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Abstract. In this paper we extend the explorations in [8] to include the fractional power
series expansions kequations i variables, wherd > k. Ananalog of Newton'’s polygon
construction which uses the Minkowski supnof the Newton polytope®;, . . ., P of the

k equations is given for computing such series expansions. If the Newton polytopes of
these equations are the same, then the common domains of convergence for the solutions
correspond to the vertices of a certain fiber polytaié). In general, our results suggest

the existence of a “mixed fiber polytope”lopolytopes. Itis also indicated that there may be

a relationship between these mixed fiber polytopes and a generalization of the discriminant,
which we call the mixed discriminant.

1. Introduction

Suppose we havealgebraic equations ik + | variables:

FXg, ..., %, Y1,...,¥%) =0 for i=1,...,k (1.1
We wish to construck fractional power series expansiong, = ¢j (X, ..., X), for
i =1,...,k, such that formallyF; (X1, ..., X, @1, ..., @) = O for all j. We consider

the domains of covergence of such series expansions and investigate the complete sets
of fractional power series solutions of these equations that converge in some common
region of(C*)', whereC* = C — {0}.

Surprisingly, this classical setup, which dates back to Newton, is related to the concept
of fiber polytopes as introduced in [3]. In the classical case of two variables and one
equation, and in the caseloéquations irk+ 1 variables [4], the fiber polytopes involved
are simply line segments. Newton’s original construction can be found in [14].

In [8] we demonstrated the relationship in a more general setking: (1 andl
arbitrary). For computing such series expansions we gave an extension of Newton’s con-
struction, based on the Newton polytopeai, . . ., X, y1). Inthat case, however, only
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a special class of fiber polytopes appeared, namely those that arise from the projection
of a polytope to a line segment.

In this paper we consider the general case. As we are workingkvgtiuations, we
use thek Newton polytopes(F,) c R of the F;, and also consider the Minkowski
sumP of the P(F). Whereas in Newton’s original construction and in [8] we considered
edges of the Newton polytope &f, the construction here is basedlofaces ofP.

In the most general case we cannot assure that the construction actually gives a series
solution. However, under certain explicit conditions we can prove that the construction
can be carried out, and that the series built have common domains of convergence. These
conditions are direct generalizations of the simple-root condition given for one equation

in [8].
We will see that, generally, the number of series solutions converging in a given cone
is equal to the mixed volumes of the projection®af), . .., P(F) toR¥. This agrees

with the theorem due to Bernstein [2] on the number of solutions to a system of equations.

In the last section we show that, under the above conditions, the system of common
domains of convergence of complete sets of solutions is closely related to the normal fan
of a certain fiber polytop& (P) of P. In general, this fan will be coarser than the normal
fan of this fiber polytope, but if all of th€ (F;) are equal, then the fans will be equal.

The existence of such a fan suggests the existence of a “mixed fiber polytope”
2(Py, ..., P of k polytopes. This polytope should be a summand of the fiber polytope
of their Minkowski sum, and should be equal to the fiber polytaJi®) in the event
that thek polytopes are equal. Evidence for the existence of such a polytope is strength-
ened by the findings of Michiels and Cools in [9], where they built a mixed analog of
the secondary polytope [5]. Finding such a polytope would conveniently generalize the
relationship in [8] between power series expansions and the normal fans of polytopes.
Moreover, the results here suggest a possible relationship between this mixed fiber poly-
tope and a generalization of the classical discriminant, called the mixed discriminant.

2. Preliminary Concepts
2.1. Polytopes

Consider a real vector spate = R™. We use the standard definitions of a polytope,
face and Minkowski sum, and include brief definitions here when necessary. For more
information see [15].

Definition 2.1. A polytopeP C V is the convex hull of a finite subset of verticesvin
A polytope is called rational if all of its vertices are rational. Rebe anm-dimensional
polytope, and lety € (R™* be a linear functional. Then the extreme facePoin the
direction- is the polytope

fy ={peP: (v,p) = (v,p) forallp’ € P} 2.1

f, has areal dimensidnand is called &-face ofP. A vertex of P is a face of dimension
0, while a facet is annj — 1)-dimensional face. Through arkyface f there passes a
uniquek-plane determined by .
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A hyperplaneH C R™ is said to support a polytope if H N P # ¢, andP lies
entirely in one of the half-spaces determinedHby

Definition 2.2. Let Py, ..., P, ben polytopes of dimensiom;. The Minkowski sum
of these polytopes is the polytope of all vector sums of elemeni of. ., P,. Let f
be a face ofP. We say thatf is decomposablé f = f; +--- + f, wheref; is a face
of B, and dim(f;) > O for alli, otherwisef is calledindecomposablé-or more on the
decomposability of polytopes see [11].

Definition 2.3. LetPy, ..., P,bem-dimensional polytopes. The mixed volume {8,
..., Py) is the alternating sum

VoI(Py, ..., Py) = % Y=tk > Vol(R 4+ Py, (2.2)
T k=1

1<ip<--<ik=<n

where the volume V@P) of a polytope is normalized so that the standagimplex has
volume 1. Itis well known that V@PP, . .., P) = Vol(P).

2.2. The Newton Polytope of a Polynomial

The Newton polytope of a polynomial is key for connecting the study of polynomials
and their power series expansions to convex geometry.

Definition 2.4. Let F be a polynomial irm variables, i.e.

F= Za. x! (2.3)
|

with | € Q™ ranging over some finite subset. The Newton polytopE df the rational
polytope

P(F) =con{l € Q" & # 0}. (2.4
The setS = {I € Q™: a, # 0} is called thesupportof F, also denoted Sugp).

Let F4, ..., Fx bek polynomials in¢ variables. Let§ ¢ R¢ be their supports. By
considering the coefficients of these polynomials as variables, we can coRsaea
point in CS. Hence we can consider the systém . .., F, as an element in the space
IICS. By a generic system of equations, we mean a system. ., F, which lies on
some specific Zariski open subsetlof S .

The following theorem is a direct consequence of Bernstein’s theorem on the number
of roots of a generic system of polynomials [2].

Theorem 2.1. Consider a generic system of k equationg imknowns

Fy,...,¥) =0 for i=1,...,Kk, (2.5
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and let R = P(F) = conV§) be the Newton polytope of for all i . Then the number
of power series solutions of this system converging in a given region is equal to the mixed
volumeVol (P, ..., Py) of the polytopes RB... ., Px.

2.3. Convex Polyhedral Cones

A convex polyhedral cone iR™ is a set of the form
C={rivi+---+rwn ri eR,rj >0}, (2.6)

wherevy, ..., v, € R™ are fixed vectors. A cone is rationahif € Q™ for everyi, and
is strongly convex if it contains no non-trivial linear subspaces.

We identify the dual spacéR™)* with R™, by means of the usual pairing, x) =
> ujX;. LetC be a strongly convex rational polyhedral con&ih. Define the dual cone,
C* c (R™*, to be the set

C'={UueR™ (ux) <0, VxeC} 2.7

This is the cone consisting of all linear functionals which have a maximund .om
the following we do not use bold-face to denote elemen&*ofThis is to distinguish
elements of the dual from vectorski".

