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1 Introduction

Fractional calculus is generalization of ordinary differentiation and integra-
tion to arbitrary non-integer order. The subject is as old as the differential
calculus, starting from some speculations of G.W. Leibniz (1967) and L.
Euler (1730) and since then, it has continued to be developed up to nowa-
days. Integral equations are one of the most useful mathematical tools in
both pure and applied analysis. This is particulary true of problems in me-
chanical vibrations and the related fields of engineering and mathematical
physics. we can find numerous applications of differential and integral equa-
tion of fractional order in finance, hydrology, biophysics, thermodynamics,
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control theory, statistical mechanics, astrophysics, cosmology and bioengi-
neering ([14, 26, 38, 39, 42]). There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the
monographs of Abbas et al. [7, 8], Baleanu et al. [14], Kilbas et al. [29], the
papers of Abbas et al. [1–6,9,10], Ahmad and Nieto [11], Czlapinski [21,22],
Kilbas and Marzan [28], Stanek [41], Vityuk and Golushkov [44], and the
references therein.

The theory of functional differential equations has emerged as an impor-
tant branch of nonlinear analysis. Differential delay equations, or functional
differential equations, have been used in modeling scientific phenomena for
many years. Often, it has been assumed that the delay is either a fixed
constant or is given as an integral in which case it is called a distributed
delay; see for instance the books by Hale and Verduyn Lunel [25], Kol-
manovskii and Myshkis [30], Smith [40], and Wu [46], and the references
therein. However, complicated situations in which the delay depends on the
unknown functions have been considered in recent years. These equations
are frequently called equations with state-dependent delay, see, for instance
[15–17,20,23,35,36,45].

The nature of a dynamic system in engineering or natural sciences de-
pends on the accuracy of the information we have concerning the parameters
that describe that system. If the knowledge about a dynamic system is pre-
cise then a deterministic dynamical system arises. Unfortunately in most
cases the available data for the description and evaluation of parameters of
a dynamic system are inaccurate, imprecise or confusing. In other words,
evaluation of parameters of a dynamical system is not without uncertainties.
When our knowledge about the parameters of a dynamic system are of statis-
tical nature, that is, the information is probabilistic, the common approach
in mathematical modeling of such systems is the use of random differential
equations or stochastic differential equations. Random differential equations,
as natural extensions of deterministic ones, arise in many applications and
have been investigated by many mathematicians. We refer the reader to the
monographs [18,31,43]. The initial value problems for fractional differential
with random parameters have been studied by Lupulescu and Ntouyas [33].
The basic tool in the study of the problems for random fractional differential
equations is to treat it as a fractional differential equation in some appro-
priate Banach space. In [34], the authors proved the existence results for a
random fractional equation under a Carathéodory condition.

In this paper, we discuss the existence of random solutions for the fol-
lowing fractional partial random differential equations with state-dependent



Vol. LV (2017) Fractional Partial Random Differential Equations 23

delay

(cDr
0u)(x, y, w) = f(x, y, u(ρ1(x,y,u(x,y),w),ρ2(x,y,u(x,y),w)), w),

if J := [0, a]× [0, b], w ∈ Ω, (1.1)

u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := [−α, a]× [−β, b]\(0, a]× (0, b], w ∈ Ω,
(1.2)

u(x, 0, w) = ϕ(x,w), x ∈ [0, a], u(0, y, w) = ψ(y, w), y ∈ [0, b], w ∈ Ω,
(1.3)

where α, β, a, b > 0, cDr
0 is the standard Caputo’s fractional derivative of

order r = (r1, r2) ∈ (0, 1] × (0, 1], (Ω,A) is a measurable space, f : J ×
C × Ω → E, ρ1, ρ2 : J × C × Ω → E are given functions, φ : J̃ × Ω → E
is a given continuous function, ϕ : [0, a] × Ω → E,ψ : [0, b] × Ω → E are
given absolutely continuous functions with ϕ(x,w) = φ(x, 0, w), ψ(y, w) =
φ(0, y, w) for each x ∈ [0, a], y ∈ [0, b], w ∈ Ω, (E, ‖ · ‖E) a separable Banach
space, and C := C([−α, 0]× [−β, 0], E) is the space of continuous functions
on [−α, 0]× [−β, 0].

