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ABSTRACT The optimal reactive power dispatch (ORPD) is a major tool, and it plays a vital role for 

enhancement of the power system performance . ORPD is one multimodal, non-convex, and non-linear 

problem. Many elegant benefits can be obtained by using the renewable energy resources (RERs), but many 

technical issues related to the RERs including the stochastic characteristics of these resources due to 

continuous variations of solar irradiance and the wind speed lead to increasing the uncertainties of system. 

Thus, solving the ORPD problem with RERs is a crucial task. The contribution of the paper includes 

application a modified hybrid algorithm for solving the ORPD considering the uncertainties of the RERs and 

the load demand. The proposed algorithm is based on Fractional Calculus with Particle Swarm Optimization 

Gravitational Search Algorithm (FPSOGSA) which aims to enhance the searching capabilities of the 

conventional PSOGSA algorithm and overcome its tendency to stagnation. The proposed algorithm is tested 

on IEEE 30-bus system for reducing power losses and voltage deviation as well as enhancing voltage stability. 

The scenario-based method is employed to produce a set of scenarios from the uncertainties of load, wind 

speed and solar irradiance. The simulation results verify the effectiveness of the proposed algorithm for 

solving the ORPD problem with and without considering the uncertainties in the system. Furthermore, the 

proposed algorithm is superior compared with the state-of-the-art techniques in terms of the reduction of 

power losses and voltage deviations as well as the stability enhancement.  

INDEX TERMS Optimal Reactive Power Dispatch, Renewable Energy Resources, Optimization, 

Fractional Calculus, Particle Swarm Optimization, Gravitational Search Algorithm, Uncertainty

I. INTRODUCTION 

In this section, the different techniques related to the optimal 

reactive power dispatch (ORPD) discussed with and without 

integration of renewable energy resources (RERs) as well as 

research gap and paper contribution are given in detail.   

ORPD is taking as an important consideration in the secure 

operation of electric systems that aims to get the best profile 

of the voltage and reduction of power losses by adjusting a 

set of control variable values including the voltages of 

generator, shunt VAR reactive compensators and the tap 

changing of the transformers. Meanwhile, optimization 

constraints generator reactive power capabilities, voltages of 
load bus, power balance and line capacities must be satisfied. 

Therefore, the reactive power flow is taken as the important 

consideration in the electrical network and cannot be 

avoided. Most of the loads in the electrical systems are 

inductive, such as transmission lines and transformers but it 

should be sufficient to supply VAR consumers within the 

limits. Otherwise, it will cuase unwanted voltage and heat 

loss. An objective will be set to minimize the power losses, 

voltage deviation and voltage stability index while the 

desired objective can be achieved by settings of the control 

variables. Nowadays, the contribution of RERs in electric 

power system is intensively considered [1-8].  

In the past few decades, numerous optimization techniques 
have been studied to use conventional thermal unit for 

solving ORPD. These optimization techniques include 

gradient-based approach, linear programing, interior point, 

quadratic programming and non-linear programming [9-13]. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039571, IEEE Access

 

VOLUME XX, 2017 1 

However, they have some of difficulties to solve the 

intricated problem of ORPD such as trapping into the local 

minima, premature convergence and the algorithmic 
complexity. To resolve these problems, the development of 

the new meta-heuristic optimization techniques like 

differential evolution technique, whale optimization 

algorithm, sine cosine algorithm, moth-flame optimization, 

ant lion optimizer algorithm, cuckoo search algorithm, plant 

propagation algorithm, grey wolf algorithm and particle 

swarm optimization [14-21] are developed to overcomes 

these issues.   

The new hybrid techniques are used for the conventional 

thermal units to solve ORPD. Singh and Srivastava [22] used 

the newly Hybrid Multi-Swarm Particle Swarm 

Optimization (HMPSO) algorithm to minimize the real 
power loss and improving the voltage stability. In this 

technique, a swarm is split into the sub-swarms then the sub-

swarm is applied as search engine. Jirwadee et al [23] 

proposed an improved pseudo-gradient search PSO (IPG-

PSO) using a linearly decrease chaotic weight factor led by 

pseudo gradient search technique. A novel hybrid population 

based on PSOGSA algorithm was proposed by Lenin et al 

[24] to minimize real power loss and voltage deviations 

using IEEE30 standard. Khan et al. [25] proposed the 

fractional PSOGSA algorithm to alleviate power losses and 

voltage deviations. The fractional approach was incorporated 
into the PSOGSA algorithm for enhancing the convergence 

properties of the algorithm.  

However, the new developments and the generations are 

introduced to the electric power system due to increasing 

demand of electric power supply to the grid. These 

generations are the renewable energy resources (RERs) 

which are cost-effective, pollution-free but have the 

uncertainty in the generations due to variation in windspeed 

and solar irradiance. There are few studies related to 

integration of RERs into ORPD. Biswas [26], presented 

success-history differential evolution (SHADE-EC) 

algorithm for solving the single and multi-objective 
stochastic ORPD with the integration of the RERs using 

IEEE30 and IEEE57 standards. The appropriate PDF 

functions are taken into consideration to model stochastic 

power generation and load from RERs at different scenarios. 

The implementation of feasible solution search with PSO 

algorithm is discussed by Marcela Martinez-Rojas [27]. The 

ORPD on PCC is considered to minimize the power losses 

in a windfarm. A lightning attachment procedure 

optimization was introduced by Ramadan [28]. The paper 

explained the uncertainty of the wind speed and the solar 

irradiance which are modeled using Weibull PDF and 
Lognormal PDF to reduce the power losses of IEEE30 

standard at different 25 scenarios. Mohseni-Bonab [29-30] 

formulated the multi-objective stochastic problem related to 

ORPD considering the uncertainty of load, and it was tested 

on IEEE14 and IEEE118 standards. 