We will often work with polytopes ifR™ = R¥+¢ wherek is the number of equations
and/ is the number of independent variables. Therefore, we assume throughout this
work that we have chosen a direct sum decomposition

R™ = R! ¢ RX. (2.8)
The coordinates iR* andR* will be denoted byyy, ..., oy andpy, . . ., Bk, respectively.

Definition 2.5. LetIT be ak-plane inR*™¢, thenIT is called admissible if the projection
7: IT — RXis injective. Thus on such B we have a parameterization

aj = Z((Sijﬁj +&)=¢+ Z(Sijﬂj)- (2.9

The matrix||§;; || is called the matrix of slopes di. On a polytopeP we say that a
k-face is admissible if thi-plane it determines is admissible.

Definition 2.6. Let f be an admissible face d?, and letw € (RY)" be a linear
functional. Therw determines a unique hyperplakg, in R™ which containsf and
on whichw is constant on every fiber of the projectionRb. (The equatiorfw, X) = z

determines a hyperplaneRf.) Such a hyperplane is called-constant

Consider the case = 1. Letw be any linear function ofk¢. We extendw trivially
to a linear function oR‘** by defining, forx € R“*1, x = (xo, .. ., %), the action ofw
onxto be

(w, X) = {(w, (Xq, ..., Xp)). (2.10
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A hyperplaneH in R** is thenw-constant if for eacls € R,
(w, HN {Xey1 = c}) 1= {{w, X): X € H N {X¢41 = c}} = {dc} (211

for somed. € R, i.e. w is constant on each “vertical” section bf. Since we will be
using the(xy, . . ., X,)-hyperplane frequently, we call it the null-hyperplane.

2.4. Normal and Barrier Cones

Letw € (R)" be a linear functional o’ such that the coordinates af are linearly
independent ove). Such alinear functional is called irrational. The equatiwnx) = z
for any fixedz has at most one solution i*. Thereforew induces a linear ordering
onQ*.

Consider the projection
7. P— Q=n(P) CR¥ (2.12)

onto the lask coordinates. The fiber of over any interior poingj € Q is a(d — k)-
dimensional polytope. Note that this fiber is given by a system of linear inequalities with
rational coefficients, but possibly with irrational right-hand sides. Sindgirrational,
there exists a unique poipt, € 7 ~*(q) such that

(w, pg) > (w, p) forall pen Q). (2.13

Thereforew defines a section af which is called the maximal sectionefwith respect
to w. This section is denoted kY, . (P) = S, (P).

Definition 2.7. Let P be amtm-dimensional polytope, and Iétbe an admissiblk-face
of P, with m = k + £. The normal cone of is the closure of the set of all irrational
linear functionals iNR¢)* such thatf is contained inS,, , (P). The normal cone of

is denoted byN (). The barrier cone, denotdsl f), is defined to be the dud*(f)
of N(f).

In particular, this means that for a vertexf P, the normal con& (v) is the cone in
(R™* consisting of all linear functionals which achieve a maximumPoatv. Notice
that, under this definition, the barrier cone df-gace does not lie in the same space as
the polytope. Rather, it lies iR¢. Likewise, the normal cone of laface lies in(R)"
rather thanR™)*.

There is another, more geometric, definition of the barrier cone of a wertex

Cv)={ap-Vv):2reRy,pe PR}, (2.14
i.e. the cone spanned by the vectors freto points inP(F). The dual ofC(v) is the
normal cone of.
Definition 2.8. Let K(f) be thek-plane inR™ which contains the facé. The set
N(f) x K(f):={ze R"=R @ R¥: ze N(f) +vy, wherey € K(f)} (2.15

is called the barrier wedge df, and is denoted bW ( f). The barrier wedge of le-face
is simply the cone spanned by all vectors from an interior poirit @ points inP.
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Fig. 1. The barrier wedge and cone associated to an edge.

Example 2.1. Letebe any admissible edge Bf(F). The vertices oé with the largest

and smallesk,,; coordinates are respectively called the major and minor vertices of
e, and are denoted hy(e) and M (e), respectively. Writem(e) = (pa, ..., Pe+1) and
M(e) = (qi, - .-, Qer1)- The slope vectoB(e) of e with respect to, 4 is

S(e) = ;(% = P15 Qe — Po)- (2.16)
Oe+1 — Pe+1
For such an edge, the barrier conee@ian be described as follows:
Let L be the line inR*** determined by, and lety be the point of intersection df
with the null-hyperplane (such a point exists sigogas assumed not to be parallel to
this plane). Then the barrier wedgeainh R‘*! is

WeEe ={A(p—X)+x 2 eR,pe P(F),xelL}. (2.17)

The intersection of this wedge with the null-hyperplane is a convex rational polyhedral
cone,C(e) = B(e) + Y, which has its vertex at. See Fig. 1. This is a translate of the
barrier coneB(e). For convenience, we often relax our definition and refer to translates
of cones as cones themselves.

2.5. The Normal Fan

One important aspect of the normal cones of the vertices of a polytope is that they knit
together to form a fan ofR™)*, since every linear functional attains a maximum on
some face oP, and hence at some vertex Bf

Definition 2.9. Let {vy, ..., Vvn} be the set of vertices dP. Then the collection of
pairwise disjoint conedN(v1), ..., N(vy) forms a fan that cover€R™)*. This fan is
called the normal fan oP and is denoted\p. These definitions coincide with the
standard notions [15].

As an example of how the structure of the Minkowski sum of a collection of polytopes
is related to their individual structures, notice that the normal fan of the Minkowski sum
of n polytopesAp, ;... p, iS the smallest common refinement &g, ..., Ap,. That
is, cones in the normal fan of the Minkowski sum are intersections of cones in the
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normal fans of each of the summands. For a more complete discussion of these ideas see
pp. 190-191 of [5] and see [15].

2.6. Fiber Polytopes

The applications of the techniques in this paper use the notion of the fiber polytope of a

projection of two polytope$ Y, Q as defined in [3], for a projectiofr from X to Y.
Let us recall the definitions.

Let P c RN be a convex polytope. Let: RN — RM be a surjective linear map and
let Q = ¥ (P). The Minkowski integral is the set of vector integrals

fp:/ p:/ Y (x) dx. (2.18)
Q Q

wherey ranges over all continuous sectionsyof
The fiber polytopez,, (P, Q) is defined to be the normalized Minkowski integral

1
(P, Q) = W(Q)pr. 2.19)

The following are some of the important properties and results concerning fiber poly-
topes. We leave out most of the proofs here, as they can be found in [3] or [15]. Two
polytopes are called normally equivalent if they have the same normal fan.

Proposition 2.2. The fiber polytop& (P, Q) is a non-empty convex polytope it RY.
Moreoverthere exists a finite subsgty, ..., Xp} € Q such that the Minkowski sum of
the fibers R + - - - + Py, is normally equivalent t& (P, Q).

