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Fractional Poisson process with random drift
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Abstract

We study the connection between PDEs and Lévy processes running with clocks given
by time-changed Poisson processes with stochastic drifts. The random times we deal
with are therefore given by time-changed Poissonian jumps related to some Frobenius-
Perron operators K associated to random translations. Moreover, we also consider
their hitting times as a random clock. Thus, we study processes driven by equations
involving time-fractional operators (modelling memory) and fractional powers of the
difference operator I − K (modelling jumps). For this large class of processes we
also provide, in some cases, the explicit representation of the transition probability
laws. To this aim, we show that a special role is played by the translation operator
associated to the representation of the Poisson semigroup.
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1 Introduction and preliminary results

The aim of this paper is to study a real-valued version of the Poisson process, defined
as follows

N(t) + aFα,βt , t > 0, a ≥ 0, α, β ∈ (0, 1], (1.1)

where N denotes the standard Poisson process. The drift is defined through the following
random composition

Fα,βt = Aα
Lβt
, t > 0 (1.2)

independent from N , where Aαt , t > 0 is an α-stable subordinator and Lβt = inf{s ≥ 0 :

Aβs > t}, t > 0 is the inverse to a stable subordinator of order β ∈ (0, 1), all independent
from each other.

The process (1.1) can resemble the compensated Poisson process, defined as N(t)−λt
(where λ is the parameter of N(t)) see e.g. [1]. We want to remark here that the two
processes are completely different since (1.1) is, for any α, β ∈ (0, 1], a non decreasing
process.

*Dipartimento di Scienze Statistiche, Sapienza University of Rome, Italy.
E-mail: luisa.beghin@uniroma1.it

†Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome , Italy.
E-mail: mirko.dovidio@uniroma1.it

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v19-3258
mailto:luisa.beghin@uniroma1.it
mailto:mirko.dovidio@uniroma1.it


Fractional Poisson process with random drift

We further generalize (1.1) by considering a "fractional version" of it, obtained by a
random time change of N , i.e. as

N(Fγ,βt ) + aFα,βt , t > 0, a ≥ 0, α, γ, β ∈ (0, 1]. (1.3)

As particular cases of (1.3), when the drift coefficient is equal to zero, we can derive
two fractional Poisson processes already studied in the literature. For a = 0 and γ = 1,
it reduces to the time-fractional Poisson process Nβ(t), t > 0 which is studied in [17],
[15], [2]: indeed it is proved in [14] that Nβ coincides with N(Lβt ). On the other hand,
for a = 0 and β = 1, the process (1.3) reduces to the space-fractional Poisson process
studied in [16], which can be defined as N(Aγt ). Subordinated Poisson semigroups have
been also investigated in [7] where measures of the form∫ ∞

0

Ptµ(dt) =

∞∑
k=0

akδk

(δk is the Dirac measure at k) with

Pt = e−t
∞∑
k=0

tk

k!
δk

have been characterized in terms of the properties of the sequence {ak}k∈N0 .
Throughout the paper, we are interested in studying the fractional differential equa-

tion satisfied by the density of the processes defined above. These equations will be
expressed in terms of the translation operator defined as

eϑ∂xf(x) = f(x+ ϑ) (1.4)

for x, ϑ ∈ R and an analytic function f : R 7→ R. The rule (1.4) can be formally obtained
by considering the Taylor expansion of f near x written as

f(ϑ) =

∞∑
k=0

(ϑ− x)k

k!
f (k)(x)

and therefore

f(x+ ϑ) =

∞∑
k=0

ϑk

k!
∂kxf(x) =

∞∑
k=0

(ϑ∂x)k

k!
f(x) = eϑ∂xf(x).

The Taylor series can be considered also for the class of bounded continuous functions
on (0,+∞) (see for example [6, 10]), so that we extend the rule (1.4) to such class of
functions.

Let N(t), t > 0 be a Poisson process with rate λ > 0; we write its distribution as
follows

pk(t) =
(−λ∂λ)k

k!
e−λt,

which solves the differential equation

∂pk
∂t

=− λ (I −B) pk(t) (1.5)

=− λ
(
pk(t)− pk−1(t)

)
, k ∈ N0, t > 0

with

pk(0) =

{
1, k = 0

0, k ≤ 1
.
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Fractional Poisson process with random drift

We denote by B the (discrete) backward difference operator, i.e. Bu(x) = u(x − 1)

for all integers x. By means of (1.4) we can also rewrite the well-known probability
generating function of N(t), t > 0, as follows

EuN(t) =

∞∑
k=0

(−λu∂λ)k

k!
e−λt = e−λu∂λe−λt = e−λt(1−u).

Let us denote the waiting time of the k-th event for N , as

Tk = inf{t ≥ 0 : N(t) > k}. (1.6)

We will study the analogues of (1.6) for the processes (1.1) and (1.3) and obtain their
governing equations.

Further in the paper we will consider the solution to the Poisson driven stochastic
differential equation, for well-defined functions b and f (see for example [20])

dYt = b(Yt)dt+ f(Yt)dNt (1.7)

with EdNt = λdt and

dNt =

{
1, Poisson arrival at time t,
0, elsewhere.

(1.8)

Here, the function f plays the role of jump function. The partial differential equation
corresponding to (1.7) is a transport equation of the form

∂u

∂t
= − ∂

∂x

(
b(x)u

)
− λ(I −K)u (1.9)

where I is the identity operator and K is the Frobenius-Perron operator associated with
the transformation x 7→ x− f(x). If f 6= 1, then we have a generalized jump which equals
f at each Poisson arrival as equation (1.7) entails.

In Section 2 we consider a Lévy process time-changed with a Poisson process with
deterministic drift, i.e.

X(N(t) + at), (1.10)

where X(t), t > 0 is a Lévy process independent from N. Indeed the composition (1.10) is
meaningful since the process representing the time is positive and real-valued. Section
3 is devoted to the analysis of the Poisson process time-changed by the process (1.2)
: we find connections with fractional and higher-order equations and derive explicit
representations for the density of the hitting time. In Section 4 we study the time-
changed Poisson process with random drift (1.3) and its hitting time. Finally in Section
5 we consider more general versions of (1.10) where X is time-changed by the process
(1.3) and also by the (independent) hitting time process of (1.3) with β = 1. In both cases
we derive the governing equations.

2 Poisson process with drift

In order to consider the Poisson process with continuous drift we introduce the shift
operator, which we define as

Ku(x) =

{
e−∂xu(x), if x ∈ R+ \Z+

Bu(x), if x ∈ Z+

where B is the backward difference operator and e−∂x is defined in (1.4).
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Fractional Poisson process with random drift

Theorem 2.1. The process
N(t) + at, t > 0, a > 0 (2.1)

has probability law

px(t) = e−λt
∞∑
k=0

(λt)k

k!
δ(x− k − at), x ≥ at, a > 0, t > 0, (2.2)

which is the solution to the transport equation(
∂

∂t
+ a

∂

∂x

)
px(t) =− λ (I −K) px(t) (2.3)

=− λ
(
px(t)− px−1(t)

)
with initial and boundary conditions{

px(0) = δ(x)

p0(t) = δ(at)e−λt

where δ is the Dirac delta function.

Proof. The Laplace transform of (2.1) is given by

Ee−ξN(t)−ξat = e−ξatEe−ξN(t) = exp
(
−ξat− λt(1− e−ξ)

)
. (2.4)

We can prove that (2.2) is the law of (2.1) by checking that

p̃ξ(t) =

∫ ∞
0

e−ξxpx(t)dx

=e−ξat−λt
∞∑
k=0

(λt)k

k!
e−ξk

= exp
(
−ξat− λt+ λte−ξ

)
coincides with (2.4). We observe that∫ ∞

0

e−ξx (I −K) px(t)dx =

∫ ∞
0

e−ξx
(
px(t)− px−1(t)

)
dx = (1− e−ξ)p̃ξ(t),

so that the Laplace transform of equation (2.3) takes the form

∂p̃ξ
∂t

(t) =
(
−aξ − λ(1− e−ξ)

)
p̃ξ(t).