The traditional PSO algorithm is typically facing with sub-

optimal problem and caught into the local minima. While, 

traditional GSA has required a lengthy computational time for 

solving some optimization issues to find the global solution. 

PSO has a propensity of quick convergence in a multi variable 

optimization problem while the global exploration 
performance of GSA is mostly conspicuous. Hence, PSO and 

GSA algorithms have their individual perspectives and 

encourage us to develop an effectual hybridization technique 

of PSOGSA algorithm to overcome the weakness of the 

existed traditional PSO and GSA algorithms [24].  

The fractional calculus (FC) is a strong mathematical tool that 

attracts the attentions of the most researchers and implemented 

in the field of science and technology, for example, 

electromagnetism, robotics, electronics, physics, 

telecommunication and control systems [31-34] but it is not 

yet much explored in the field of ORPD with the integration 

of RERs. By using the FC concept, the fractional properties 
are applied to update the velocity of traditional PSOGSA 

algorithm to obtain the fractional FPSOGSA that aims to 

enhance the convergence performance of the algorithm and 

memory effects of all past events [25].  

The stochastic ORPD problem is taken as a single or multi 

objective problem with integration of uncertainty load 

demand, solar irradiance and wind speed. The research is 

using the single objective approach and ORPD problem with 

uncertainty is solved in load demand, solar irradiance and 

windspeed by using the scenario-based approach in order to 

optimize the power losses, voltage stability index and 
voltage deviation.  
The objective of this research is to implement the novel 

FPSOGSA algorithm for ORPD with integration of RERs for 

reducing the power losses, voltage deviation as well as 

improving the voltage stability index. 

From the comprehensive literature review, the few research 

gaps are observed and discussed as follows.  

• ORPD without RERs is simply solved by FPSOGSA 

algorithm and the uncertainty of solar irradiance, wind 

speed and load demand at different scenarios is not 

considered.  

• ORPD containing uncertainties of RERs was not tested 

based on IEEE30 standards with 13 control variables 

[26,28]. 

• The voltage stability index was not discussed in [26,28] for 

the scenario-based approach.  

The salient features of the research can be summarized as 

below: 

• The novel FPSOGSA approach was implemented to the 

ORPD with RERs according to IEEE30 standard using 13 

and 19 control variables. 

• The mathematical model of ORPD was built under the 

uncertainties of load demand, solar and wind power on 
IEEE 30-bus system.  

• Solving ORPD for reducing power losses and voltage 

deviations as well as improving voltage stability by 

applying FPSOGSA algorithm with and without integration 

of RERs. 

• The outcomes of FPSOGSA was analyzed and compared 

with those of the different meta-heuristic techniques for 

ORPD.  
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In organizing rest of the article, section II describes the 

problem formulation. Section III presents the mathematical 

model with the uncertainty in load demand, solar PV unit and 
wind power for ORPD. Section IV explains the mathematical 

models of PSO, GSA, PSOGSA, FC with graphical abstract. 

Section V explains the result and discussion while Section 

VI is the conclusion section. 

II. PROBLEM FORMULATION 

The first objective of solving ORPD is to find the best control 

parameter settings to diminish the power losses. ORPD is 

assigned as follows.   

:

( , )

( , ) 0 1,2,3,...,

( , ) 0 1,2,3,...,

= =

= =

f

q

n

Subject To

Min Obj r s

g r s j m

h r s n p

 (1) 

Where, nh  and 
qg  are the inequality and the equality 

constraints while r  and s are the control and state variables.  
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Where, 𝑉𝑔  denotes the generator voltage, 𝑄𝐶  denotes 

reactive power of the compensator, 𝑇𝑝is the transformer tap,  𝑃1  is the slack bus power, 𝑉 is the load bus voltage, 𝑄𝑔 is the 

reactive power of the generator, 𝑆𝑡 is apparent power flow in 

the transmission line. While, R, NPV, NTr and NPQ 

represent the numbers of generators, transformer taps, load 

buses and transmission lines.  

A. Objective Functions 

There are three minimization objectives of ORPD and 

related details are discussed in below sub-sections. 

1) POWER LOESSES 
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Where, 𝑃𝑙𝑜𝑠𝑠  denotes the reactive power loss and 𝐺𝑖𝑗  

denotes the conductance of the transmission line. While, the  
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inequality constraints are given for generators, transformers, 

shunt VAR compensators and security. Where,  𝑚𝑎𝑥  and 𝑚𝑖𝑛 are superscripts of the maximum and minimum limit of 

the control and dependent variables. The equality constraint 

is representing as follows: 
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While, the penalty factor is representing as the given 

mathematical expression. 
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2) VOLTAGE DEVIATION 

It sets another objective to improve the voltage profile in the 

electrical grid, the following expression is used to measure the 

voltage deviation (VD).  

2
1

min 1
=

  = = −  
 

Nl

lp
p

F VD V  (7) 

3) VOLTAGE STABILITY  

In the electric power networks, the instability of the voltages 

is considered as the most critical phenomena which leads to 

the voltage collapse steadily or immediately. In the 

improvement of voltage stability, the minimization of 

voltage stability factor is denoted as L-index of each bus. It 

can be improved by alleviating the L-index values at one bus 

and formulated as follows. 

1

3 min 1 1,2,......
== = − =Ng

ij jj
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i

y v
F L i N
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3 maxmin 1,2,....,= = BusF L i N  (9) 

Here, iL  denotes the stability index value of bus i, while 
ijy

represents the mutual admittance between bus i and j.  