Lety: P — Q and letF c P such thatF, is a face ofP, for everyx in Q. Then
the projectionF —> Qs called a face bundle @?. If there exists a linear functiongi
on RN~M such thatF, is extreme in the directioft (in the same sense as above), then
F is called a coherent face bundle. Notice that a coherent face bundle such th&j each
consists of a single point (i.e. a vertex®yf) is a maximal section P —> Q in some
direction.

Proposition 2.3. The faces oE (P, Q) are in one-to-one correspondence with the co-
herentface bundles of.Ih fact, the faces of the Minkowski integrﬁé P are the integrals

of the coherent face bundles of I particular, the vertices o2 (P, Q) correspond to
the maximal sections of P— Q.

Putting these first two propositions together yields

Corollary 2.4. Letv be a vertex o (P, Q), and lety be the corresponding maximal
section of P—> Q. The normal cone of is the intersection of the normal cones of the
¢(X) C Py. Equivalentlythe normal cone of is the intersection of the normal cones of
the M-faces of P ip(Q).
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2.7. Rings of Fractional Power Series

The following definitions will facilitate our connections between the classical techniques
in the previous section with series expansions in several variables.

If nis an integer greater than zero, a@ds a strongly convex rational polyhedral
cone inR?!, then the set

1
Co=Cn 7! (2.20)

forms a semigroup under addition. From such a semigroup we can form the semigroup
ring C[C,], i.e. the ring of all finite formal sums of the forin’ a,x* wherex € C,,. We

regard elements @E[C,] as fractional Laurent polynomials in the variablgs. . ., X,.

Let C[[C,]] be the completion of the rin[C,], the ring of all formal fractional power
series,) ,.c, X"

Definition 2.10. If C is a strongly convex rational polyhedral conéiify then the ring
of fractional power series in the variables . . ., X, with support in C is defined by

Cl[Coll = JCIICa]l. (2.21)
n=1
More generally, the ring of fractional power series with support in some translétésof
C((Cy) = | J x*ClICqll. (2.22)
«eQ*

Itis essential to require th&t be strongly convex, otherwise the §4f Cq]] does not
have a well-defined multiplicative structure, since finding a coefficient when multiplying
two such series would involve an infinite sum.

Let C be a strongly convex rational polyhedral cone. For any

f(x) = Z Ay XY (2.23
xcQ’
in C((Cq)) we define the support df to be the set of exponents which appeaf in.e.

Supp f) = {o € Q% a, # 0}. Sincef e x*C[[C,]] for somen, the support off must
lie in some latticg(1/n)Z*.

2.8. Convergence and Convex Geometry

In order to speak of the convergence of fractional power seri€¥{€g)), we must
define the manner in which these series act as functiofi8'oMore precisely, we must
define the action ok* = x;*---x;* on (C*)*. To do this we only need to choose, in
each variable, a sector @@ and define a branch of the logarithm in this sector, e.g. the
principal branch of the log: |6E\R_ be the chosen sector and define

X = erloox (2.24)
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for each variable;. We are primarily interested in the regions for whichfag C[[C]]
is absolutely convergent (i.e. wheye |a, ||x|* converges).

Definition 2.11. If C is a convex rational polyhedral cone, tHef{Cq } } will denote
the subring ofC((Cq)) consisting of all series which are convergent at some point of
(CH¢, i.e.iffor f € C((Cq)), Dy is the domain of convergence 6f then

C{{Cq}} = (f € C((Cy)): Dr #9). (2.25)

Note thatC {{Cg}} consists only of convergent series whose exponents all ilifn]
for some n.

It is convenient to pass to the logarithms of tlkg when considering convergence,
therefore we introduce the spa%g called the logarithmic space of*)¢, which is

associated toC*)¢ via the map

Log(Xy, ..., Xe) = (log(|X1]), ..., l0g(|X.])). (2.26)

The usefulness of these notations is indicated by the following lemmas. For their proofs
see [8].

Lemma 2.5. For each f e C{{Cq}} the domain of convergence of f has the form
Logfl(U), for some convex set & Rfog.

Lemma 2.6. Suppose f= > a,x® is in C((Cg)) and f has a non-empty domain
of convergence Oi.e. f € C{{Cg}}), then there exists some A (C*)* such that
la,| < |AY| for almost alle. Moreoverif X is any pointin Q and C is any cone which
contains the Newton polytope(P), then C* + Log(x) C Log(D).

We say thatf converges at some poigte R,'gg if Log~%(y) ¢ D whereD is the
domain of convergence fof. The above lemma can be summarized by saying that if
f converges at some poigt € ]R,ﬁg, then f converges on some translate©f. The
following theorem is a direct result of these two lemmas, see [1] or [8].

Theorem 2.7. If C is a cone inR* and if a series fe C((Cq)) is algebraic over
C[X4, ..., X¢], then there is some translate of ©n which f is convergent

For more information on such topics, see [7].

2.9. Transfinities and Transfinite Induction

The construction of these fractional power series solutions is based on a transfinite
algorithm similar to the methods used in constructing series solutions for polynomials
over fields of characteristip, see [10], [12] and [13]. Therefore, a brief review of
transfinites and transfinite induction is in order, for more information, see [6].
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Recallthat a transfinite symba/, is defined to be an equivalence class of well-ordered
sets, where the equivalence is given by order-preserving bijection. Since bijections pre-
serve the cardinality of a set, all sets in the equivalence glaksye the same cardinality.

We call a transfinite countable if every set in its class is countabld ldetnote the set
of all countable transfinites, and note tiais itself a well-ordered but uncountable set.

In T there are two types of transfinites, those that arise as the immediate successor
of a giveny e T, and those that arise as the limit of the transfinites preceding it in
the order orl". These two types are usually referred to as isolated and limit transfinites
respectively and are written as

y+1 and 5Iim3. (2.27)
<y

For example, the empty set is a well-ordered set represented by the symbol 0, itis the first
ordinal number and is therefore the smallest symba! umder its well ordering. Any

other finite symboh is the immediate successor of another symbol, namelyl, and
hasn+ 1 as an immediate successor. Therefore all finite symbols are isolated transfinites.
The first limit transfinitew is the class which contains the well-ordered set of positive
integers under their usual order. So¢can be defined as

w = limn. (2.28)

The isolated symbab + 1 is represented by sets which increase to a limit point and then
contain either the limit point or some element larger than the limit point. For example,
the set

0,3,1-31-3%,....1) (2.29
is a set in the equivalence classt 1.
Transfinite induction is carried out in two steps: that of proceeding jréoy + 1, and
that of passing to a limit transfinite, once the process has been carried out far ally .
For anyy e I we will build a seriesp, such that ify’ < y, theng, is a summand of
¢, . We will accomplish this by showing that if we have byijtfor all transfinites < y,
then we can build, . In particular this means that for an isolated transfiniteif we
have constructed, , then we can construgt, ;. If y is a limit transfinite we must show
that if we havep; for all § < y, then we can construgt, = ¢im 5. Finally, we must show
that we can buildyy and that the process will stop after some countable transfinite
Transfinite induction will only be formally needed in the following construction. Once
we have the general construction for the series expansions, we will be able to prove that
its exponents never actually accumulate. In practice, therefore, the construction is never
transfinite in nature, and the series thus constructed are just ordinary fractional power
series in several variables.