We immediately get
p̃ξ(t) = exp

(
−aξt− λt(1− e−ξ)

)
since p̃ξ(0) = 1.

Remark 2.2. In Theorem 2.1 we have considered a series representation involving the
generalized delta function. Let us consider an absolutely integrable function f with
compact support in the positive real line. We notice that

Ptf(x) = Ef(x−N(t)− at) = e−λt
∞∑
k=0

(λt)k

k!
f(x− k − at) (2.5)

is the transition semigroup associated to the process (2.1) with initial datum f ∈ L1(R+).
Furthermore, we get that

P̃tf(ξ) = f̃(ξ) p̃ξ(t).
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Fractional Poisson process with random drift

The homogeneous Poisson process is one of the most well-known Lévy processes. Let
us consider the one-dimensional Lévy process X(t), t > 0 with Lévy symbol

Ψ(ξ) = ibξ +
1

2
ξ2 −

∫
R−{0}

(eiξy − 1− iξy1(|y|≤1))M(dy) (2.6)

(M is the so called Lévy measure and b ∈ R is a drift coefficient) and infinitesimal
generator

Af(x) = − 1

2π

∫
R

e−iξxΨ(ξ)f̂(ξ)dξ (2.7)

for all functions in the domain

D(A) =

{
f ∈ L2(R, dx) :

∫
R

Ψ(ξ)|f̂(ξ)|2dξ <∞
}

(2.8)

(f̂ is the Fourier transform of f ). Therefore, −Ψ is the Fourier multiplier of A and
E exp iξX(t) = exp−tΨ(ξ). We recall that M is a Borel measure on Rd − {0} such that∫

(y2 ∧ 1)M(dy) <∞ or equivalently

∫
y2

1 + y2
M(dy) <∞

where a ∧ b = min{a, b}. If Dt, t > 0 is a non-decreasing Lévy process, that is a
subordinator (not necessarily stable), then its Lévy symbol is written as

ψ(ξ) = ibξ +

∫ ∞
0

(
eiξy − 1

)
M(dy) (2.9)

where b ≥ 0 and the Lévy measure M satisfies the following requirements: M(−∞, 0) = 0

and ∫
(y ∧ 1)M(dy) <∞ or equivalently

∫
y

1 + y
M(dy) <∞. (2.10)

Thus, we get that E exp
(
− ξDt

)
= exp

(
tψ(iξ)

)
and −ψ(iξ) is the Laplace exponent of Dt,

t > 0.
Let Pt = etA be the semigroup of X(t). Then, Pt is a Feller semigroup (invariant in

C∞ and a strongly continuous contraction semigroup on the Banach space (C∞, | · |∞) of
the infinitely differentiable functions under the sup-norm). In particular, we are able to
compute the semigroup and its generator as pseudo-differential operators (as in formulas
(2.7) and (2.8)) and we say that P̂t = e−tΨ is the symbol of Pt.

We now focus on the time-changed process

X(N(t) + at), t ≥ 0, a ≥ 0 (2.11)

involving a continuous time change with Poissonian jumps and such that X(0) = 0.

Lemma 2.3. The infinitesimal generator of (2.11) is

Lf(x) = aAf(x)− λ
∫
R

(f(x+ y)− f(x))FX(dy) (2.12)

where FX(dy) = fX(y)dy and fX is the density law of X(1).

Proof. We get that

Eeiξ(X(N(t)+at)) =Ee−(N(t)+at)Ψ(ξ) = e−atΨ(ξ)Ee−Ψ(ξ)N(t)

= exp
(
−atΨ(ξ)− λt

(
1− e−Ψ(ξ)

))
= exp (−tΦ(ξ)) (2.13)
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and therefore,

Lf(x) = − 1

2π

∫
R

e−iξxΦ(ξ)f̂(ξ)dξ

is the infinitesimal generator of (2.11). Indeed, we immediately see that −Φ is the
Fourier multiplier of (2.12).

We notice that FX in (2.12) is a non singular measure. Thus,∫
R

(f(x+ y)− f(x))FX(dy) =

∫
R

f(x+ y)FX(dy)− f(x)

=eAf(x)− f(x)

=(P1 − P0)f(x).

In Section 5 we will extend this result to the case where the time change in (2.11) is
represented by the process (1.3).

3 Time-changed Poisson process

We begin our analysis by studying the following composition

Fα,βt = Aα
Lβt
, t > 0 (3.1)

where Lβt , t > 0 is the inverse of the stable subordinator Aβt , t > 0. The stable process
Aαt , t > 0 is a Lévy process with non-negative increments and therefore non-decreasing
paths. Therefore, the inverse to a stable subordinator Lαt , t > 0 can be regarded as a
hitting time. Indeed, we define the inverse process by writing

Pr{Lαt < x} = Pr{Aαx > t} (3.2)

which means that
Lαt = inf{s ≥ 0 : Aαs /∈ (0, t)}.

From the fact that
Ee−ξA

α
t = e−tξ

α

(3.3)

after some algebra, formula (3.2) says that

Ee−ξL
α
t = Eα(−tαξ), (3.4)

where Eρ is a special case (for % = 1) of the generalized Mittag-Leffler function

Eρ,%(z) =
∞∑
k=0

zk

Γ(ρk + %)
, <{ρ} > 0, ρ, %, z ∈ C.

The density of the inverse process Lαt , t > 0, can be written in terms of the Wright
function

Wρ,%(z) =

∞∑
k=0

zk

k! Γ(ρk + %)
, <{%} > 0, ρ > −1, z ∈ [0,∞)

as follows

lα(x, t) =
1

tα
Wα,1−α

(
− x

tα

)
, x ≥ 0, t > 0 (3.5)

whereas, for the density of Aαt , t > 0 we can write ([5])

hα(x, t) =
αt

x
lα(t, x).
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Let

fα,βt (x) =

∫ ∞
0

hα(x, s)lβ(s, t)ds, x ≥ 0, t > 0, α, β ∈ (0, 1) (3.6)

be the law of the process Fα,βt , t > 0. Then it is easy to check that the governing equation
of (3.6) is given by (

Dβt − ∂αx
)
fα,βt (x) = 0, x ≥ 0, t > 0 (3.7)

subject to the initial and boundary conditions{
fα,β0 (x) = δ(x),

fα,βt (0) = 0,

where

Dβt u = ∂βt u− u(0+)
t−β

Γ(1− β)

is the Dzhrbashyan-Caputo fractional derivative and

∂αz u =
∂αu

∂zα
=

1

Γ(1− α)

∂

∂z

∫ z

0

u(s) ds

(z − s)α

is the Riemann-Liouville fractional derivative.
Equation (3.7) has been also investigated in [9]; for another reference on the process

(3.1) see for example [18].
The following result will turn out to be useful further in the text.

Lemma 3.1. The Laplace transform of (3.6) is given by

Ee−ξF
α,β
t = Eβ(−tβξα) (3.8)

and satisfies the following equation

∂

∂t
Ee−ξF

α,β
t =

βξ

αt

∂

∂ξ
Ee−ξF

α,β
t , ξ, t > 0. (3.9)

Proof. Since Fα,βt has non-negative increments, the Laplace transform exists, i.e.