III. UNCERTAINTY MODEL OF RERs 

A. MODEL OF LOAD UNCERTAINTY 

The load uncertainty can be represented by the normal PDF 

function that is formulated by the following expression [30].  
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Where,
dL represents normal probability distribution 

function (PDF), 
d and 

d are the mean and standard 

deviations with the values 10 and 70, respectively  [28]. 

B. MODEL OF WIND POWER 

The wind speed is varying continuously and stochastically 

which causes the uncertainty in power system. This means 

that the solution cannot be presented as a certain point of the 

wind speed and the uncertain characteristics of the wind 

speed should be considered. Commonly, the Weibull PDF 

(11) is used to cultivate the wind power. 

1
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Where, ( )W v represents the PDF of wind speed v ,  and 

  refer to the scale and shape parameters of Weibull 

function, 𝑃𝑊𝑡 represents the rated power generated by the 

wind turbine while 
,iv , 

,rv and 
,ov denote the cut-in, 

rated and cut-out wind speed, and their parameters with 

limits are given in Table I [25]. The active and reactive 
generated powers of the wind farm are depicted as follows. 

1 cos
cos

 =  = −

Wf Wt Wt

Wf

Wf

P P N

P
Q 


 (13) 

Where, WtP and 
WfQ  represent the active and the reactive 

power generated by the windfarm while WtN represents the 

number of the wind turbines connected in a windfarm.  

C. MODEL OF SOLAR POWER 

The output of the solar PV units also fluctuates due to 

variation of the solar irradiance daily and seasonally which 

leads to the change in power system. For optimal planning, 

the uncertain characteristics of the solar irradiance should be 

considered. Commonly, lognormal PDF function is used to 
describe the solar irradiance (W/m2). The mathematical 

expression is given as follows. 
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Where, ( ) sg represents the probability density of the 

solar irradiance in (W/m2), 
s and 

s  denote the standard 

and mean deviation, 
SrP is the generated power by PV, 

cX

is the irradiance point while stdg is the solar environment 

solar irradiance and their limit values are given in Table II 

[28]. 

The wind and solar powers are mainly affecting the dispatch 

solution of ORPD. The integrated mathematical expression 

of ORPD containing windfarm and PV is given as follows. 
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 (16) 

It should be highlighted here that Eq. (16) represents the 

balanced power flow in system considering the renewable 

energy resources where the generated active or reactive 

powers from the conventional power sources (
,g iP ,

,g iQ ) 

add the generated powers from the solar PV ( sP , sQ ) and the 

windfarm ( WfP , WfQ ) on condition that the load demands  

( ,d iP , ,d iQ ) and the power losses in the system must be 

covered.  

 

D. EXPECTED SUM OF OBJECTIVE FUNCTIONS  

In case of the uncertainity in the power system, several 
scenarios will be taken into account. Thus, the losses, the 

voltage deviations and the stability index should be assigned 

in these scenarios which are known as the expected values.  

To find the expected sum of the power losses ( PlossE ), the 

given expression is used as follows. 

,
1

Nsc

Ploss sc losses sc
sc

E P
=

=    (17) 

Where, Nsc denotes the total number of the generated 

scenarios, ∆sc is the probability of the given scenarios while 

,losses scP represents the power losses of each scenario. 

Similarly, to find the expected sum of voltage deviation, the 

expression is used as follows.  

1=
=  

Nsc

VD sc sc
sc

E VD  (18) 
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Where, VDE  represents the sum of the expected voltage 

deviation in the given scenarios while scVD represents the 

voltage deviation of each scenario. Likewise, the expected 

sum of voltage stability index is formulated by the following 

expression. 

1=
=  

Nsc

VSI sc sc
sc

E VSI  (19) 

Where, VSIE is the expected sum of voltage stability index 

while scVSI is the voltage stability index of each scenario. 

IV. METHODOLOGY  

A.  PARTICLE SWARM OPTIMIZATION (PSO)  

The traditional PSO algorithm was proposed by Kennedy and 

Eberhart in 1995 [35] where the solution is considered as a 

particle. The representation of the position and velocity are 

given as follows. 

( ) ( ), 1 , , ,

, 1 , , 1

2 1 2 1+

+ +

=  +  − +  −

= +
i t i t BST i t BST i t

i t i t i t

v w v c r P X c r G X

x v v
 (20) 

Where, 
, 1+i tv denotes the velocity of the ith particle at given 

iteration (t+1) while
, 1+i tx  denotes its position, w represents 

the inertia weight, r1 and r2 denote random values in range 

[0,1], 𝑐1  and 𝑐2  are the coefficient for BSTP and BSTG  

positions, and 𝑤 is the inertia parameter that achieves better 

stability and it is given as follows. 

max min

max

max

−
= − i i

i

i

w w
w w iteration

iteration
 (21) 

Where, 
max

iw and 
min

iw are the inertia values of the start and 

end of iterations.  

B. GRAVITATIONAL SEARCH ALGORITHM (GSA)  

GSA is presented by Rashedi in 2009 [36]. The algorithm is 

conceptualized from the Newton’s Law where the collection 

of agents having masses accommodate to the fitness objective 

value. The initial number of agents are expressed as follows. 