If u ∈ C([−α, a]× [−β, b], E); a, b, α, β > 0 then for any (x, y) ∈ J define
u(x,y) by

u(x,y)(s, t, w) = u(x+ s, y + t, w), for (s, t) ∈ [−α, 0]× [−β, 0].

Here u(x,y)(·, ·, w) represents the history of the state u.
This paper initiates the study of Darboux problem for fractional random

partial differential equations with state-dependent delay.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. Denote L1(J) the space of Bochner-
integrable functions u : J → E with the norm

‖u‖L1 =

∫ a

0

∫ b

0

‖u(x, y)‖Edydx.

L∞(J) the Banach space of measurable functions u : J → IR which are
essentially bounded.
As usual, by AC(J) we denote the space of absolutely continuous functions
from J into E.
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Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω → E is
said to be measurable if for any B ∈ βE, one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

To define integrals of sample paths of random process, it is necessary to
define a jointly measurable map.

Definition 2.1. A mapping T : Ω × E → E is called jointly measurable if
for any B ∈ βE, one has

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE,

where A× βE is the direct product of the σ-algebras A and βE those defined
in Ω and E respectively.

Lemma 2.1. Let T : Ω×E → E be a mapping such that T (·, v) is measurable
for all v ∈ E, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, v) 7→
T (w, v) is jointly measurable.

Definition 2.2. A function f : J×E×Ω→ E is called random Carathéodory
if the following conditions are satisfied:

(i) The map (x, y, w) → f(x, y, u, w) is jointly measurable for all u ∈ E,
and

(ii) The map u → f(x, y, u, w) is continuous for almost all (x, y) ∈ J and
w ∈ Ω.

Let T : Ω × E → E be a mapping. Then T is called a random op-
erator if T (w, u) is measurable in w for all u ∈ E and it is expressed as
T (w)u = T (w, u). In this case we also say that T (w) is a random operator
on E. A random operator T (w) on E is called continuous (resp. compact,
totally bounded and completely continuous) if T (w, u) is continuous (resp.
compact, totally bounded and completely continuous) in u for all w ∈ Ω.
The details of completely continuous random operators in Banach spaces
and their properties appear in Itoh [27].

Definition 2.3. [24] Let P(Y ) be the family of all nonempty subsets of Y
and C be a mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈
C(w)} → Y is called random operator with stochastic domain C if C is
measurable (i.e., for all closed A ⊂ Y, {w ∈ Ω, C(w)∩A 6= ∅} is measurable)
and for all open D ⊂ Y and all y ∈ Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is
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measurable. T will be called continuous if every T (w) is continuous. For a
random operator T, a mapping y : Ω→ Y is called random (stochastic) fixed
point of T if for P−almost all w ∈ Ω, y(w) ∈ C(w) and T (w)y(w) = y(w)
and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

Let MX denote the class of all bounded subsets of a metric space X.

Definition 2.4. Let X be a complete metric space. A map α : MX →
[0,∞) is called a measure of noncompactness on X if it satisfies the following
properties for all B,B1, B2 ∈MX .

(MNC.1) α(B) = 0 if and only if B is precompact (Regularity),

(MNC.2) α(B) = α(B) (Invariance under closure),

(MNC.3) α(B1 ∪B2) = max{α(B1), α(B2)} (Semi-additivity).

For more details on measure of noncompactness and its properties see
[12,13].

Example 2.1. In every metric space X, the map φ : MX → [0,∞) with
φ(B) = 0 if B is relatively compact and φ(B) = 1 otherwise is a measure
of noncompactness, the so-called discrete measure of noncompactness [[13],
Example1, p. 19].

Let θ = (0, 0), r1, r2 > 0 and r = (r1, r2). For f ∈ L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r, where
Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also
that when u ∈ C, then (Irθu) ∈ C, moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].
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By 1− r we mean (1− r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y
,

the mixed second order partial derivative.

Definition 2.5. [44] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J). The Caputo
fractional-order derivative of order r of u is defined by the expression

cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(cDσ
θu)(x, y) = (D2

xyu)(x, y); for almost all (x, y) ∈ J.

Lemma 2.2. [19] If Y is a bounded subset of Banach space X, then for each
ε > 0, there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.