Ee−ξF
α,β
t <∞

and can be easily written as in (3.8). In order to check (3.9) we recall that

d

dz
Eβ(−z) =

d

dz

∞∑
k=0

(−z)k

Γ(βk + 1)
= − 1

β
Eβ,β(−z),

so that

t
∂

∂t
Eβ(−tβξα) =− ξαtβEβ,β(−tβξα) (3.10)

and

ξ
∂

∂ξ
Eβ(−tβξα) =− α

β
ξαtβEβ,β(−tβξα). (3.11)

Thus, by considering (3.10) and (3.11) together, we obtain

αt
∂

∂t
Eβ(−tβξα) = βξ

∂

∂ξ
Eβ(−tβξα)

which coincides with (3.9).

EJP 19 (2014), paper 122.
Page 7/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3258
http://ejp.ejpecp.org/


Fractional Poisson process with random drift

Let us consider the exit time of (3.1) from the interval (0, t), i.e.

T α,βt = inf{s ≥ 0 : Fα,βs /∈ (0, t)}, t > 0.

Since Fα,βt has non-decreasing paths, we can argue that it satisfies the relation

Pr{T α,βt < x} = Pr{Fα,βx > t}. (3.12)

Lemma 3.2. For α, β ∈ (0, 1), the following result holds true

T α,βt
law
= Fβ,αt

and thus
Fβ,αt

law
= inf

{
s ≥ 0 : Fα,βs /∈ (0, t)

}
, (3.13)

where
law
= denotes the equality of the finite dimensional distributions.

Proof. Considering together (3.3) and∫ ∞
0

e−µt
Pr{Lαt ∈ dx}

dx
dt = µα−1e−xµ

α

,

the composition
Fβ,αt = AβLαt

, t > 0

has double Laplace transform given by∫ ∞
0

e−µtEe−ξF
β,α
t dt =

µα−1

µα + ξβ
. (3.14)

We now assume that (3.13) holds. By applying (3.12), we get that

Pr{Fβ,αt ∈ dx}
dx

= − ∂

∂x
Pr{Fα,βx < t}. (3.15)

The Laplace transform of (3.15) reads∫ ∞
0

e−µt
Pr{Fβ,αt ∈ dx}

dx
dt =− ∂

∂x

1

µ

∫ ∞
0

e−µtPr{Fα,βx ∈ dt}

=− ∂

∂x

1

µ
Ee−µF

α,β
x = − ∂

∂x

1

µ
Eβ(−xβµα)

=[by (3.10)] = xβ−1µα−1Eβ,β(−xβµα),

while its double Laplace transform is given by∫ ∞
0

e−ξx
∫ ∞

0

e−µtPr{Fβ,αt ∈ dx}dt =

∫ ∞
0

e−ξxxβ−1µα−1Eβ,β(−xβµα)dx

=
µα−1

µα + ξβ
. (3.16)

Formula (3.16) coincides with (3.14) and this proves the claim (3.13).

Remark 3.3. We observe that

Fα,βt
t

t→∞−−−→


+∞ β > α

W β = α

0 β < α

(3.17)
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where W represents the ratio of two independent stable subordinators of order α and
possesses Lamperti distribution (see for example [11]). The convergence in (3.17) must
be understood in distribution as we can immediately verify by looking at

E exp

(
−µF

α,β
t

t

)
= Eβ(−µαtβ−α).

Indeed, it is easy to check that Eβ(−∞) = 0 and Eβ(0) = 1. Thus, for t → ∞, we have
that

Pr{Fα,βt > t} = 1, if β > α,

Pr{Fα,βt < t} = 1, if β < α.

We study now the time-changed Poisson process. We refer to N(t), t > 0 as the base
process and to Fα,βt as the time change process. Thus, the resulting composition

N(Fα,βt ), t > 0, α, β ∈ (0, 1] (3.18)

is a time-changed Poisson process with probability law

Pr{N(Fα,βt ) = k} = pk(t;α, β) =

∫ ∞
0

pk(s)fα,βt (s)ds,

where we use the following notation

pk(t;α, β) =E
(−λ∂λ)k

k!
e−λF

α,β
t =

(−λ∂λ)k

k!
Ee−λF

α,β
t =

(−λ∂λ)k

k!
Eβ(−tβλα). (3.19)

The probability generating function of N(Fα,βt ), t > 0, is given by

Gαβ(u, t) =EuN(Fα,βt ) =

∞∑
k=0

(−uλ∂λ)k

k!
Ee−λF

α,β
t (3.20)

=e−uλ∂λEe−λF
α,β
t = Ee−λ(1−u)Fα,βt

=Eβ(−tβλα(1− u)α).

Theorem 3.4. The probability law (3.19) of the time-changed Poisson process (3.18) is
the solution to the fractional differential equation(

Dβt + λα(I −B)α
)
pk(t;α, β) = 0, k = 0, 1, 2 . . . , t > 0 (3.21)

with initial condition

pk(0;α, β) =

{
0, k ≥ 1,

1, k = 0,

where

(I −B)α =

∞∑
j=0

(−1)j
(
α

j

)
Bj .

Furthermore, the waiting time of the k-th event of N(Fα,βt ), t > 0, i.e.

Tα,βk = inf
{
s ≥ 0 : N(Fα,βs ) > k

}
has density given by

Pr{Tα,βk ∈ dt}/dt =
βk

αt

(−λ∂λ)k

k!
Eβ(−tβλα) =

βk

αt
pk(t;α, β)

and
Tα,βk

law
= Fβ,αTk , k = 1, 2, . . . .
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Proof. From the probability generating function (3.20) we get that

Dβt Gαβ(u, t) = −λα(1− u)αGαβ(u, t),

since the Mittag-Leffler is an eigenfunction for the Dzhrbashyan-Caputo fractional
derivative. Let us consider the auxiliary function f ∈ L1(R+). By considering the
Bernstein function

xα =
α

Γ(1− α)

∫ ∞
0

(
1− e−sx

) ds

sα+1
(3.22)

we formally write

(I −B)αf =
α

Γ(1− α)

∫ ∞
0

(
f − e−s(I−B)f

) ds

sα+1

=
α

Γ(1− α)

∫ ∞
0

(f − Psf)
ds

sα+1

where we denote by Ps the transition semigroup

Psf(x) = Ef(x−N(s)) =

∞∑
k=0

f(x− k)
sk

k!
e−s (3.23)

as in Remark 2.2 with a = 0 and λ = 1. The Laplace transform of (3.23) is given by

P̃sf(ξ) = f̃(ξ) e−sΨ(iξ) = f̃(ξ)Ee−ξN(s),

where Ψ(ξ) = (1 − eiξ) and N is now a Poisson process with λ = 1. For 0 < u < 1, we
immediately get

P̃sf(− log u) = f̃(− log u)e−s(1−u) = f̃(− log u)EuN(s)

and therefore, we have that

˜(I −B)αf(− log u) =
α

Γ(1− α)

∫ ∞
0

(
f̃(− log u)− P̃sf(− log u)

) ds

sα+1

=
α

Γ(1− α)

∫ ∞
0

(
1− e−s(1−u)

) ds

sα+1
f̃(− log u)

=(1− u)α f̃(− log u).