3. The Construction for Generic Systems

3.1. The First Step

Let
FoGy) =FR(Xa, .o Xe, Vi, -2, Vo) = 0, i=1...,k 3.1
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be a system ok equations irk + ¢ variables. We denote bl C R™ their Newton
polytopes and appeal to the notation of Section 2.3 with respect to the decomposition of
R™ = R = R’ @ RX. We continue to use the notation®fandg as the coordinates
onR¢ andR¥, respectively. We assume, as before, that we have fixed an irrational linear
functionalw € (RY)".

Suppose

ROGCY) = Y aapx?y’, 32
(a.p)eS

where § is the support offy in R™. We need to builck solution series expansions
Vi = ¢i(X1,...,X) of the form

g =Y C X =", (3.3)

yel yell

whereT is some well-ordered countable set, and for egdhe set{s, ;}, is a well-
ordered subset dk® with respect to the order given hy. We denote by, i the yth
partial sum ofy; .

We first build all of thep;; and then we consider the inductive step of moving the
construction fromy to y + 1 and then defingy, ; for a limit transfinitey. In many
respects the first two parts are identical.

Let P, ..., P? c R™ be the Newton polytopes d, ..., Fy (i.e. P = P for
alli) and letP©@ = P% + ... + R be their Minkowski sum. For the purposes of
iterating the process described below, we now \Mﬁf@ instead off.

Let S be the section of: P©@ — Rk determined by maximality with respect &

We choose any admissible decompos#btace f © of S. Let { fi(m} be the faces oP,
respectively which sum té @ . We assume that died”) > 0 for alli, since if f,© is

a point, then the system would admit no solutions with all components different from
zero. LetQ© be thek-plane determined by @ and letQ® be the translates d®©
which containf,'?, respectively, i.eP® N Q© = £©.
Sincef is admissible, it has a matrix of slopes

81 811 612 -+ Sug
82 821 S22 -+ B2y

s=| |=| " 7 (3.4)
3k k1 Ok2 - Sk

For the first terms of our expansions we set

Yri = Gxg e (35)
wherec = (cg, ..., C) IS a non-zero solution to the system of equations
> awsd =0 (3.6)

(@p)eSNQ"”
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These equations are called tfaze equation®f f@. Note that by Theorem 2.1 the
number of such solutions counting multiplicity is, in general, equal to the mixed volume
of the projections off,?, ..., 2 toRX.

A priori we have no guarantee that this system actually has a solution. If all of the
Newton polytopes of théi(o) are spanned by exactly two vertices, then the system will
have exactly as many solutions as the mixed volume of their Newton polytopes. For the
next part of the construction we assume it does have a solution. In Section 4 we give
another explicit situation in which we can assure that the above system of equations
actually has a solution.

A small point of notation: so as to make the following equations as presentable as
they possibly can be, we forgo the use of bold-face. You may recognize the vector terms
by their lack of ari subscript.

3.2. The Inductive Step

Next, we look at the inductive step of proceeding from the transfinitethe transfinite

y + 1. We consider the case of a limit transfinite at the end of this section. So, assume that
we have constructegd, ; for all i and for ally” < y, wherey is an isolated transfinite
symbol.

Suppose that, in constructing the ;, we have built polynomials=”" and their
polytopesP”". Let

FPxy = Y allxey’, 37
(@peg””

whereS”” is the support of,"”.

Suppose that we obtained face(gl) that sum to an admissible decomposdbface
f ) of their Minkowski sumP ", Also assume that

’ (%)
Yy =0 XN (3.8)
where
8;1//)
357/’)
(3.9
3&7’)

is the slope matrix of ", andc”" is a non-zero solution of its face equations, which
have the same form as the face equations given above®arNotice that all of these
criteria are met by the objects used in the first step of the construction.

To proceed frony to y + 1 we substitute

x5 CONEEN

) v ex y (3.10)

Gy
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in place ofys, ..., Yk in the ponnomiaIsFi(V) to obtain the polynomial§i(y+l). Let
PY*Y = p(F”*Y) be their Newton polytopes and 1B be the Minkowski sum
of these polytopes. L&” ™™ be the support of” **. To continue this construction we
need to find a facé *+V on P+ satisfying the following three conditions:

1. If
8Z(I_y+l)
8;)/"’1)
(3.11)

(y+1)
5k

is the matrix of slopes of “+V then(w, Si(y“)) > (w, (Si(y)) foralli.
2. If N(f®) is the normal cone of,”” (and likewise forf **P) then

N(FYTD)y A N(FP) £ ¢ (3.12

and in fact this intersection contains
3. The face equations df”*? have a non-zero solution.

We will find that it is not always possible to find such a face, and that, even when one
exists, its face equations may have no solutions. In Section 4 we explore a case in which
we can always find a decomposable face satisfying all three of these criteria.

For the rest of this section assume that, at every isolated transfinite sympdl
such that the expansiops i = > ,_, ¥, are not a solution to the original system of
equations, we can find a face Bf* Y satisfying the above conditions. Then we set, as
in the first step of the construction,

(y+1)
Yy1i = VX (3.13)

wherec” ™Y is a non-zero solution of the face equationsf 6. We set

Ppeni = D Uy (3.14)
y'sy+1
For a limit transfinitey, we set
Pri= Y Uy (3.15)
y'<y

This completes the description of the inductive process.

3.3. Properties of the Series Expansions

We assume, for a series we are attempting to build, that we were able to carry out the entire
inductive process described above. So, at every step, we could find a decomposable face
ofthe next Minkowski sum which satisfied the three criteriain Section 3.2. In Section 4 we
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describe conditions under which we can assure that the above process can be continued.
Note, however, that these proofs are independent. In other words, when we attach the
conditions we do not rely on any of the following properties in the construction. This
discussion is more or less given as a general theorem on such series expansions. The
series we build in the next section will have much stronger properties.

Theorem 3.1. Assume that the series expansiainshave been constructed by the
transfinitely inductive process described abhoMeen

(a) The{y;} are formal roots of the original system equatidis = 0}.

(b) The exponents of thg lie in some strongly convex rational polyhedral cone C
in R® such thatw € C*.

(c) The exponents of thg lie in some lattice1/N)Z*.

Notice that (b) and (c) imply that thg are elements of the rin@((C@)), the ring
of power series with support in some translat€ofThis gives us that the power series
have convergence in some translate of the ddheby Theorem 2.7. Therefore, they
have a common domain of convergence. Note that (c) also implies that the induction will
never actually reach a transfinite state in the construction of these series. Unfortunately,
the proof of (c) depends heavily on part (a) which depends on the existence@f the
Thus transfinite induction is needed as a formal part of the construction to derive the
properties of the series expansions, but is never needed in practice.