1 dm

i ( ... ... ) 1,2,3,...,= =n

i i iX x x x for i N  (22) 

Where, 
dm

ix is the position of the ith agent while the worst and 

best for each agent at each iteration is expressed as follows.  
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Where, 𝐺const at 𝑡th iteration is given in Eq. (25), 𝑇 represents 

the total iteration while 𝐺e and α values are set to 1 and 23, 
respectively. 
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The gravitational and the inertial masses are calculated as 

follows. 
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In the search space, overall acting forces on the agent is 

computed as follows.  

dm dm

1, 1( ) ( ) ( )= = N

i j iji jF t rand t F t  (29) 

Where, 
dm

iF signifies the gravitational force applied from jth 

to ith agent at the explicit time computed as follows.  
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The acceleration of an agent at the dth dimension is computed 

as follows.  

dm

dm

,

( )
( )

= i

i

im i

F
ac t

M t
 (31) 

The velocity and position of the traditional GSA are calculated 

by the following equations. 

dm dm( 1) ( ) ( )+ =  +t

i i i iv t rand v t ac t  (32) 

dm dm( 1) ( ) ( 1)+ = + +t

i i ix t x t v t  (33) 

C. PARTICLE SWARM OPTIMIZATION AND 
GRAVITATIONAL SEARCH ALGORITHM (PSOGSA)  

The novel hybrid PSOGSA algorithm was firstly introduced 

by Mirjalili [25], the hybridization of PSO and GSA 

algorithms aims to enhance the seaching capabilities of these 

algorithms. Both algorithms are hybridized at low-level co-

evolutionary heterogenous.  
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The position of particles are updated as follows. 

1 1+ += +t t t

i i ix x v  (35) 

E. FRACTIONAL CALCULUS  

The FC concept plays an important role in the fields of 

mathematics, science, and technologies. Past few years, the 

researchers are using this mathematical tool for enhancing the 

performance of the algorithms applied in different fields, such 

as controllability, edge detection, stability, filtering, pattern 

recognition, identification and observability. In the literature, 

there are numerous different interpretations of FC, e.g. 

Grünwald-Letnikov interpretation signal x(t) is expressed as 

follows [34]. 

 
0

1 ( 1) ( 1) ( )
( ) lim

( 1) ( 1)

+

→ =

 −  + − =    +  − + 


q

h o k

x t qh
D x t

h q q

 


 (36) 

 represents the Euler gamma function. 

( ) ( 1)! = −q q  (37) 

Generally, a simple integer order only involves a finite series 

while Grünwald–Letnikov interpretation using fractional 
derivatives needs a number of infinite series. The fractional 

derivatives of Grünwald–Letnikov has the oblique memory 

effect of entire past events that will be reduced over the time. 

While, the discrete time interpolation of  ( )D x t  is given 

using (38). 
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Where, 𝑇  is the sampling time, 𝛼  is fractional order, Γ is 
Euler gamma function, 𝑞  is the index which represents 

number of terms in power series expansion, and r is the 
truncation order. The velocity in (39) is modified to amend 

the velocity as follows. 
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Where, r1 and r2 are the random numbers between [0,1], 𝜌1 and 𝜌2  are the local and global coefficients, 𝑛 is particle 

index crossponding velocity v, while ,BEST iP and BESTG  are the 

local and global positions. 

The velocity order (α) could be a real number in [0,1] that 

learns the fractional optimization behavior of this novel 

mechanism, the fractional testing are between a=0 and 𝛼 =1 with incrementation of steps ∆α=0.1. Thus, using 𝑟 = 4, the 

updated velocity is represented as follows [42]. 
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(42) 

While the velocity of FPSOGSA is updated, Eq. (34) and (42) 

will be used as follows.  
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 (43) 

The steps of FPSOGSA for solving the ORPD including 

RERs is depicted in Fig. 1. 
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FIGURE 1.  Graphical Abstract of FPSOGSA Algorithm to ORPD Problem including RERs
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V. RESULTS AND DISCUSSION  

In this section, FPSOGSA is applied for solving ORPD with 

and without integration of RERs in order to optimize three 

objectives including power losses and voltage deviations 

reduction and improvement of voltage stability. The 

proposed algorithm is test on IEEE30 standard bus system. 
The IEEE30 standard bus system contains 41 branches, 30 

buses, 6 generators, 4 transformers with 9 shunt VAR 

reactive compensators [51]. 19 control variables are 

considered for 9 shunt VAR compensators while 13 control 

variables are considered for 3 shunt VAR compensators 

based on IEEE 30-bus standard [25]. The simulations are 

carried on Core I5 PC and the FPSOGSA code for ORPD 

was programmed. For studying ORPD with RERs, the solar 

and wind powers resources have been considered as depicted 

in Fig. 2 where a wind farm is connected to the bus 5 while 

the solar power plant is injected to bus 8. The rated power of 
the wind farm is 75 MW where it consists of 25 wind 

turbines, each wind turbine capacity is about 3 MW. The 

selected parameters of a windfarm are given in Table I [26], 

[28]. Table II lists the parameters of the solar power PV 

plants which are connected to the generator bus 8 and its 

rated power is 50 MW. The parameters of FPSOGSA 

including number of particles, number of iterations, velocity 

bounds, size of population, fractional coefficient, 

cognitive/social acceleration, and inertia weight are given in 

Table III. The selection of fractional order depends upon the 

information of the optimization problem, experimentations 

with experience and extensive care [25], [39], [41]. The 

learning convergence curves of FPSOGSA algorithm are 

obtained at fractional order 𝜶 = 𝟎. 𝟔 , population size 50, 

iteration 100 for all given objectives with and without 
integration of RERs while, the control parameter values for 

the generator voltages, shunt VAR reactive compensators 

and transformer tap are taken as given in Table IV.  

A.  ORPD PROBLEM WITHOUT RERs  

The FPSOGSA algorithm is successfully applied on IEEE30 

bus standard to minimize three objectives without integration 

of RERs including the power losses and voltage deviations 

reduction and voltage stability enhancement. The FPSOGSA 

simulation outcomes are given for IEEE30 with 13 and 19 

control variable settings. 