We now consider a function f(x, t) such that | ∂∂tf(x, t)| ≤ tγ−1g(x) with γ > 0 and
g ∈ L∞(R+) which is, as a function of x, consistent with the previous assumption. Thus,
by imposing that

−λα ˜(I −B)αf(− log u, t) = −λα (1− u)α f̃(− log u, t) = Dβt f̃(− log u, t)

and considering that Gαβ(u, 0) = 1, we get

f̃(− log u, t) = Gαβ(u, t),

which proves that equation (3.21) is satisfied. The fact that | ∂∂tf(·, t)| ≤ tγ−1 for some

γ > 0 is a standard requirement for the existence of Dβt which comes directly from
the definition of the fractional derivative. Furthermore, the Laplace techniques ensure
uniqueness: indeed for any other inverse g we have that f − g is a null function (see [8],
section 5).
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Fractional Poisson process with random drift

Now we focus on the waiting time Tα,βk , k ∈ N: its probability distribution function
can be written as

Pr{Tα,βk ≤ t} =Pr{N(Fα,βt ) ≥ k}

=

∞∑
m=k

pm(t;α, β)

=

∞∑
m=k

(−λ)m

m!
∂mλ λ

Ee−λF
α,β
t

λ
.

Since

∂mλ λf(λ) =∂m−1
λ [1 + λ∂λ] f(λ)

=∂m−2
λ

[
2∂λ + λ∂2

λ

]
f(λ)

=[for any k ≤ m]

=∂m−kλ

[
k∂k−1

λ + λ∂kλ
]
f(λ)

=
[
m∂m−1

λ + λ∂mλ
]
f(λ),

we can write that

Pr{Tα,βk ≤ t} =

∞∑
m=k

(−λ)m

m!

[
m∂m−1

λ + λ∂mλ
] Ee−λFα,βt

λ

=
∑
m=k

[
−λ (−λ∂λ)m−1

(m− 1)!
+ λ

(−λ∂λ)m

m!

]
Ee−λF

α,β
t

λ

=

[
−λ

∞∑
m=k−1

(−λ∂λ)m

m!
+ λ

∞∑
m=k

(−λ∂λ)m

m!

]
Ee−λF

α,β
t

λ

=− λ (−λ∂λ)k−1

(k − 1)!

Ee−λF
α,β
t

λ
.

Therefore, we get

Pr{Tα,βk ∈ dt}/dt =− λ (−λ∂λ)k−1

(k − 1)!

∂

∂t

Ee−λF
α,β
t

λ

=[by (3.9)]

=− λ (−λ∂λ)k−1

(k − 1)!

β

αt
∂λEe

−λFα,βt

=
βk

αt

(−λ∂λ)k

k!
Ee−λF

α,β
t

=
βk

αt
pk(t;α, β).

As a second step we show that

Tα,βk
law
= Fβ,αTk , k = 1, 2, . . . .

Let us consider the density

Pr{Fβ,αTk ∈ dt}/dt =
λk

(k − 1)!

∫ ∞
0

zk−1e−λzfβ,αz (t)dz

=
λ

(k − 1)!

∫ ∞
0

(−λ∂λ)k−1e−λzfβ,αz (t)dz
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Fractional Poisson process with random drift

where ∫ ∞
0

e−λzfβ,αz (t)dz =

∫ ∞
0

e−λz
∫ ∞

0

hβ(t, s)lα(s, z)dsdz

=

∫ ∞
0

hβ(t, s)λα−1e−sλ
α

ds

=λα−1tβ−1Eβ,β(−tβλα).

In the last steps we used formulae (3.4) and (3.3). Therefore, we get that

Pr{Fβ,αTk ∈ dt}/dt =
λ

(k − 1)!
(−λ∂λ)k−1λα−1tβ−1Eβ,β(−tβλα)

=
β

αt

(−λ∂λ)k

(k − 1)!
Eβ(−tβλα)

=
βk

αt
pk(t;α, β).

This concludes the proof.

Remark 3.5. Orsingher and Polito [16] proved that the solution to (3.21) can be written
as follows

pk(t;α, β) =
(−1)k

k!

∞∑
r=0

(−λαtβ)r

Γ(βr + 1)

Γ(r + 1)

Γ(αr + 1− k)
, k ≥ 0, α ∈ (0, 1], β ∈ (0, 1]. (3.24)

After some calculation, we can see that (3.24) coincides with our compact representation
given in (3.19).

As special cases for α = 1 or β = 1, we can obtain from Theorem 2 some results
on well-known processes. Indeed, in the first case, the subordinated Poisson process
coincides with the time-fractional Poisson process studied in [17, 2, 15, 14]).

Corollary 3.6. For α = 1, the probability law of the time-changed Poisson process
N(F1,β

t ) = N(Lβt ), t > 0, β ∈ (0, 1], i.e.

pk(t; 1, β) = P{N(Lβt ) = k} =
(−λ∂λ)k

k!
Eβ(−tβλ)

satisfies the following equation(
Dβt + λ(I −B)

)
pk(t; 1, β) = 0, k ∈ N0, t > 0 (3.25)

subject to the initial condition

pk(0; 1, β) =

{
0, k ≥ 1,

1, k = 0.

Furthermore, for the hitting time we have that

T 1,β
k

law
= AβTk (3.26)

and

Pr{T 1,β
k ∈ dt}/dt =

β

t

(−λ∂λ)k

(k − 1)!
Eβ(−tβλ).

Moreover, for the subordinated Poisson process N(F1,β
t ), we can prove the following

result on its hitting time (3.26). We notice that equation (3.25) has been also investigated
in [12].
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Theorem 3.7. The following holds

Nt∑
k=0

T 1,β
k =

Nt∑
k=0

AβTk =

∫ t

0

Aβs dNs
law
= AβTt

where

Tt =

∫ t

0

s dNs

Proof. From the fact that ∑
Nt>k

AβTk =
∑
Tk<t

AβTk

we can write

E exp

(
−ξ

∑
Tk<t

AβTk

)
=E

[ ∏
Tk<t

E
[
exp

(
−ξAβTk

) ∣∣∣Tk] ]

=E

[ ∏
Tk<t

exp
(
−ξβTk

)]

=E exp

(
−ξβ

∑
Tk<t

Tk

)
=E exp

(
−ξAβTt

)
where

Tt =
∑
Tk<t

Tk =

∫ t

0

s dNs

and this concludes the proof.

In the other special case, i.e. for β = 1, the time-changed Poisson process N(Fα,βt )

reduces to the space-fractional Poisson process studied in [16].

Corollary 3.8. For β = 1, the probability law of the time-changed Poisson process
N(Fα,1t ) = N(Aαt ), t > 0, α ∈ (0, 1], i.e.

pk(t;α, 1) = P{N(Aαt ) = k} =
(−λ∂λ)k

k!
e−tλ

α

(3.27)

satisfies the following equation(
d

dt
+ λα(I −B)α

)
pk(t;α, 1) = 0, k = 0, 1, 2 . . . , t > 0

subject to the initial condition

pk(0;α, 1) =

{
0, k ≥ 1,

1, k = 0.

Furthermore, the hitting time can be written as

Tα,1k = LαTk

and

Pr{Tα,1k ∈ dt}/dt =
1

αt

(−λ∂λ)k

(k − 1)!
e−tλ

α

.

EJP 19 (2014), paper 122.
Page 13/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3258
http://ejp.ejpecp.org/


Fractional Poisson process with random drift

We prove now that the process N(Aαt ) is governed also by an alternative fractional
differential equation, of order 1/α > 1. In this case we use the left-sided Riemann-
Liouville fractional derivative, defined as

dν

d(−x)ν
f(x) =

1

Γ(m− ν)

(
− d

dx

)m ∫ +∞

x

f(s)ds

(s− x)1+ν−m m− 1 < ν < m.

Theorem 3.9. The distribution pk(t;α, 1) of N(Aαt ) is the solution to the following equa-
tion (

d
1
α

d(−t) 1
α

− λ(I −B)

)
pk(t;α, 1) = 0, k = 0, 1, 2 . . . , t > 0, α ∈ (0, 1] (3.28)

subject to the initial conditions

pk(0;α, 1) =

{
0, k ≥ 1,

1, k = 0.

and
dj

dtj
pk(t;α, 1)

∣∣∣∣
t=0

= (−1)k
λαj

k!