We prove this theorem in Section 3.6, but first we need to establish some technical
facts. To prove part (a) we need to show that the largest terms of

Fi (X17 sy va ¢V,19 ey (p)/,k) (316)

with respect to the linear functional decrease ag increases, and that they decrease
without bound. Notice that

F'™x,y) = F”x,c”x" +y)

= F7 P, x4 ¢ x4 y)

=F (x, y+ > C(V')x“w”>

y'<y

= FKX ¢, +Yy (3.17)
and so
] _ +D
FX, oo Xe, 01,000 = F (X1, ..., %, 0,...,0). (3.18)

Therefore we can prove (a) by showing that the maximal terrﬁéydfm R*, with respect

to w, decrease without bound. This, we accomplish by finding a sequence of supporting
w-constant hyperplanes fcﬁri(”l’ , whose interesections wifk’ decrease with respect
tow.
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3.4. Finding a Supporting Hyperplane

Assume that
F”(x.y) = Z a”) sXyP. (3.19
a’ﬁes(y)
Explicitly carrying out the above substitution gives us

1 s )
R0y = )0l x4y @ 4y
(@pes”’
Z ) aﬁ i Bi @y —j8”\ Bi=vi

= & .ap% G XY

@pres? ji=1 \ =0 \"i
) (62}

=> > @ a7 (cyxe i oy (3.20)

@p) v

Where(?) = 11(%) is the product of the binomial coefficients.

We set(v, §) = v18(1y) +-- -+vk8li") to simplify this expression, and we consolidate
the coefficient, obtaining

Fi()/)(x’ y) — Z }’Y;;’ﬁ . XDt*(V,,S(V)) . y/_‘}fv. (321)
(a.B),v

Analyzing the exponents appearing in this equation yields that the points in the polytope,

Pi(”l), arise from points orPi(V) and lie onk-planes through these points with slope
80 with respect taR¥, i.e. k-planes parallel to the facg®).

Consider the points i” " that arise from(, 8) € §” . Sincev in the above
expression ranges over the set

Qup={1,...,v): v €Z,0=<y < g foralli} (3.22)

and the exponent of is 8 — v, we see that points ili?i(”l) that arise from(«, B) project
to points in the se@, s under the projection to the lastcoordinates. See Fig. 2.

Recall that in the inductive hypothesis we assumed that we had obtainedfiféﬂ:es
of P of dimension> 0 and a-face f ) of P%") such that

£ 4 = o, (3.23)

As before, letQ™ be thek-plane containingf @’ and letQ”’ be the translate c®®’
which containsf,””.

Lemma 3.2. Let H” and H" be the uniquev-constant hyperplanes through the k-
planes @’ and Q*, respectivelyThen H” supports B " and H* supports P+,
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. . 1 .
Points in P*"" which
can come from (a,pB)

the y,,...,y,-plane

Qup

Fig. 2. Points onP” Y.

Proof. Note that these hyperplanes support their corresponding poly@i@iésand
P®) . We need to prove something slightly stronger, namely that they also support the
next polytope in the sequence.

By the above discussion, we see that on the p@fiéwe get points i ** whose
coefficients are only affected by the terms &’ = Q" n P, Moreover, we get
that these points must lie in the region(@?” lying above the setg, ;4 for the various
(@, B) € £, Note also that, since every point Bf” **' lies on a plane through some
point of P parallel to Q" and sinceH,”’ was a supporting hyperplane f&'"”,
we see thaHi(V) is a supporting hyperplane cﬁ(””. (Actually, to conclude this we

also need thaP”*? N Q" + ¢ so that the polytope in question actually touches this
hyperplane. This is demonstrated in Remark 3.1.) O

3.5. Points inR¢ Lie Strictly Below the Plane

In order to show that the upper bound, with respectvtcon the terms in the series
decreases at every step, we must prove the following lemma.

Lemma 3.3. The points of F’”l) which lie in the null-hyperplane lie strictly below
the supporting hyperplane we constructed in Len8ra (Note that in our view the
hyperplane supports from abqweith respect tav.)

Proof. Letqg = Qf”) N RY. We need to determine the coefficient of the monomial
corresponding taj; in (3.21). Considering all the terms in (3.21) that contribute to the
term corresponding tq;, we get that this coefficient is equal to

> ") (C)P. (3.24)
(mﬂ)eSf”ﬂQi‘”
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Since this is precisely thigh face equation of @, andc”’ was assumed to be a root of
the face equations, we see that this coefficient is zero for all

Hence, if there are points cﬁi(” onR’ they must lie “below” thew-constant hyper-
pIaneHi(V) in the sense that they have smaller weight than the points on the intersection
of the hyperplane witfR¢. (All these points have the same weight by the definition of
w-constant.) O

Remark 3.1. There are several other points that we can explicitly determir@%ﬁb.
Suppose is a point onf,”” such that for every other poigton f,*” there is somg such
thatg; > . Then the only term ina‘” that can contribute to the term corresponding to
gin Fi(VH) is the term corresponding tpitself. Therefore the coefficient gfin Pi(”l)

is unchanged from the previous step. Such vertices are called extreme on thfe face
Note that this proves that there are point$0f ™ on Q”’, and soH.”” is a supporting
hyperplane fo?” .

3.6. Proof of Theoren3.1

)

We begin with part (a). By Lemma 3.2, the polytoB,é”l) is supported byH;”’ and

by H” ™. Therefore, the following are upper bounds on the pointg st > N R":
(w, H” NRY and (w, H" ™ NRY). (3.25)

Recall thatw is constant orHi(y) over every point ofRX. We will have a decreasing
upper bound on the points & " in R if we can show that

(w, H” nRY > (w, HY™ N RY. (3.26)

Suppose thatw, H”’ NR’) < (w, H"™ NRY). Since the slopes of ¥+ are all
strictly greater than the corresponding slopesf&f, and Hi(V“) contains points of
P7*Y we getthat.” " lies strictly belowH,"” for alli. However, this contradicts the

known fact that each of these hyperplanes supB,erfl) , demonstrated in Section 3.2.

The fact that this upper bound decreases without boundiasreases, follows from
the fact that we are using a transfinitely inductive process. This process does not stop
until the systeny, ; satisfies the system of equations, i.e. until all Bﬂé? have no terms
left in R¢. This proves that the series expansions obtained are formal roots of the initial
system of equations.

Both (b) and (c) can be proved using an application of the single equation construction
detailed in [8]. We accomplish this by considering resultants. Namely, consider that the
¢; all have terms that are well ordered by the linear functionalThereforey; are
elements of the rin@((w)) for everyi, whereC((w)) is the ring of transfinite power
series whose terms are well ordered with respeat.to

Let F(x, y) andG(x, y) be any polynomials, we denote by

Ry (F, G) (3.27)
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the classical resultant & andG with respect tak;. This is a polynomial on the coef-
ficients of F andG as polynomials irx;, which is zero if and only iff andG have a
common root. Note that in this case, the coefficients @ndG are themselves polyno-
mials in several variables.

