+1
H
−1)|s|

)
,

as s→∞. This shows that for all H ∈ (0, 1), the auto-covariance function of (ZH
t )t∈R decays

exponentially. It follows that for H ∈ (0, 12)∪(
1
2 , 1), (Z

H
t )t∈R cannot have the same distribution

as (Y H
t )t∈R. For H ∈ (0, 12), the leading term in (3.1) for s→∞, is

α2H

2
e−λ|s| ,

whereas for H ∈ ( 12 , 1), it is

α2HHe−λ(
1
H
−1)|s| .

Note that for H ∈ (0, 12), the leading term of Cov
(
ZH
t , Z

H
t+s

)
for s → ∞, is positive, whereas

the leading term of Cov
(
Y H
t , Y H

t+s

)
for s→∞, is negative (see Theorem 2.3).

Appendix: The Langevin equation

Langevin (1908) pioneered the following approach to the movement of a free particle im-
mersed in a liquid: He described the particle’s velocity v by the equation of motion

dv(t)

dt
= −

f

m
v(t) +

F (t)

m
(A.1)

where m > 0 is the mass of the particle, f > 0 a friction coefficient and F (t) a fluctuating force
resulting from impacts of the molecules of the surrounding medium. Uhlenbeck and Ornstein
(1930) imposed probability hypotheses on F (t) and then derived that for v(0) = x ∈ R, v(t) is

normally distributed with mean xe−λt and variance σ2

2λ

(
1− e−2λt

)
, for λ = f

m
and σ2 = 2fkT

m2 ,
where k is the Boltzmann constant and T the temperature. Doob (1942) noticed that if v(0) is
a random variable which is independent of (F (t))t≥0 and normally distributed with mean zero

and variance σ2

2λ , then the solution (v(t))t≥0 of (A.1) is stationary and

1{t>0}t
1
2 v

(
1

2λ
ln t

)
, t ≥ 0 ,

is a Brownian motion, from which he concluded that every solution of (A.1) has almost surely
continuous paths which are nowhere differentiable. To avoid the “embarrassing situation” that
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the equation (A.1) involves the derivative of v but leads to solutions v that do not have a
derivative, he gave a rigorous meaning to stochastic differential equations of the form

dXt = −λXtdt+ dNt , (A.2)

for the case that N is a Lévy process and showed that for all x ∈ R, the equation (A.2) with
initial condition X0 = x ∈ R, has the unique solution

Xx
t = e−λt

(
x+

∫ t

0
eλudNu

)
, t ≥ 0 .

In the modern theory of stochastic differential equations (see e.g. Protter (1990)) the equation
(A.2) with initial condition X0 = ξ ∈ L0(Ω) is understood as the integral equation

Xt = ξ − λ

∫ t

0
Xsds+Nt , t ≥ 0 , (A.3)

and it can be shown that the unique strong solution of (A.3) is given by

X
ξ
t := e−λt

(
ξ +

∫ t

0
eλudNu

)
, t ≥ 0 ,

whenever (Nt)t≥0 is a semimartingale with respect to the filtration generated by (Nt)t≥0 and
ξ.

Proposition A.1 Let (BH
t )t∈R be a fractional Brownian motion with Hurst parameter H ∈

(0, 1] and ξ ∈ L0(Ω). Let −∞ ≤ a <∞ and λ, σ > 0. Then for almost all ω ∈ Ω, we have the
following:

a) For all t > a, ∫ t

a

eλudBH
u (ω)

exists as a Riemann-Stieltjes integral and is equal to

eλtBH
t (ω)− eλaBH

a (ω)− λ

∫ t

a

BH
u (ω)eλudu .

b) The function ∫ t

a

eλudBH
u (ω) , t > a ,

is continuous in t.

c) The unique continuous function y that solves the equation,

y(t) = ξ(ω)− λ

∫ t

0
y(s)ds+ σBH

t (ω) , t ≥ 0 . (A.4)

is given by

y(t) = e−λt
{
ξ(ω) + σ

∫ t

0
eλudBH

u (ω)

}
, t ≥ 0 . (A.5)
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In particular, the unique continuous solution of the equation,

y(t) = σ

∫ 0

−∞
eλudBH

u (ω)− λ

∫ t

0
y(s)ds+ σBH

t (ω) , t ≥ 0 ,

is given by

y(t) = σ

∫ t

−∞
e−λ(t−u)dBH

u (ω) , t ≥ 0 .