Γ(αj + 1)

Γ(αj + 1− k)
, j = 1, ... b1/αc − 1. (3.29)

Proof. We start by proving that the density hα(x, t) of the subordinator Aαt satisfies the
fractional differential equation (of order 1/α greater than one)(

∂1/α

∂(−t)1/α
− ∂

∂x

)
hα(x, t) = 0, x, t ≥ 0, (3.30)

with initial conditions
hα(x, 0) = δ(x), x ≥ 0

hα(0, t) = 0, t ≥ 0
∂j

∂tj hα(x, t)
∣∣∣
t=0

= (−1)jΦαj+1(x), j = 1, ..., b1/αc − 1
(3.31)

where Φαj+1(z) = z−αj−1

Γ(−αj) , for z > 0. For the Laplace transform of (3.30), we get∫ ∞
0

e−ξx
∂1/α

∂(−t)1/α
hα(x, t)dx = [by (3.3)]

=
∂1/α

∂(−t)1/α
e−ξ

αt = [by (2.2.15) in [13]]

= ξe−ξ
αt = [by (3.31)] =

∫ ∞
0

e−ξx
∂

∂x
hα(x, t)dx.

The third condition in (3.31) can be checked by noting that∫ ∞
0

e−ξx
∂j

∂tj
hα(x, t)

∣∣∣∣
t=0

dx

=
∂j

∂tj
e−ξ

αt

∣∣∣∣
t=0

= (−1)jξαj

= (−1)j
∫ ∞

0

e−ξx
x−αj−1

Γ(−αj)
dx = (−1)j

∫ ∞
0

e−ξxΦαj+1(x)dx,

while the others are immediately verified. The result given in (3.30)-(3.31) generalizes,
to any α ∈ (0, 1), Theorem 2 in [4], which has been proved in the special case α = 1/n.
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Fractional Poisson process with random drift

We now prove equation (3.28):

d
1
α

d(−t) 1
α

pk(t;α, 1)

=
∂

1
α

∂(−t) 1
α

∫ ∞
0

pk(z)hα(z, t)dz = [by (3.30)]

=

∫ ∞
0

pk(z)
∂

∂z
hα(z, t)dz = [by (3.31]

= −
∫ ∞

0

d

dz
pk(z)hα(z, t)dz = λ(I −B)pk(t;α, 1).

Condition (3.29) is obtained as follows

dj

dtj
pk(t;α, 1)

∣∣∣∣
t=0

=

∫ ∞
0

pk(z)
dj

dtj
h1/α(z, t)

∣∣∣∣
t=0

dz = [by (3.31)]

=
λk

k!

∫ ∞
0

e−λz
zk−αj−1

Γ(−αj)
dz =

λαj

k!

Γ(−αj + k)

Γ(−αj)

=
λαj

k!

Γ(1 + αj)

Γ(1 + αj − k)

sin(−παj)
sin(−παj + πk)

= (−1)k
λαj

k!

Γ(1 + αj)

Γ(1 + αj − k)
, j = 1, ..., b1/αc − 1

and it is satisfied by pk(t;α, 1), as can be checked by differentiating formula (3.24). The
other conditions are immediately verified.

Let us introduce the following differential operator

Dψ f(x) =

∫ ∞
0

(Psf(x)− f(x))M(ds) (3.32)

where Ps is the semigroup (of a Lévy process previously introduced) associated to the
infinitesimal generator A and M(·) is the Lévy measure of the subordinator Dt, t > 0

with symbol ψ. From (2.9), we immediately get that

D̂ψ f(ξ) =

∫ ∞
0

(e−sΨ(ξ)f̂(ξ)− f̂(ξ))M(ds) = ψ(Ψ(ξ))f̂(ξ). (3.33)

Indeed, e−tΨ is the symbol of Pt = etA. An alternative form can be given as follows

Dψ f(x) =

∫ ∞
0

(Psf(x)− f(x))M(ds)

=

∫ ∞
0

(Ef(Xx
s )− f(x))M(ds)

=

∫ ∞
0

∫
R

(f(y)− f(x))Pr{Xx
s ∈ dy}M(ds)

=

∫
R

(f(y)− f(x))J(x, y)dy

when the integral J(x, y)dy =
∫∞

0
Pr{Xx

s ∈ dy}M(ds) converges. We now consider the
differential operator (3.32) where Ps is the semigroup of the Poisson process N(t), t > 0.

Our aim in the present paper is to investigate the time-changed Poisson processes
presented so far. Nevertheless, we are able to state the following general result which
refers to the case where a general subordinator Dt, t > 0, is used as time argument.
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Theorem 3.10. Let Dt, t ≥ 0 be a subordinator with symbol (2.9). Let Lβt , t ≥ 0 be the
inverse to a stable subordinator of order β ∈ (0, 1]. The time-changed Poisson process

N(DLβt
), t ≥ 0 (3.34)

has probability distribution function

pψk (t;β) =
(−λ∂λ)k

k!
Eβ(−tβψ(λ)), k = 0, 1, 2, . . . . (3.35)

Furthermore, (3.35) is the solution to(
Dβt −Dψ

)
pψk (t;β) = 0, t > 0, k = 0, 1, 2, . . . (3.36)

subject to the initial condition

pψk (0;β) =

{
1, k = 0,

0, k ≥ 1

where

Dψuk = −
∫ ∞

0

E
(
uk −BN(s)uk

)
M(ds) = −ψ (λ(I −B))uk. (3.37)

and Buk = uk−1 as usual.

Proof. We have that

E exp
(
−λDLβt

)
= E exp

(
−ψ(λ)Lβt

)
= Eβ(−tβψ(λ)) (3.38)

and therefore

pψk (t;β) =
(−λ∂λ)k

k!
E exp

(
−λDLβt

)
= E

[
(−λ∂λ)k

k!
exp

(
−λDLβt

)]
=

∫ ∞
0

(−λ∂λ)k

k!
e−λsP

{
DLβt

∈ ds
}

=

∫ ∞
0

P{N(s) = k}P
{
DLβt

∈ ds
}

=P{N(DLβt
) = k}.

Furthermore, from (3.38),

E exp
(
iξN(DLβt

)
)

= E exp
(
−λ(1− eiξ)DLβt

)
)

= Eβ

(
− tβψ

(
λ(1− eiξ)

) )
.

It is well-known that Eβ is an eigenfunction for Dβt ; in particular, from (3.33) we can
write

Dβt Eβ
(
− tβψ

(
λ(1− eiξ)

) )
= ψ

(
λ(1− eiξ)

)
Eβ

(
− tβψ

(
λ(1− eiξ)

) )
.

The symbol ψ
(
λ(1− eiξ)

)
is the Fourier multiplier of Dψ when Ψ(ξ) = λ(1− eiξ), that is

the Lévy process X is the Poisson process N .
We now show that (3.37) holds true. It suffices to see that

E
(
uk −BN(s)uk

)
=
(
uk − EBN(s)uk

)
=

(
uk − e−sλ

∞∑
n=0

(sλB)n

n!
uk

)
=
(
uk − e−sλ(I−B)uk

)
= (uk − Psuk) .

From (3.33) (or (2.9)) we get the claim.
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Remark 3.11. Concerning the solution (3.35), it is worth to recall that

(−∂z)kψ(z) ≤ 0 and (−∂z)kEβ(−z) ≥ 0.