Sinceyy, . .., gk Simultaneously satisfy the system
FXy)=F,....¥% =0, (3.29
we see thapy, . . ., gx_1 Satisfies the system &f— 1 equations
Ry (Fi, Fio). (3.29)

By repeated applications of this argument we see Yhat ¢; satisfies a polynomial

F in the variablesq, ..., X;, y1. Therefore, since the terms @f are well ordered with
respect tav we see thap; must be one of the series solutiond@btained by our main
theorem in [8]. Therefore, has exponents lying in some lattice and contained in some
strongly convex rational polyhedral co@esuch thatw € C*. The proofs for the other

¢ follow similarly.

4. Conditions on the Roots of the Face Equations

In this section we explore one situation in which we can continue the above process. In
this case we can determine agreat deal aboutthe structure of the series solutions generated
by the procedure. We require that the initial choice of roots of the face equations be a
simple solution of the system, i.e. the Jacobian of the face equations is non-zero at
and that all partial derivatives of the face equations of the initial face do not varnish at

Theorem 4.1. Let P be the Minkowski sum of the polytope®Rhe polynomials

and lets be the matrix of slopes of. Assume that the root€ (cy, ..., ¢) of the face
equations f is a simple ropand assume that the first partial derivatives of these face
equations are all non-zero at then

(a) The induction of SectioB.2 can always be continued
(b) The support of; lies in the translate of the barrier cone of f with vertex-af;
for alli and (Theoren®.7)they; converge i.og=1(C* +v) for somev in ®RYH".

The proof of this theorem is in Section 4.2, but first we need to analyze the second
step of the induction for such systems.
Recall thatf © was the chosen face of the Minkowski sum of the initial polytopes,

and 2, ..., £ were the faces that sum fd®. We had
>, AL’ =0 @1
@8)eS”NQ

as the face equations ¢f whereQ© was thek-plane determined by ©. Further,Q\”
was the translate @®© containingf,©.
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We now replace byt = (13, ..., ty) in (4.1), i.e. we consider the expressions on the
left-hand side of (4.1) as polynomial§ € C[ty, ..., t]:
Ety....td= Y  aapt’ (4.2)
(@peSNQ”

The condition that is a simple root of (4.1) means that the matrix

8_E1 (C) a_El (C)
oty R 1
M= : : 4.3
=M =
a—tl © ... a—tk (©

is non-singular, i.e. dét\) is non-zero.
Our second assumption gives that foriadind j,

IE;
a_tj(c) #£0. (4.4)

To draw conclusions from this second assumption we need to introduce some notation.

Definition 4.1. Let P(f) = con{py, ..., pn} be anym-dimensional Newton poly-
tope. For each of these points, get= (pi.1, ..., Pi.m). We define the partial derivative

of the P with respect td; to be
oF aP(F
P (—) = ( ). (4.5)
ot atj

Thus, taking the derivative of a polytope with respeds toas the effect of shifting it by
—1 in thet; direction, and removing the parts that have negafieeordinate.

4.1. Finding an Appropriate Decomposable Face oft’P

We need to find a decomposable admissible face of the polyRépexplicitly. In fact,

each polytopePi(l) contains an extremely simple admissible face which sums to the
desired face oP@,

Lemma 4.2. Under the assumptions of Theordi,one of the P has a k-face whose
vertices have the form

rl = (ril""’ri£’07“"0)’

@ @ ®
= 10,...,0
S (§y,---.5,-10,...,0), (4.6)

S = (S(l;)”s(]lf)’o’vovl)
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Furthermore each of the other iﬁ) has a(k — 1)-face spanned by vertices of the form

@ Q)
S

Proof Let
g = QY NR (4.7)

be the intersection points of thekeplanes withR‘. We noticed, in the second step
of the construction, that since this coefficient is the same asgtlihiace equation, the
coefficient on the term correspondingdoin Fi(l) is zero for alli. Let

)
() _ 9Q;
at

q NRE.
The Newton polytope of the partial derivative is just a translation of the original Newton
polytope (with part cut off at the null-hyperplane). So, showing that a point lying over
& is actually a vertex on the bottom of the polytope is equivalent to showing that the
coefficient on the term correspondingdf’ in aF? /ay; is non-zero. (Such a point
would necessarily lie on the previous hyperplane, but points in the null-hyperplane lie
below it with respect tav.)

By the chain rule, we get that

9 d
—FY = —F? SO : 4.
ayj(. ) (8yj(' ) ) Xy + X+ yi) (4.8

Therefore, the partial derivatives of face equati@®f f @ are the face equations of
the partial derivatives of ©. So, in the same way that we showed that the coefficient

onx% in K was zero, we can show that the coefficient on

a. oFY  3EF
X, Y% in —— is —(c). 4.9
x,y) oy, o, © (4.9)

Since
0 E;

E)—t,-(c) #0

for all i and j, we see that the term iaF® /ay; corresponding ta;'” has a non-
zero coefficient. Let; be the jth coordinate vector iR¥, and for alli let 91(” =
s, ..., sV, &) be the point orQ( that projects to the poir®, &) in R¥. Taking the
partial derivative oﬂDi(l) with respect toy; takesq(j) to qi(j). By (4.9), and the fact that

we are taking the derivative of a monomial containifigwe see that the coefficient on
b . 0E
x, y3 in FYis W'(c). (4.10)
]
Hence the term i Y corresponding ta'” has a non-zero coefficient for gll Sos'!’
is contained in, and is in fact a vertex iR".
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One Newton polytope now So, their Minkowski sum
has a k& face of this form has a docomposable face
of this form

///’ 1 // k
And all have a k-1
Q" face of this form 7k QY

Fig. 3. The face on the Minkowski sum of the new polytopes.

Letr; = (rj1,...,ri¢ 0, ..., 0) be the maximal point oPi(l) in R¢, with respect to
w. If we assume thaty, = Ci(o>x,s;°>} is not a solution to all of the equations, then there
must be points oP® on R’ for somei. If P has no points ifk¢, then we formally
setr; = co. We add the finitg;’s to thesf“’s, and so get a set of points d?. To
complete this construction we must use these points to find an explicit decomposable
k-face onP®. The structure of the slopes of this face give us some interesting results
on the structure of the fractional power series that we generate from this process.

First, we notice that, on each of tlfél), the (k — 1)-simplex formed by the points
{51(“} is a(k—1)-face. (Call this facd;.) This is because thi&— 1)-simplex is contained
in Q, a supporting-plane forP™, and because each of these points lies over one of
the coordinate axes. (There are no pointﬂ&f with negativey; for any j.) Therefore
all of the Pi(l) have at least one paralldt — 1)-face. Moreover, this face is maximized
by w sinceQ” is a supporting hyperplane in the directionafTherefore,f; +- - - + fi
is a(k — 1)-face of PV, This face has vertices with thg coordinate equal tke for
alli, as shown in Fig. 3.