Tables V and VII shows the best control values for the 𝑃𝑙𝑜𝑠𝑠 

minimization, 𝑉𝐷  minimization and 𝑉𝑆𝐼  enhancement for 

IEEE30 with 13 and 19 control variables, respectively. Table 

IX and Table X show the obtained results by application of 

different optimization algorithms, respectively. In case of 

minimizing the power losses for 13 control variables, the 𝑃𝑙𝑜𝑠𝑠 by using FPSOGSA is reduced from 5.811 MW (base 

case) to 4.5308 MW. Judging from Table IX, the percentage 

reduction of losses is reported as: MFO is 19.01%, C-PSO is 

17.37%, GWO is 18.80%, FODPSO is 18.67%, MICA-IWO 

is 14.43% and FODPSO-EE is 20.88%. In case of 

minimizing the power losses for 19 control variables, the 

power loss is reduced from 5.663 MW (base case) to 4.4952 

MW by application of FPSOGSA. Judging from Table X, the

TABLE I 

PARAMETERS OF WINDFARM GENERATOR CONNECTED AT BUS 5 IN IEEE30 STANDARD BUS SYSTEM [26] 

Windfarm Specification: Turbine Model- Enercon E82-E4 

Windfarm Rated Power No. of Turbines Each Turbine Power Weibull Parameters Cut-In (m/sec) Rated (m/sec) Cut-out (m/sec) 

1 at bus 5 75 MW 25 3 MW α=9, β=2 3 16 25 

TABLE II 

PARAMETERS OF SOLAR POWER GENERATOR CONNECTED AT BUS 8 IN IEEE30 STANDARD BUS SYSTEM [26] 

Solar Power (PV) 

Solar Power Rated Power (MW) Standard Solar Irradiance (W/m2) Certain Irradiance Point (W/m2) Lognormal Parameters 

1 at bus 8 50 1000 120 μs=5.5, σs=0.5 

TABLE III 

PARAMETERS SELECTION OF FPSOGSA ALGORITHM FOR ORPD PROBLEM WITH AND WITHOUT RES [39] 

Description Power Losses (MW) Voltage Deviation (p.u) Voltage Stability Index (p.u) 

No. of Population 50 50 50 

No. of Iterations 100 100 100 

Local Acceleration Factor (LAF) 0.9-0.1 0.9-0.1 0.9-0.1 

Global Acceleration Factor (GAF) 0.1-0.9 0.1-0.9 0.1-0.9 

Inertia Weight 0.9-0.2 0.9-0.2 0.9-0.2 

Fractional Order α=0.6 α=0.6 α=0.6 

TABLE IV 

CONTROL VARIABLE SETTINGS FOR IEEE30 WITH 13 AND 19 VARIABLES WITH AND WITHOUT RERS [28] 

IEEE30 Control Variables Settings for all Given Objectives 

13, 19 VAR 

Vg 0.95 1.1 

Qc 0 0.050 

Tc 0.95 1.1 
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FIGURE 2. Modified IEEE30-Bus System Including RERs 

percentage of losses are reported as: PSO-CF is 22.12%, 

QOTLBO is 21.54%, MFO is 22.34%, ALO is 21.01%, GWO 

is 20.21%, CLPSO is 21.50%, OGSA is 22.59%, PSOGSA is 
22.03%, MSFS is 22.31%, LAPO is 19.85%, and the proposed 

algorithm is reported to 22.64%.  

It is depicted that the outcomes obtained from the proposed 

FPSOGSA are less compared to the base case and other meta-

heuristic approaches which endorsed the best performance of 

FPSOGSA. The Figs. 3 (a) and (b) demonstrated the best 

performance achieved by the proposed algorithm. The 

minimization of power losses for 13 and 19 variables is 4.5308 

MW and 4.4952 MW, respectively. Figs. 4 (a) and (b) is for 

minimization of 𝑉𝐷 that obtained by FPSOGSA for 13 and 19 

control variables which is 0.1060 p.u. and 0.0923 p.u., 
respectively. In addition, Figs. 5 (a) and (b) demonstrated the 

best convergence characteristics achieved by the proposed 

algorithm for minimization of 𝑉𝑆𝐼  with 13 and 19 control 

variables which is 0.0953 p.u. and 0.0878 p.u., respectively. 

Figs. 3, 4 and 5 illustrates the trend of the objective functions 

versus  iterations. 

Judging from Table IX and Table X, the results computed by 

FPSOGSA are better than MFO [44], C-PSO [37], GWO [40], 

PSO-CF [23], QOTLBO [41], IGA [43], MICA-IWO [38], 

PSOGSA [45], FODPSO-EE [50], LAPO [28], ALO [42], 

MSFS [46], BBO [48] and OGSA [49]. 
According to Figs. 4, 5 and 6, FPSOGSA has the stable 

convergence capacity for given objectives without 

considering RERs. While, the estimation time of simulation 

are given in Tables V and VII. In addition, the dependent 

variables of ORPD i.e., reactive power outputs of non-

considering RERs and the voltages of the load buses are 

given in Table VI and VIII for IEEE30 standard with both 13 

and 19 control variables. The result shows that the dependent 

variables are remained within their permissible limits and 

there is no violation.   

B. ORPD PROBLEM WITH UNCERTAINTY OF RERs  

In this section, ORPD is solved using FPSOGSA with RERs. 

With the uncertainties of the load, solar irradiance and the 

wind speed, voltage deviations and the expected stability 

index according to (17), (18) and (19). Table XI shows the 

percentage load demands for each scenario and the output 
powers from the 25 scenarios can be obtained. The objective 

function is minimizing the expected power loss, the expected  
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FIGURE 3.  Evolution of Power Losses (MW) of IEEE30 Bus Standard. (a) 13 Variables (b) 19 Variables 
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FIGURE 4.  Evolution of Voltage Deviation (p.u) of IEEE30 Bus Standard. (a) 13 Variables (b) 19 Variables 
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FIGURE 5.  Evolution of Voltage Stability Index (p.u) of IEEE30 Bus Standard. (a) 13 Variables (b) 19 Variables 

wind farm and the PV plant as well as the corresponding 

probabilities. The total expected values of the power loss, the 

voltage deviations and stability index without incorporating 

RERs are reported as 4.7985 MW, 0.7229 p.u., 0.1114 p.u., 

respectively, for IEEE30 with 13 control variables. Table XII 

shows the obtained results with RERs including the 𝑃𝑙𝑜𝑠𝑠, 𝑉𝐷 and 𝑉𝑆𝐼 for each scenario in case of 13 and 19 

control variables. 