Indeed, ψ is a Bernstein function and therefore its derivative is completely monotone,
whereas the Mittag-Leffler is completely monotone. Furthermore, Eβ(0) = 1 and there
exists a unique probability measure m such that Eβ(−ξ) =

∫∞
0
e−ξxm(dx). In particular,

we have seen before that m(dx) = lβ(x, 1)dx. We notice that, if f is a Bernstein function
on (0,∞), then g(f) is completely monotone for every completely monotone g (see
Theorem 3.6 of [19]). This means that pψk ≥ 0 for all k ≥ 0.

4 Poisson process with random drift

We consider now the process defined in (1.3) where Fγ,βt = Aγ
Lβt

and Fα,βt = Aα
Lβt

are

independent from N(t).

Theorem 4.1. The drifted process

N(Fγ,βt ) + aFα,βt , t > 0, a ≥ 0, α, γ, β ∈ (0, 1] (4.1)

has probability law

Pr{N(Fγ,βt ) + aFα,βt ∈ dx}/dx =

∞∑
k=0

(−λ∂λ)k

k!

∫ ∞
0

e−sλ
γ

hα(x− k, aαs)lβ(s, t)ds

=

∞∑
k=0

(−λ∂λ)k

k!
E
[
exp(−λγLβt )hα(x− k, aαLβt )

]
(4.2)

which is the solution to the equation(
Dβt + aα∂αx + λγ (I −K)

γ
)
u(x, t) = 0, x ∈ R+

0 , t > 0 (4.3)

with initial condition u(x, 0) = δ(x), where

(I −K)γ =

∞∑
j=0

(−1)j
(
γ

j

)
Kj (4.4)

and

Kj =

{
e−j∂x , if a > 0

Bj , if a = 0

is the shift operator.

Remark 4.2. We observe that the solution (4.2) can be represented as follows

Pr{N(Fγ,βt ) + aFα,βt ∈ dx}/dx = eλtPtϕ(x, t)

where Pt is the Poisson semigroup (2.5) and

ϕ(x, t) =E
[
exp(−λγLβt )hα(x, aαLβt )

]
.

By using the fact that hα(x, t) = αt
x lα(t, x) where lα is the density law (3.5), we get

ϕ(x, t) =E

[
aαLβt
x

exp(−λγLβt ) lα(aαLβt , x)

]
.
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Proof of Theorem 4.1. First we observe that

Ee−ξN(Fγ,βt )−aξFα,βt =E

[
E
[
e−ξN(Fγ,βt )e−aξF

α,β
t

∣∣∣Lβt ]
]

where
E
[
e−aξF

α,β
t

∣∣∣Lβt ] = exp
(
−aαξαLβt

)
and

E
[
e−ξN(Fγ,βt )

∣∣∣Lβt ] =E
[
E
(
e−ξN(Fγ,βt )

∣∣Fγ,βt ) ∣∣∣Lβt ]
=E

[
exp

(
−λ(1− e−ξ)Fγ,βt

) ∣∣∣Lβt ]
= exp

(
−λγ(1− e−ξ)γLβt

)
Therefore we obtain that

Ee−ξN(Fγ,βt )−aξFα,βt =E exp
(
−ξαLβt − λγ(1− e−ξ)γLβt

)
=Eβ

(
−tβaαξα − tβλγ(1− e−ξ)γ

)
. (4.5)

The density can be obtained by considering that

Pr{N(Fγ,βt ) + aFα,βt ∈ A} =

∞∑
k=0

Pr

{
Fα,βt ∈ A− k

a

}
P{N(Fγ,βt ) = k}

for every Borel set A ∈ B(R+) and

Pr{N(Fγ,βt ) + aFα,βt ∈ A
∣∣Lβt = s} =

∞∑
k=0

Pr

{
Aαs ∈

A− k
a

}
P{N(Aγs ) = k}

=

∞∑
k=0

(−λ∂λ)k

k!
e−sλ

γ

Pr

{
Aαs ∈

A− k
a

}

=

∞∑
k=0

(−λ∂λ)k

k!
e−sλ

γ

Pr {Aαaαs ∈ A− k}

=

∫
A

∞∑
k=0

(−λ∂λ)k

k!
e−sλ

γ

hα(x− k, aαs)dx.

By integrating with respect to Pr{Lβt ∈ ds}, we obtain

Pr{N(Fγ,βt ) + aFα,βt ∈ A} =

∫
A

∞∑
k=0

(−λ∂λ)k

k!

∫ ∞
0

e−sλ
γ

hα(x− k, aαs)lβ(s, t)ds dx.

and thus

Pr{N(Fγ,βt ) + aFα,βt ∈ dx} =

∞∑
k=0

(−λ∂λ)k

k!

∫ ∞
0

e−sλ
γ

hα(x− k, aαs)lβ(s, t)ds dx. (4.6)

A further check involves the Laplace transform∫ ∞
0

∫ ∞
0

e−ξxe−sλ
γ

hα(x− k, aαs)lβ(s, t)ds dx

=e−ξk
∫ ∞

0

e−sλ
γ−aαsξα lβ(s, t)ds = e−ξkEβ(−tβ(λγ + aαξα)).
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Due to the action of the shift operator we arrive at∫ ∞
0

e−ξx Pr{N(Fγ,βt ) + aFα,βt ∈ dx} =

∞∑
k=0

(−λ∂λ)k

k!
e−ξkEβ(−tβ(λγ + aαξα))

=e−e
−ξλ∂λEβ(−tβ(λγ + aαξα))

=Eβ(−tβ(λγ(1− e−ξ)γ + aαξα))

which coincides with (4.5).
We now study the governing equation (4.3). From representation (4.4), where K is

the translation operator for both continuous and discrete supported functions, we get
that ∫ ∞

0

e−ξx(I −K)γu(x, t)dx =

∞∑
j=0

(−1)j
(
γ

j

)∫ ∞
0

e−ξxKju(x, t)dx

=

∞∑
j=0

(−1)j
(
γ

j

)∫ ∞
0

e−ξxu(x− j, t)dx

=

∞∑
j=0

(−1)j
(
γ

j

)
e−jξ

∫ ∞
0

e−ξxu(x, t)dx

=(1− e−ξ)γ
∫ ∞

0

e−ξxu(x, t)dx.

Let us write ˜̃u(ξ, µ) =

∫ ∞
0

e−µt
∫ ∞

0

e−ξxu(x, t)dxdt.

Equation (4.3) becomes

µβ ˜̃u(ξ, µ)− µβ−1ũ0(ξ) + aαξα˜̃u(ξ, µ) = −λγ(I − e−ξ)γ ˜̃u(ξ, µ)

from which we obtain

˜̃u(ξ, µ) =
µβ−1

µβ + aαξα + λγ(1− e−ξ)γ
ũ0(ξ) (4.7)

where

ũ0(ξ) =

∫ ∞
0

e−ξxu(x, 0)dx.

From (4.5) we obtain the double Laplace transform∫ ∞
0

e−µtE
[
e−ξN(Fγ,βt )−aξFα,βt

]
dt =

µβ−1

µβ + aαξα + λγ(1− e−ξ)γ
. (4.8)

For u0 = δ, formula (4.7) coincides with (4.8) and therefore we obtain the claimed
result.

For β = 1, the composition (4.1) becomes

N(Aγt ) + aAαt , t > 0 (4.9)

and coincides, for γ = 1, with N(t) + aAαt . For the latter we present the following results,
concerning its governing equation and its hitting time. We remark that, for α = 1, it
reduces to the drifted Poisson process (2.1) whereas, for a = 0, it coincides with the
standard Poisson process.
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Corollary 4.3. The Poisson process with subordinated drift

N(t) + aAαt , t > 0, a ≥ 0, α ∈ (0, 1] (4.10)

has probability law

Pr{N(t) + aAαt ∈ dx}/dx = e−λt
∞∑
k=0

(λt)k

k!
hα (x− k, aαt) 1(k<x) (4.11)

which solves the fractional equation(
∂

∂t
+ aα∂αx + λ(I −K)

)
u(x, t) = 0, x ≥ 0, t > 0

subject to the initial condition u0 = δ.