Lemma 2.3. [37] If {uk}∞k=1 ⊂ L1(J) is uniformly integrable, then α({uk}∞k=1)
is measurable and for each (x, y) ∈ J,

α

({∫ x

0

∫ y

0

uk(s, t)dtds

}∞
k=1

)
≤ 2

∫ x

0

∫ y

0

α({uk(s, t)}∞k=1)dtds.

Lemma 2.4. [32] Let F be a closed and convex subset of a real Banach space,
let G : F → F be a continuous operator and G(F ) be bounded. If there exists
a constant k ∈ [0, 1) such that for each bounded subset B ⊂ F,

α(G(B)) ≤ kα(B),

then G has a fixed point in F.

3 Existence Results

We need the following lemma:

Lemma 3.1. [2, 7] Let h ∈ L1(J). Then the linear problem
cDr

θu(x, y) = h(x, y); for a.a. (x, y) ∈ J := [0, a]× [0, b],

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0).
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has a unique solution u given by

u(x, y) = µ(x, y) + Irθh(x, y); for a.a. (x, y) ∈ J,

where
µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Let us assume that the function f is random Carathéodory on J×C×Ω.
From Lemma 3.1, we have the following lemma.

Lemma 3.2. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w).
A function u ∈ Ω × C(a,b) is a solution of the random problem (1.1)-(1.3) if

u satisfies condition (1.2) for (x, y) ∈ J̃ , w ∈ Ω and u is a solution of the
equation

u(x, y, w) =

µ(x, y, w)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds

for (x, y) ∈ J, w ∈ Ω

Set R :=R(ρ−1 ,ρ
−
2 )

= {(ρ1(s, t, u, w), ρ2(s, t, u, w)) : (s, t) ∈ J, u(s,t)(·, ·, w) ∈ C,w ∈ Ω,

ρi(s, t, u, w) ≤ 0; i = 1, 2}.

We always assume that ρi : J ×C ×Ω→ E; i = 1, 2 are continuous and the
function (s, t) 7−→ u(s,t) is continuous from R into C.

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéodory on J × C × Ω,

(H4) There exist functions p1, p2 : J×Ω→ [0,∞) with pi(·, w) ∈ L∞(J, [0,∞)); i =
1, 2 such that for each w ∈ Ω,

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖C ,

for all u ∈ C and a.e. (x, y) ∈ J,



28 M. Benchohra and A. Heris An. U.V.T.

(H5) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ p2(x, y, w)α(B), for a.e. (x, y) ∈ J,

(H6) There exists a random function R : Ω→ (0,∞) such that

µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)
≤ R(w),

where

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E, p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2,

Theorem 3.3. Assume that hypotheses (H1)− (H6) hold. If

` :=
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (1.1)-(1.3) has a random solution defined on [−α, a] ×
[−β, b].

Proof. Define the operator N : Ω× C(a,b) → C(a,b) by

(N(w)u)(x, y) =


φ(x, y, w), (x, y) ∈ J̃ ,w ∈ Ω

µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)),w)dtds,

(x, y) ∈ J, w ∈ Ω.

(3.1)
Since the functions ϕ, ψ and f are absolutely continuous, the function µ and
the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the
indefinite integral is continuous on J, then N(w) defines a mapping N :
Ω×C(a,b) → C(a,b). Hence u is a solution for the problem (1.1)-(1.3) if and only
if u = (N(w))u. We shall show that the operator N satisfies all conditions of
Lemma 2.4. The proof will be given in several steps.

Step 1: N(w) is a random operator with stochastic domain on C(a,b).
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is
measurable in view of Definition 2.1. Similarly, the function (s, t) 7→ (x −
s)r1−1(y− t)r2−1f(s, t, u(s,t), w) is measure as the product of a continuous and
a measurable function. Further, the integral is a limit of a finite sum of
measurable functions, therefore, the map

w 7→ µ(x, y, w)+
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1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds,

is measurable. As a result, N is a random operator on Ω× C(a,b) into C(a,b).