As ORPD with 13 control variables is resolved, 𝐸𝑃𝑙𝑜𝑠𝑠  is 

reduced from 4.7985 MW to 2.2462 MW (53.19 %), 𝐸𝑉𝐷 is 

reduced from 0.7229 p.u to 0.1126 p.u  (84.42 %), and 𝐸𝑉𝑆𝐼 is 
reduced from 0.1114 p.u to 0.0952 p.u. (14.54%). When 

ORPD with 19 control variables is resolved, the 𝐸𝑃𝑙𝑜𝑠𝑠  is 

reduced from 4.7985 MW to 2.1782 MW (54.61    % ),  𝐸𝑉𝐷 is 

reduced from 0.7229 p.u to 0.0840 p.u  (88.38 %) and 𝐸𝑉𝑆𝐼 is 
reduced from 0.1114 p.u to 0.0870 p.u. (21.90 %). The 
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simulation time (sec) for IEEE30 with 13 and 19 control 

variables considering RERs are given in Table XII.   

From the aforementioned results, inclusion of RERs can 

enhance the performance of the system considerably. 

Referring to Table XII, values of the 𝑃𝑙𝑜𝑠𝑠, 𝑉𝐷 and 𝑉𝑆𝐼  are 
changed according to variations of load demand, solar 

irradiance and the wind speed. the highest values of the 𝑃𝑙𝑜𝑠𝑠, 𝑉𝐷 and 𝑉𝑆𝐼  are obtained in the 1st and 7th scenarios 

where in the 1st scenario, the percentage load is high 

(105.784 %) and there is no output power from the wind farm, 

while in the 7th scenario, the output power from the wind 

farm and PV plant are small and the load is high. 

VI. CONCLUSION 

In the article, a novel heuristic approach of Fractional 

PSOGSA algorithm has been successfully implemented and 

applied to ORPD with and without RERs (Wind + PV) in the 

electrical systems. The uncertainties in RERs is considered by 

varying the windspeed, solar irradiance, the load demand by 

applying the Weibull and thee Lognormal probability 
distribution functions.  

• The proposed algorithm is successfully applied to 

IEEE30 bus standard with 13 and 19 control variables to 

minimize the three objective functions, such as power 

losses, voltage deviation and voltage stability index.  

• The overall results of FPSOGSA algorithm shows the 

better performance for ORPD problem with and without 

RERs as compared to the other heuristic approaches.  

• The integration of FC into PSOGSA enhances the overall 

convergence strength with memory effect of the 

algorithm.  
In future, FC will be added to other heuristic approaches for 

improvement.  

 

TABLE V 

CONTROL VARIABLE FOR POWER LOSSES, VOLTAGE DEVIATION AND VOLTAGE STABILITY INDEX WITHOUT RERS FOR IEEE30 STANDARD (13 VARIABLES) 

Control Variables 𝑃𝑙𝑜𝑠𝑠  minimization 𝑉𝐷 minimization 𝑉𝑆𝐼 enhancement 

VG 1(p.u.) 1.0716 1.0330 0.9703 

VG 2(p.u.) 1.0635 0.9983 1.0755 

VG 5(p.u.) 1.0343 1.0151 1.0607 

VG 8(p.u.) 1.0441 1.0047 1.0384 

VG 11(p.u.) 0.9929 1.0297 1.0999 

VG 13(p.u.) 1.0160 1.0110 1.0658 

TC 6-9(p.u.) 0.9451 1.0287 1.0479 

TC 6-10(p.u.) 1.0040 0.9055 0.9283 

TC 4-12(p.u.) 0.9992 0.9498 1.0713 

TC 27-28(p.u.) 0.9543 0.9518 0.9653 

QC 3(p.u.) 0.0131 0.0498 0.0500 

QC 10(p.u.) 0.0500 0.0500 0.0500 

QC 24(p.u.) 0.0267 0.0500 0.0478 

min F1, F2, F3 4.5308 (MW) 0.1060 (p.u.) 0.0953 (p.u.) 

Time (sec) 33.29 43.28 49.85 

TABLE VI 

DEPENDED VARIABLES FOR POWER LOSSES, VOLTAGE DEVIATION AND VOLTAGE STABILITY INDEX WITHOUT RERS FOR IEEE30 STANDARD (13 

VARIABLES) 

Depended Variables Minimum Limits Maximum Limits 𝑃𝑙𝑜𝑠𝑠  minimization 𝑉𝐷 minimization 𝑉𝑆𝐼 enhancement 

V3(p.u.) 0.9 1.1 1.081 1.081 1.089 

V4(p.u.) 0.9 1.1 1.076 1.073 1.083 

V6(p.u.) 0.9 1.1 1.070 1.072 1.075 

V7(p.u.) 0.9 1.1 1.064 1.064 1.066 

V9(p.u.) 0.9 1.1 1.095 1.075 1.057 

V10(p.u.) 0.9 1.1 1.073 1.080 1.051 

V12(p.u.) 0.9 1.1 1.078 1.094 1.039 

V14(p.u.) 0.9 1.1 1.065 1.080 1.028 

V15(p.u.) 0.9 1.1 1.061 1.076 1.027 

V16(p.u.) 0.9 1.1 1.069 1.081 1.037 

V17(p.u.) 0.9 1.1 1.066 1.075 1.041 

V18(p.u.) 0.9 1.1 1.053 1.066 1.023 

V19(p.u.) 0.9 1.1 1.052 1.063 1.024 

V20(p.u.) 0.9 1.1 1.056 1.066 1.030 

V21(p.u.) 0.9 1.1 1.062 1.070 1.040 

V22(p.u.) 0.9 1.1 1.062 1.071 1.041 

V23(p.u.) 0.9 1.1 1.055 1.069 1.026 

V24(p.u.) 0.9 1.1 1.054 1.067 1.033 
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V25(p.u.) 0.9 1.1 1.066 1.076 1.050 