Proof. From the fact that

Pr{N(t) + aAαt < x} =

∞∑
k=0

Pr

{
Aαt <

x− k
a

}
pk(t)1(k<x)

we immediately get that

Pr{N(t) + aAαt ∈ dx}/dx =
1

a

∞∑
k=0

hα

(
x− k
a

, t

)
pk(t)1(k<x)

which coincides with (4.11) by the autosimilarity of the stable process Aαt , t > 0.

Theorem 4.4. Let us consider b ≥ 0, β, γ ∈ (0, 1]. The density h(x, t) = Pr{Ht ∈ dx}/dx
of the hitting time

Ht = inf
{
s ≥ 0 : N(Aγs ) + bAβs /∈ (0, t)

}
, t ≥ 0 (4.12)

is the solution to the following equation

bβDβt u+ λγ(I −K)γu = −∂u
∂x
, x > 0, t > 0 (4.13)

with initial and boundary conditions

u(x, 0) = δ(x), u(0, t) = − γλγ

Γ(1− γ)

∞∑
k=0

Γ(k − γ)

k!
H(t− k) (4.14)

where H(·) is the Heaviside step function and

K =

{
e−∂t , if a > 0,

B, if a = 0

is the shift operator.

Remark 4.5. We observe that, for γ = 1 in (4.14), the boundary condition reduces to

u(0, t) = λ [H(t)−H(t− 1)] .

Indeed, for γ /∈ N, we can write

u(0, t) = λγ
[
H(t)− γH(t− 1)− γ(1− γ)

2
H(t− 2)− γ(1− γ)(2− γ)

3!
H(t− 3)− . . .

]
and, for γ = 1, we get the claim.
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Proof of Theorem 4.4. By definition, we can write

∫ +∞

0

e−ξt Pr{Ht > x}dt =

∫ +∞

0

e−ξtPr{N(Aγx) + bAβx < t}dt

=ξ−1

∫ +∞

0

e−ξt
∂

∂t
Pr{N(Aγx) + bAβx < t}dt

=[by (4.5)]

=ξ−1e−b
βξβx−λγx(1−e−ξ)γ .

Therefore we obtain

∫ +∞

0

e−ξth(x, t)dt =−
∫ +∞

0

e−ξt
∂

∂x
Pr{Ht > x}dt

=ξ−1
[
bβξβ + λγ(1− e−ξ)γ

]
e−b

βξβx−λγx(1−e−ξ)γ

=h̃(x, ξ). (4.15)

We immediately get that

˜̃
h(µ, ξ) =

∫ ∞
0

e−µxh̃(x, ξ)dx =
ξ−1

[
bβξβ + λγ(1− e−ξ)γ

]
µ+ bβξβ + λγ(1− e−ξ)γ

Let us now focus on the equation (4.13). We have that

∫ +∞

0

e−ξt
[
bβDβt u(x, t) + λγ(I −K)γu(x, t)

]
dt = bβξβ ũ(x, ξ)−bβξβ−1δ(x)+λγ(1−e−ξ)γ ũ(x, ξ)

and therefore, equation (4.13) takes the form

bβξβ ũ(x, ξ)− bβξβ−1δ(x) + λγ(1− e−ξ)γ ũ(x, ξ) = −∂ũ
∂x

(x, ξ).

Furthermore, ∫ ∞
0

e−µx
∂ũ

∂x
(x, ξ)dx = µ˜̃u(µ, ξ)− ũ(0, ξ)

where

ũ(0, ξ) =

∫ ∞
0

e−ξtu(0, t)dt = ξ−1λγ
(
1− e−ξ

)γ
.

Indeed, considering that

− γ

Γ(1− γ)

∞∑
k=0

Γ(k − γ)

k!
H(t− k) = H(t)− γ

Γ(1− γ)

∞∑
k=1

Γ(k − γ)

k!
H(t− k)
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we can write ∫ ∞
0

e−ξt

[
λγH(t)− γλγ

Γ(1− γ)

∞∑
k=1

Γ(k − γ)

k!
H(t− k)

]
dt

=
λγ

ξ
− γλγ

Γ(1− γ)

∞∑
k=1

Γ(k − γ)

k!

e−ξk

ξ
= [by (3.22)]

=

∫ ∞
0

(
(1− e−sλ)

ξ

1

sγ+1
− e−sλ

∞∑
k=1

sk−γ−1

k!

e−ξk

ξ

)
γ

Γ(1− γ)
ds

=

∫ ∞
0

(
(1− e−sλ)

ξ
− e−sλ

∞∑
k=1

sk

k!

e−ξk

ξ

)
γ

Γ(1− γ)

ds

sγ+1

=

∫ ∞
0

(
1

ξ
− e−sλ

∞∑
k=0

sk

k!

e−ξk

ξ

)
γ

Γ(1− γ)

ds

sγ+1

=

∫ ∞
0

(
1− e−sλ(1−e−ξ)

ξ

)
γ

Γ(1− γ)

ds

sγ+1

=ξ−1λγ(1− e−ξ)γ

where we used once again formula (3.22).
By collecting all pieces together, formula (4.13) with initial and boundary conditions

becomes

bβξβ ˜̃u(µ, ξ)− bβξβ−1 + λγ(1− e−ξ)γ ˜̃u(µ, ξ) = −µ˜̃u(µ, ξ) + ξ−1λγ
(
1− e−ξ

)γ
.

Thus, we get that ˜̃u(µ, ξ) =
bβξβ−1 + ξ−1λγ(1− e−ξ)γ

µ+ bβξβ + λγ(1− e−ξ)γ
. (4.16)

By observing that ˜̃u =
˜̃
h, we get the claimed result.

5 Lévy processes with drifted Poisson time change

We consider now the Lévy process X time-changed by an independent random time
defined as in (4.9). This can be considered as a generalization of the result given in
Lemma 2.3.

Theorem 5.1. Let X(t), t ≥ 0, be the Lévy process previously introduced. Let Xj ,
j = 1, 2, . . . be i.i.d. random variables such that Xj ∼ X(1) for all j. Then, for γ, α ∈ (0, 1],
we have that

X(N(Aγt ) + aAαt )
law
=

N(Aγt )∑
j=1

Xj +X(aAαt ), t ≥ 0, a ≥ 0 (5.1)

where Aγt and Aαt are independent stable subordinators. Furthermore, the infinitesimal
generator of (5.1) is written as

Lα,γf(x) = −(−aA)αf(x)− λγ(I −K)γf(x) (5.2)

where K = eA is a shift operator and

− (−aA)αf(x) =
αaα

Γ(1− α)

∫ ∞
0

(Psf(x)− f(x))
ds

sα+1
(5.3)

with Ps = esA, which is the semigroup of the Lévy process X(s), s ≥ 0.
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Proof. We first recall that A1
t = t is the elementary subordinator. Thus, for γ = α = 1,

the characteristic function of the right-hand side of (5.1) is given by

E exp

iξ N(t)∑
j=1

Xj + iξX(at)

 =e−atΨ(ξ)E exp (iξX(1)N(t))

=e−atΨ(ξ)E
(
EeiξX(1)

)N(t)

= e−atΨ(ξ)E
(
e−Ψ(ξ)

)N(t)

=e−atΨ(ξ) exp
(
−λt

(
1− e−Ψ(ξ)

))
= exp (−tΦ(ξ)) .