Proof. It can easily be checked that

B̃H
s := 1{s<0}(−s)

2HBH
1
s

+ 1{s>0}s
2HBH

1
s

, s ∈ R ,

is again a fractional Brownian motion. It follows from the Kolmogorov-Čentsov theorem (see
e.g. Theorem 2.2.8 of Karatzas and Shreve (1991)) that there exists a measurable null set
N ⊂ Ω, such that for every ω ∈ Ω \ N , BH

s (ω) and B̃H
s (ω) are continuous in s, and for all

β < H,

lim
s→0

B̃H
s (ω)

|s|β
= 0 .

This implies that for all γ > H,

lim
|s|→∞

BH
s (ω)

|s|γ
= 0 .

Hence, for all t > a, ∫ t

a

BH
u (ω)eλudu

exists as a Riemann integral, which, by Theorem 2.21 of Wheeden and Zygmund (1977), implies
that the Riemann-Stieltjes integral ∫ t

a

eλudBH
u (ω)

exists too and is equal to

eλtBH
t (ω)− eλaBH

a (ω)− λ

∫ t

a

BH
u (ω)eλudu .

This proves a).
b) follows from a) and the fact that the function

eλtBH
t (ω)− λ

∫ t

a

BH
u (ω)eλudu , t > a ,

is continuous in t.
A continuous function y solves (A.4) if and only if the function

z(t) =

∫ t

0
y(s)ds , t ≥ 0 ,

solves the linear differential equation:

z′(t) = −λz(t) + ξ(ω) + σBH
t (ω) , z(0) = 0 . (A.6)
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Since the unique solution of (A.6) is given by

z(t) = e−λt
∫ t

0
eλu
(
ξ(ω) + σBH

u (ω)
)
du , t ≥ 0 ,

the unique continuous function y that solves (A.4) is given by

−λe−λt
∫ t

0
eλu
(
ξ(ω) + σBH

u (ω)
)
du+ ξ(ω) + σBH

t (ω) , t ≥ 0 ,

which, by a), is equal to (A.5). This shows c). ¤

Remark A.2 Equation (A.3) can be solved path-wise for all stochastic processes (Nt)t≥0 that
have almost all paths in

L1loc(R+) :=
{
h : R+ → R : h is measurable and ∀t ≥ 0 ,

∫ t

0
|h(s)| ds <∞

}
,

and even when the constant λ is replaced by a stochastic process with almost all paths in

L∞loc(R+) :=
{
g : R+ → R : g is measurable and ∀t ≥ 0 , sup

0≤s≤t
|g(s)| <∞

}
.

Indeed, if h ∈ L1loc(R+) and g ∈ L∞loc(R+), then it can easily be checked that the function

f(t) := h(t) +

∫ t

0
g(s)e

∫ t
s
g(u)duh(s)ds , t ≥ 0 , (A.7)

is in L1loc(R+) and solves the integral equation

f(t) =

∫ t

0
g(s)f(s)ds+ h(t) , t ≥ 0 . (A.8)

On the other hand, if f̃ ∈ L1loc(R+) is a solution of (A.8), then

f(t)− f̃(t) =

∫ t

0
g(s)

[
f(t)− f̃(t)

]
ds , t ≥ 0 ,

and it follows from a variant of Gronwall’s lemma that

f(t)− f̃(t) = 0 , t ≥ 0 .

Hence, (A.7) is the only function in L1loc(R+) that solves (A.8).
If the functions g and h are both in L∞loc(R+) and continuous on R+ \ C, where C is of

Lebesgue measure zero, then it can be deduced from Theorems 5.54 and 2.21 of Wheeden and
Zygmund (1977) that f can be written as follows:

f(t) = e
∫ t
0
g(u)du

(
h(0) +

∫ t

0
e−

∫ s
0
g(u)dudh(s)

)
, t ≥ 0 ,

where
∫ t
0 e
−

∫ s
0
g(u)dudh(s) is a Riemann-Stieltjes integral.

Note that almost all paths of a semimartingale are right-continuous and have left limits, in
particular, they are in L∞loc(R+) and have at most countably many discontinuities.
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