Consider, next, the points. In the discussion above, we showed that r;) <
(w, qi). (Recall thay = Q¥ NR’.) Choosé such that the expression

(w, Gip) — (w. Tiy) (4.12)
is minimal. Thek-face formed by
{3(01)9 crr s(ok)v rllo}

is aw-maximal face oﬂDif)O). Call this facef;. Reorder the polynomials (and hence the

polytopes) so that the first polytopes satisfy the above minimality condition, i.e. for
alli > i’ we have that

<w7 ql) - <U), ri) > (w1 Qi’) - (w’ ri’)' (412)

Thenf® := f; +..- + fi + fi 1 +--- + f is @ maximal admissible decomposable
face of P, For the sake of notation rename its summandg'ds
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Consider the parallel face‘él), e figl). We see thafi(l) is spanned bir+ 1 affinely
independent points

rl = (ril""’ri[’07"'50)’

@) D (@h]
= g e ey ,1,0,...,0,
S (81 Se ) (4.13)

s =(%,....s¥0...001

as required. Moreover, these are the only points of SE\H?J) that fi(l) contains. The
same analysis holds fols greater tham’, but without the first point in the list. They are
(k — 1)-faces, and each of the previokidaces contains such(& — 1)-face. O

The k-faces summing to this face are all parallel, and the- 1)-faces all lie on
translates ofQ©. Therefore, the slopes df'® with respect tox are the same as the
slopes off". So, consider the slope df” in the direction ofy;. f,* contains the
point sf), which lies overg. It also contains the point which lies over zero. These
two points differ, oveiR*, by one in they, direction. Therefore the slope cifl) in the
y; direction is

8 = (sl) —ryg, .., 8y) —rg) =8V —ry. (4.14)
We set the exponents in the second terms of our series expansions-§6-be
The next two lemmas prove Theorem 4.1 specifically for the second step in the
construction. From there, we can complete the proof of the theorem by induction.

Lemma 4.3. Part (a) of Theoremd4.1 holds for the second step in construction as
specified above

Proof. By Lemma 4.2, the sum polytoge® has a decomposible face of the proper
form. To finish the proof, we need to show that the face equatiofi§tbhave a solution.
Suppose that the coefficient oris p; . By (4.10) we get that the face equations6¥ are

B o+ + o
ot 1 ™ K 01,

(4.15)

E E
—imm+~~+5fmm P.

oty

Since the matrixM in (4.3) is non-singular and not all of thg's are zero, this system
of equations has a unique solution. O

Lemma 4.4. Part (b) of Theoren#.1holds for the second step in the construction

Proof. To prove part (b) of this theorem, at least for this step, we need to show that for
everyw' € B(f©@) and evenyi, we get that-5" is in the translate of the barrier cone
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of f = f© with vertex at—ai(o). For this we follow an argument similar to the one in
the corresponding lemma in [8]. ‘

Recall thatQ® has the same slopes &€. Sinces!’ is on Q?, these slopes are
given by

5;0) = (Sfl) — Oa1, Silk) — Q) = Sf) — Qi (4.16)
By (4.11) we see that

(. 87) = (. s —r1) > (w. s —q) = (. 5°).

Therefore we have that
(w, =8y < (w, =52, (4.17)

implying that, at least at this term, the series is decreasing with respect to

To show that the series is actually in the normal cone, we need to show that the
inequality in (4.17) holds forath’ € N(f©).Forallw’ € B(f©), letH,, be the unique
w’-constant hyperplane throudh Let H; ,» be the translate dfl,, which supportSDi(O)
at £,%. ThenP” also support$® since all points of?” are translates of points of
P? in the direction off ©. Therefore the argument used above dowill also work
for all w'. O

4.2. Proof of Theorend.1

We prove this theorem by induction. Lemmas 4.3 and 4.4 form the base case of the
induction. So, suppose in previous steps we built the exposfent and coefficient
c™D. Also suppose that, in doing so, we have bEj{f ™" and its polytopeP ™ for

alli. Suppose, further, that the(”’l) satisfy the following condition:

e The pointssjf”, defined above for the second step of the construction, are ver-

tices of P, and they are extreme vertices Bf'""". (Extreme in the sense of
Remark 3.1.) Note that this condition holds for the case 3 by Lemma 4.2.

Since thes|” are on a supporting hyperplane fgf" ", and are extreme o™,

by Remark 3.1 their coefficients are preserved in the transition " to P™.

Therefore we have, on the™, faces of the same form as above. Moreover, the face

equations of these faces have the same coefficients as the system in (4.15). Since, by

assumption, the approximation from ttre— 1)st step of the induction did not satisfy

all the equations, some of thg are again non-zero. So we can continue the induction.
Since the faces we obtained 8™ have the same form as those in the second step,

the same arguments apply to show that the support of the series lies in a translate of the

barrier cone off @ with vertex at—35. (SinceP™ lies in the barrier wedge of ©,

and the points oP ™" are obtained by translating points ®{" in the direction of

f™, we see thaP ™™ is also in this barrier wedge.)
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Fig. 4. The Newton polytopes dP; and P.

4.3. An Example

To get a feeling for the actual mechanics of this construction, we work out the first few
steps in the following system:

Pp=X1+Vy1—2y2+Y1y2=0, (4.18)
P, = xX—vy1+ Y24+ 2y1y, =0.

The Newton polytopes! (P;) andN (P,) are show in Fig. 4. Notice that each is a three-
dimensional polytope sincB; does not have any terms involving, and likewise for
P, andx;.

To carry out the construction, we need to choose a linear functional to give relative
weights to monomials in thg . So, let

w = (L1, 7/2) ~ (1, L.57). (4.19)

Recall that the coordinates af should be linearly independent over the rationals to
give a well ordering on the set of monomials. For the first step in the construction, this
functionalw chooses the lower triangular fate= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

from N(P,), and one-dimensional fac& = {(1,0,0, 0), (0, 1,0, 0)} from N(P,).
Taking the Minkowski sum, yields the face on the sum polytope whose vertices are
{(2,0,0,0),(0,2,0,0),(1,0,1,0), (0,1, 0,0)}, as shown in Fig. 5.

The slope matrix off; + f, is
P 4.20)
-1 0 *

Fig. 5. The faces for the first step.
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since it lies entirely within the hyperplan@ = 0. Therefore, our first term will be of
the form

y1 = ax + h.o.,

(4.21)
Yo = bx + h.o.t.
We finda andb by solving the face equations given by
l+a—2b =0,
(4.22)
—a+b =0,
which has a single solutiom,= b = 1. Therefore, the expansions are
y1 = X1+ h.o.t,
(4.23)

Y2 = X1+ h.o.t,

always remembering that h.o.t. means terms that are greater with respect to the chosen
functionalw.