Let W : Ω→ P(C(a,b)) be defined by

W (w) = {u ∈ C(a,b) : ‖u‖∞ ≤ R(w)},

with R(·) is chosen appropriately. From instance, we assume that

R(w) ≥
µ∗ + p∗1(w) ar1br2

Γ(1+r1)Γ(1+r2)

1− p∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

Clearly, W (w) is bounded, closed, convex and solid for all w ∈ Ω. Then W
is measurable by Lemma 17 of [24]. Let w ∈ Ω be fixed, then from (H4), for
any u ∈ W (w), we get

‖(N(w)u)(x, y)‖E
≤ ‖µ(x, y, w)‖E +∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)‖Edtds

≤ ‖µ(x, y, w)‖E +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))‖Edtds

≤ µ∗(w) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore, N is a random operator with stochastic domain W and N(w) :
W (w) → N(w). Furthermore, N(w) maps bounded sets into bounded sets
in C(a,b).

Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C(a,b). Then, for each (x, y) ∈ J
and w ∈ Ω, we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)− f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)‖Edtds.
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Using the Lebesgue dominated convergence theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w)→
N(w) is a continuous random operator with stochastic domainW, andN(w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(N(w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 2.2 and 2.3, for any B ⊂ W and any
ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we
have

α((N(w)B)(x, y))

= α ({µ(x, y)+∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds; u ∈ B

})
≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)}∞n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))}

∞
n=1

)
dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(N(B)) ≤ `α(B).

It follows from Lemma 2.4 that for each w ∈ Ω, N has at least one fixed point
in W. Since

⋂
w∈Ω intW (w) 6= ∅, and a measurable selector of intW exists,
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Lemma 2.4 implies that N has a stochastic fixed point, i.e., the problem
(1.1)-(1.3) has at least one random solution on C(a,b).

4 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting
of Lebesgue measurable subsets of (−∞, 0). Consider the following partial
functional random differential equation of the form

(cDr
0u)(x, y) =

|u(x− σ1(u(x, y, w)), y − σ2(u(x, y, w)), w)|+ 2

ex+y+4(1 + w2 + |u(x− σ1(u(x, y, w)), y − σ2(u(x, y, w)), w)|)

if (x, y) ∈ [0, 1]× [0, 1], (4.1)

u(x, y, w) = x sinw+y2 cosw, (x, y) ∈ [−1, 1]× [−2, 1]\(0, 1]× (0, 1], w ∈ Ω,
(4.2)

u(x, 0, w) = x sinw; x ∈ [0, 1], u(0, y, w) = y2 cosw; y ∈ [0, 1], w ∈ Ω,
(4.3)

where σ1 ∈ C(R, [0, 1]), σ2 ∈ C(R, [0, 2]). Set

ρ1(x, y, ϕ, w) = x− σ1(ϕ(0, 0, w)),

ρ2(x, y, ϕ, w) = y − σ2(ϕ(0, 0, w)),

where (x, y) ∈ J, ϕ(·, ·, w) ∈ C([−1, 0]× [−2, 0],R), w ∈ Ω,

f(x, y, u, w) =
|u|+ 2

(ex+y+4)(1 + w2 + |u|)
, (x, y) ∈ [0, 1]× [0, 1],

u ∈ C([−1, 0]× [−2, 0],R).

The functions

w 7→ ϕ(x, 0, w) = x sinw , w 7→ ψ(0, y, w) = y2 cosw,

w 7→ Φ(x, y, w) = x sinw + y2 cosw

are measurable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, condition (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R
and hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is
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continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory
on [0, 1]× [0, 1]× R× Ω.
For each ϕ ∈ C([−1, 0] × [−2, 0],R), (x, y) ∈ [0, 1] × [0, 1] and w ∈ Ω, we
have

|f(x, y, u, w)| ≤ 1 +
1

e4
|u|.

Hence condition (H4) is satisfied with

p1(x, y, w) = p∗1 = 1, p2(x, y, w) = p∗2 =
1

e4
.

Also, the conditions (H5) is satisfied.
We shall show that condition ` < 1 holds with a = b = 1. Indeed, for

each (r1, r2) ∈ (0, 1]× (0, 1] we have

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
4

e4Γ(1 + r1)Γ(1 + r2)
< 1.

Consequently, Theorem 3.3 implies that the problem (4.1)− (4.3) has a ran-
dom solution defined on [−1, 1]× [−2, 1].
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