which coincides with (2.13). Let A be a subordinator, the continuity of its density ensures
uniqueness of the inverse of the Laplace transform (see [8])

E exp (−g(Φ(ξ))A)

(for some well-behaved g). By uniqueness, we obtain the equality in distribution (5.1).
Indeed,

−∂tE exp
(
−aΨ(ξ)Aαt − λ

(
1− e−Ψ(ξ)

)
Aγt

) ∣∣∣
t=0

= (aΨ(ξ))
α

+ λγ
(

1− e−Ψ(ξ)
)γ

is the Fourier symbol of the process which appears in the right-hand side of (5.1). Let us
write the Fourier symbol as

gα,γ(ξ) = (aΨ(ξ))
α

+ λγ
(

1− e−Ψ(ξ)
)γ
. (5.4)

We now show that −gα,γ(ξ) is the Fourier multiplier of the infinitesimal generator of the
left-hand side of (5.1). The Fourier transform of (5.3) is given by

αaα

Γ(1− α)

∫ ∞
0

(
e−sΨ(ξ) − 1

) ds

sα+1
f̂(ξ) = (aΨ(ξ))

α
f̂(ξ),

where we recall that e−sΨ(ξ) is the symbol of the semigroup Ps associated to the infinites-
imal generator A and

M(ds) =
α

Γ(1− α)

ds

sα+1
(5.5)

is the Lévy measure of a stable subordinator of order α ∈ (0, 1). As we have shown
before, we also have that∫

R

eiξxλγ(I −K)γf(x)dx = λγ(1− e−ξ)γ f̂(ξ)

iff K = e−∂x is the translation operator.
Now we show that

̂(I − eA)γf = (1− e−Ψ(ξ))γ f̂ . (5.6)

By (4.4), we get the Fourier transform

̂(I −K)γf =

∞∑
j=0

(−1)j
(
γ

j

)
K̂j f.

For K = eA = P1, where Pt is the semigroup with symbol e−tΨ, we obtain (5.6).

Remark 5.2. We observe that K = eA is a translation operator. Furthermore, it rep-
resents a Frobenius-Perron operator associated with the transformation x 7→ x − f(x)

where f(x) is a random jump with generator A. If A = −∂x, then the jump equals f = 1.
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Moreover we notice that, for α = γ = 1 and a ≥ 0, we have that

X(N(t) + at)
law
=

N(t)∑
j=1

Xj +X(at)

where Xj ∼ X(1) are independent for all j and the process X(t), t ≥ 0 is governed by
the equation

∂u

∂t
= Au.

As a different time argument we consider now the hitting time defined in (4.12) and
thus we apply the result of Theorem 4.4 in order to define a new time-changed Lévy
process.

Theorem 5.3. Let X(t), t > 0 be a Lévy process with symbol (2.6) independent from Ht,
t > 0. The governing equation of

X(Ht), t > 0 (5.7)

is given by

bβDβt u(x, t) + λγ(I −K1)γu(x, t) = Au(x, t), x ∈ R, t > 0 (5.8)

subject to the initial and boundary conditions (4.14).

Proof. Let us consider the double Laplace transform (4.16). Since −Ψ is the Fourier
multiplier of A, the Fourier transform of (5.8) is written as

bβDβt û(µ, t) + λγ(I −K1)γ û(µ, t) = −Ψ(µ)û(µ, t). (5.9)

By passing to the Laplace transform of (5.9) and following the same arguments as in the
proof of Theorem 4.4, we get that formula (4.16) leads to

˜̂u(µ, ξ) =
bβξβ−1 + ξ−1λγ(1− e−ξ)γ

Ψ(µ) + bβξβ + λγ(1− e−ξ)γ
(5.10)

which is the Laplace-Fourier transform of the solution to (5.8) subject to the conditions
(4.14). With the Laplace transform (4.15) at hand, we also get that∫ ∞

0

e−ξtEeiµX(Ht)dt =

∫ ∞
0

e−ξtEe−Ht Ψ(µ)dt =

∫ ∞
0

e−xΨ(µ)h̃(x, ξ)dx (5.11)

equals (5.10) and therefore we obtain the claimed result.

Finally, as a further generalization, we write

E
(j)
t = Nj(A

γj
t ) + bj A

θj
t , t > 0, j = 1, 2 (5.12)

with γj , θj ∈ (0, 1] for all j and

H
(j)
t = inf{s ≥ 0 : E(j)

s /∈ (0, t))}, t > 0, j = 1, 2 (5.13)

where bj ≥ 0, Nj(t), t > 0 is a Poisson process with rate λj > 0, j = 1, 2, whereas, we still
denote by Ht the hitting time (4.12). All the processes are independent from each other.
Moreover, we consider here the processes (5.12) and (5.13) with θ1 = β and θ2 = α to
streamline the notation.
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Theorem 5.4. Let X(t), t > 0 be a Lévy process with symbol (2.6) independent from

E
(1)
t , t > 0 and H

(2)
t , t > 0. The governing equation of the process

X(E
(2)

H
(1)
t

), t > 0 (5.14)

is written as(
bβ1D

β
t + λγ11 (I −K1)γ1 + (−b2A)α + λγ22 (I −K2)γ2

)
u(x, t) = 0, x ∈ R, t > 0 (5.15)

where K1 = e−∂t and K2 = eA, subject to the initial and boundary conditions (4.14).

Proof. We start once again from (4.16). By considering the Fourier transform of (5.15),
from the previous results and by formula (5.4), we get that

gα,γ2(µ) =

∫
R

eiµx
[
− (−b2A)αu(x, t)− λγ22 (I −K2)γ2u(x, t)

]
dx

=bα2 (Ψ(µ))
α

+ λγ22

(
1− e−Ψ(µ)

)γ2
and (see the proof of the previous theorem)

˜̂u(µ, ξ) =
bβ1 ξ

β−1 + ξ−1λγ11 (1− e−ξ)γ1

gα,γ2(µ) + bβ1 ξ
β + λγ11 (1− e−ξ)γ1

which is the Laplace-Fourier transform of the solution to (5.15) subject to the conditions
(4.14). Now, it remains to see that

E exp

(
iµX(E

(2)

H
(1)
t

)

)
=E exp

(
−(E

(2)

H
(1)
t

) Ψ(µ)

)
=[see formula (4.5) with a = b2, λ = λ2, γ = γ2, β = 1]

=E exp
(
−H(1)

t

(
(b2Ψ(µ))α + λ2(1− e−Ψ(µ))γ2

))
=

∫ ∞
0

exp (−xgα,γ2(µ)) Pr{H(1)
t ∈ dx}

=

∫ ∞
0

exp (−xgα,γ2(µ)) h(x, t)dx.

By considering the Laplace transform h̃(x, ξ) =
∫∞

0
e−ξth(x, t)dt we get that∫ ∞

0

e−ξtE exp

(
iµX(E

(2)

H
(1)
t

)

)
dt =

∫ ∞
0

exp (−xgα,γ2(µ)) h̃(x, ξ)dx

as in the Laplace transform (5.11). Therefore, by the same arguments as in the proof of
Theorem 5.3 we conclude the proof.

6 Conclusions

The main issue of the paper is the process N(Fγ,βt ) + Fα,βt defined in (4.1) as time-
space fractional Poisson process with random drift given by a time-changed stable
subordinator. For this process we obtain the distribution together with the governing
equation; moreover the hitting time distribution is given in the special case β = 1. These
results are then applied, in the last section, in order to derive the infinitesimal generators
of processes defined as Lévy processes time-changed by (4.1) and its inverse.

Therefore, we provide a connection between fractional derivatives, modelling the
memory, and Frobenius-Perron operators, modelling the random jumps, as Theorem 10
entails.
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