The second term can be obtained similarly once we substitute the expressionsin (4.23)
into our original system in (4.18) to obtain the system

Vi — 2Y2 + X& 4 X1y1 + X1Yo + y1yo = O,

) (4.24)
Xo — Y1+ Yo+ 2X7 + 2X1Y1 + 2X1Y2 + 2y1y> = 0

At this point, the second polytope becomes four-dimensional, and we use the functional
w to visualize it and all of the polytopes from here on out. Consider d#hgtelds a

well ordering on the monomials in th&,, X»)-plane, and therefore we can collapse the
(X1, X2)-plane to a line in our diagram with the projection

Since this preserves the ordering of the monomials, it preserves the lowest faces with
regard to the projection to thg,, y2)-plane. The resulting polytopes are shown in Fig. 6
from which we obtain the termax, andbx, and the face equations

a—2b =0,
l-a+b=0.

(4.26)

Fig. 6. The polytopes and faces for the second step.
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These equations have the single solutioa: % andb = % So the second stage of the
expansion is
y1 = X1+ 3% +hot,

° (4.27)
Y2 = X1+ 35X+ h.o.t.

If we continue the construction for a few more terms, we obtain the series expansion

Y1 = X1+ 2%+ 5% + 5x1% + h.ot, (4.28)
4.
Y2 = X1+ 3%+ 3% + 3x1%; + h.odt.

4.4. Complete Systems and Normal Cones

The following corollary relates the maximal collections of series solutions to the normal
cones of the faces involved in the constructions.

Corollary 4.5. Suppose that all of the decomposable faces inithtreaximal section
of P© have face equations with maximal numbers of rgoes the number of roots is
equal to the mixed volume of the projectionR). Also suppose that all the roots of
these systems satisfy the conditions of ThedrdnThen the number of solutions to the
systen{F;} in (C((CQ)), where

c= (J BH= | N« (4.29)
f a face ofs, f a face ofs,
f decomposable f decomposable

is equal to the mixed volume of the projection of the pontog@s P., Pk(o):
V =\Vol(z (P(F)), ..., m(P(F))). (4.30)

Thereforg the number of solutions converging in some translate of the intersection of
the normal cones of these faces is equal to V

Note that this intersection is non-empty since it contains

Proof. We have, by Theorem 4.1, at least one distinct series in this ring for each root.
Therefore, this ring contains at ledstsolutions. By Theorem 2.1 the number of series
in this ring that satisfy the system can be no more than this mixed volume. O

5. Fiber Polytopes and the Mixed Fiber Polytope

Suppose that all of the faces &f satisfy the conditions of Corollary 4.5. Then this
corollary tells us that complete systems of solutions correspond to maximal collections
of decomposable, admissible faces whose normal cones have a non-trivial intersection.
Consider that, by choosing a linear functiomglwe get a coherent section of the pro-
jection

T P=P 44+ P — R¥ (5.1)
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of the Minkowski sum of the Newton polytopes of the original equations. By changing

we change the section. Note, however, that if two sections differ by only indecomposable
faces, then they yield the same set of series solutions in the above construction. If they
differ by any decomposable faces, then they give (at least some) distinct series solutions.
Therefore, the maximal sets of series solutionBgf .., Fx correspond to equivalence
classes of coherent sectionsmofwhere two sections are equivalent if they contain the
same sets of decomposable faces.

If Pp =-..-= P, thenP is a dilation of P, for all i. Therefore, every face oR is
decomposable, and hence the maximal sets of series solutions correspond precisely to
the coherent sections af.

Let A be the fan inR* whose cones are the domains of convergence of the maximal
collections of series constructed above. Consider the fiber polytope [3] associated to the
projections. Let Q be the image ofr, then this fiber polytope is denoted by

X2 (P) = XA (P, Q):{/Qy(x)d)c )/EF(P)}~ (5.2)

Recall that the vertices df, (P) are in one-to-one correspondence with the coherent
sections ofr, and that the barrier cone of the verigxis equal to the union of the barrier
cones of the faces that comprise the section. Therefore we get the following corollary to
Theorem 4.1.

Corollary 5.1. The normal famAy of £, (P) is arefinementoA. If Py = ... = B,
thenAy = A.

The properties of the falh suggests the existence of a polytope(P, ..., P)
called the mixed fiber polytope of the polytopBsassociated to the projectian This
polytope should satisfy the following properties:

1. 2,.(Py, ..., P isaMinkowski summand of, (P), and hence the normal fan of
¥, (P) is a refinement of the normal fan &f, (Py, ..., Py).
2.fPL=P,=... =P, thenX,(Py,..., P) = X,(P).

It is hoped that a generalization of the mixed secondary polytopes introduced in [9]
will yield the desired polytope. The relationship between the mixed fiber polytopes and
mixed secondary polytopes should be analogous to the unmixed case.

6. The Mixed Discriminant and Mixed Fiber Polytopes

As in [8] these results indicate a relationship between the fiber polytope and a certain
ramification locus. Namely, consider the ramification locus of the vavety {F; =
... = Fx = 0}. Assume thai is smooth. Then this locus corresponds to all multiple
points in the projection to théxy, ..., X,)-hyperplane, and sinc¥ cannot have sin-
gularities, must lie outside the domains where we have complete collections of series
solutions.

Justasin [8], the Log of this ramification locus is bounded by the cones which contain
maximal series solution sets.



528 J. McDonald

Theorem 6.1. If the Newton polytopes of the €oincide then thelog of the ramifica-

tion locus of the projection of x to the,, .. ., X,)-hyperplane is bounded by translates

of the normal cones of the fiber polytope associated to the projection of the Minkowski
sum of the Fto RX.

Ingeneral, itwill be necessary to build the mixed fiber polytope to extend this relationship.

In [8] this ramification locus corresponded to the zero locus of the discriminant of
F with respect toxny.1. Here, the locus is the zero locus of a generalization of this
discriminant, called the mixed discriminant.

Intuitively, it is the locus where the equatioRs = 0 have a common multiple root.
Genericallyk equations irk variables intersect in a finite number of roots determined by
the mixed volume of their Newton polytopes. We wish to make explicit the conditions
on theF; which determine when two of these roots merge into a common double root.

This happens when a translate of tlyg, . . ., yk)-hyperplane is tangent to the variety
X. However, this is equivalent to saying that the tangent planes to the vafigties0}
intersect in art-plane which lies parallel to thegy, . . ., yk)-hyperplane. This in turn is
equivalent to the condition that

IF aF,
det : o =0. (6.1)
aFx 9 Fy

In other words, thd~ vanish, and their Jacobian vanishes. This gives a codimension 1
condition on the space of all sectionsXfoverxy, ..., X;.

The above results give the following result on the zero locus of the mixed discriminant
of Fq, ..., F«

Theorem 6.2. Suppose that the Newton polytopes of thedincide and that their
corresponding variety X is smooffihen the zero locus of the mixed discriminant of the
Fi with respect to the variablesyy. .., yx is bounded by the normal cones of the fiber
polytope associated to the projection of the Minkowski sum of the IE .
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