V26(p.u.) 0.9 1.1 1.050 1.060 1.033 

V27(p.u.) 0.9 1.1 1.082 1.090 1.068 

V28(p.u.) 0.9 1.1 1.066 1.068 1.069 

V29(p.u.) 0.9 1.1 1.064 1.072 1.050 

V30(p.u.) 0.9 1.1 1.053 1.061 1.039 

QG1(MVAR) -20 150 -8.54 -7.95 -12.73 

QG2(MVAR) -20.0 60.0 15.79 16.69 8.72 

QG5(MVAR) -15.0 62.5 23.43 22.75 21.03 

QG8(MVAR) -15.0 48.7 48.02 44.08 35.28 

QG11(MVAR) -10.0 40.0 3.17 13.57 23.30 

QG13(MVAR) -15.0 44.7 17.71 4.87 20.84 

TABLE VII 

CONTROL VARIABLE FOR POWER LOSSES, VOLTAGE DEVIATION AND VOLTAGE STABILITY INDEX WITHOUT RERS FOR IEEE30 STANDARD (19 VARIABLES) 

Control Variables 𝑃𝑙𝑜𝑠𝑠  minimization 𝑉𝐷 minimization 𝑉𝑆𝐼 enhancement 

VG 1(p.u.) 1.0455 1.0686 0.9719 

VG 2(p.u.) 1.0389 0.9504 0.9629 

VG 5(p.u.) 1.0116 1.0189 0.9557 

VG 8(p.u.) 1.0180 1.0071 1.0743 

VG 11(p.u.) 0.9740 1.0681 0.9524 

VG 13(p.u.) 1.0845 0.9769 1.0877 

TC6-9(p.u.) 0.9578 1.0828 0.9000 

TC 6-10(p.u.) 0.9007 0.9078 1.0679 

TC 4-12(p.u.) 1.0083 0.9158 1.0081 

TC 27-28(p.u.) 0.9534 0.9792 0.9784 

QC 10(p.u.) 0.0037 0.0297 0.0495 

QC 12(p.u.) 0.0208 0.0179 0.0500 

QC 15(p.u.) 0.0113 0.0188 0.0494 

QC 17(p.u.) 0.0308 0.0229 0.0351 

QC 20(p.u.) 0.0438 0.0500 0.0447 

QC 21(p.u.) 0.0423 0.0469 0.0305 

QC 23(p.u.) 0.0297 0.0496 0.0500 

QC 24(p.u.) 0.0000 0.0500 0.0495 

QC 29(p.u.) 0.0387 0.0415 0.0490 

min F1, F2, F3 4.4952 (MW) 0.0923 (p.u.) 0.0878 (p.u.) 

Time (sec) 42.46 43.29 50.60 

TABLE VIII 

DEPENDED VARIABLES VALUES FOR POWER LOSSES, VOLTAGE DEVIATION AND VOLTAGE STABILITY INDEX WITHOUT RERS FOR IEEE30 STANDARD (19 

VARIABLES) 

Depended Variables Minimum Limits Maximum Limits 𝑃𝑙𝑜𝑠𝑠  minimization 𝑉𝐷 minimization 𝑉𝑆𝐼 enhancement 

V3(p.u.) 0.9 1.1 1.083 1.078 1.083 

V4(p.u.) 0.9 1.1 1.078 1.071 1.076 

V6(p.u.) 0.9 1.1 1.071 1.075 1.071 

V7(p.u.) 0.9 1.1 1.064 1.066 1.064 

V9(p.u.) 0.9 1.1 1.104 1.064 1.085 

V10(p.u.) 0.9 1.1 1.100 1.083 1.022 

V12(p.u.) 0.9 1.1 1.087 1.110 1.055 

V14(p.u.) 0.9 1.1 1.078 1.097 1.043 

V15(p.u.) 0.9 1.1 1.079 1.093 1.041 

V16(p.u.) 0.9 1.1 1.087 1.093 1.035 

V17(p.u.) 0.9 1.1 1.093 1.083 1.023 

V18(p.u.) 0.9 1.1 1.078 1.082 1.026 

V19(p.u.) 0.9 1.1 1.081 1.079 1.019 

V20(p.u.) 0.9 1.1 1.087 1.082 1.022 

V21(p.u.) 0.9 1.1 1.090 1.077 1.016 

V22(p.u.) 0.9 1.1 1.090 1.078 1.018 

V23(p.u.) 0.9 1.1 1.078 1.089 1.037 

V24(p.u.) 0.9 1.1 1.077 1.077 1.025 

V25(p.u.) 0.9 1.1 1.089 1.079 1.047 

V26(p.u.) 0.9 1.1 1.072 1.063 1.030 

V27(p.u.) 0.9 1.1 1.104 1.089 1.069 

V28(p.u.) 0.9 1.1 1.069 1.073 1.068 

V29(p.u.) 0.9 1.1 1.099 1.084 1.065 

V30(p.u.) 0.9 1.1 1.083 1.068 1.048 

QG1(MVAR) -20 150 -9.67 -6.65 -9.20 

QG2(MVAR) -20.0 60.0 14.15 16.06 15.49 

QG5(MVAR) -15.0 62.5 23.23 21.18 23.05 
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QG8(MVAR) -15.0 48.7 45.78 33.82 45.26 

QG11(MVAR) -10.0 40.0 -1.83 19.48 8.42 

QG13(MVAR) -15.0 44.7 10.17 -7.47 8.34 

TABLE IX 

COMPARISON OF DIFFERENT ALGORITHM WITH FPSOGSA FOR MINIMIZATION OF DIFFERENT OBJECTIVE FUNCTIONS OF IEEE30 (13 CONTROL VARIABLES) 

Algorithm 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊) 𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) Algorithm 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊) 𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) 

MFO [44] 4.5865 0.12154 n/a FODPSO [39] 4.606 n/a n/a 

C-PSO [37] 4.6801 n/a n/a MICA-IWO [38] 4.846 n/a n/a 

GWO [40] 4.5984 0.12604 n/a FODPSO-EE [50] 4.5971 n/a n/a 

TABLE X 

COMPARISON OF DIFFERENT ALGORITHM WITH FPSOGSA FOR MINIMIZE OBJECTIVE FUNCTIONS OF IEEE30 STANDARD (19 CONTROL VARIABLES) 

Algorithm 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊) 𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) Algorithm 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊) 𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) 

PSO-CF [23] 4.5258 0.1287 0.1261 CLPSO [47] 4.5615 0.4773 n/a 

QOTLBO [41] 4.5594 n/a 0.1242 OGSA [49] 4.4984 n/a 0.1407 

MFO [44] 4.5128 2.0316 n/a PSOGSA [45] 4.5309 2.05504 n/a 

IGA [43] n/a n/a 0.1807 MSFS [46] 4.5143 n/a n/a 

ALO [42] 4.5900 n/a 0.1307 BBO [48] n/a 0.0926 n/a 

GWO [20] 4.5185 0.1325 0.1125 LAPO [28] 4.5389 n/a n/a 

TABLE XI 

SUMMARY OF DIFFERENT SCENARIOS FOR WIND AND SOLAR POWER 

Scenarios Solar Irradiance Gs (W/m2) Wind (m/sec) PS (MW) PW (MW) Percentage % Loading Pd Scenarios Probability 

1 1115.95 1.702 50 0 105.784 0.001 

2 726.973 7.605 36.3486 26.5773 55.714 0.001 

3 476.09 10.414 23.8045 42.7731 73.165 0.007 

4 803.282 2.377 40.1641 0 77.665 0.001 

5 935.904 9.182 46.7952 35.6654 99.491 0.001 

6 607.269 3.158 30.3635 0.9115 60.573 0.004 

7 365.655 5.712 18.2827 15.6462 97.292 0.001 

8 326.471 9.221 16.3236 35.8904 58.378 0.038 

9 0 8.166 16.3236 29.8038 98.092 0.006 

10 751.597 5.47 37.5799 14.2500 77.942 0.002 

11 181.466 4.661 9.0733 9.5827 41.386 0.004 

12 869.125 5.871 43.4563 16.5635 65.615 0.001 

13 441.341 8.806 22.0670 33.4962 90.475 0.003 

14 1103.501 10.001 50 40.3904 66.773 0.001 

15 551.278 8.628 27.5639 32.4692 61.498 0.009 

16 0 6.229 27.5639 18.6288 68.935 0.478 

17 138.834 9.084 6.9417 35.1000 67.603 0.093 

18 379.832 9.678 18.9916 38.5269 71.77 0.044 

19 672.788 5.271 33.6394 13.1019 79.921 0.004 

20 411.201 7.88 20.5601 28.1538 72.351 0.037 

21 201.152 4.813 10.0576 10.4596 78.322 0.048 

22 95.657 11.743 3.8126 50.4404 66.073 0.027 

23 229.271 2.538 11.4635 0 74.465 0.071 

24 518.084 3.245 25.9042 1.4135 63.754 0.012 

25 275.124 14.439 13.7562 65.9942 67.487 0.106 

TABLE XII 
FINAL RESULTS OF EXPECTED PLOSSES (MW), VD (P.U) AND VSI (P.U) AT DIFFERENT SCENARIOS WITH INTEGRATION OF RERS (WIND AND SOLAR POWER) 

Scenarios 
IEEE30 (13 Variables) IEEE30 (19 Variables) 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊)  𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) 𝑃𝑙𝑜𝑠𝑠(𝑀𝑊)  𝑉𝐷(𝑝. 𝑢) 𝑉𝑆𝐼(𝑝. 𝑢) 

1 8.9531 0.2167 0.1425 8.8609 0.2097 0.1355 

2 1.0336 0.1147 0.0785 0.9747 0.0910 0.0694 

3 1.6932 0.1155 0.0998 1.6248 0.0840 0.0918 

4 3.8160 0.1230 0.1054 3.7437 0.0973 0.0977 

5 4.5015 0.1873 0.1339 4.4178 0.1772 0.1268 

6 2.0245 0.1112 0.0843 1.9609 0.0860 0.0756 

7 7.4276 0.1876 0.1311 7.3391 0.1785 0.1240 
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8 1.0769 0.1119 0.0817 1.0150 0.0875 0.0728 

9 6.4599 0.1895 0.1322 6.3720 0.1804 0.1251 

10 3.0238 0.1233 0.1058 2.9522 0.0973 0.0981 

11 0.9282 0.1325 0.0624 0.8716 0.1142 0.0515 

12 1.6398 0.1100 0.0904 1.5763 0.0827 0.0820 

13 4.3424 0.1606 0.1220 4.2617 0.1459 0.1147 

14 1.1733 0.1101 0.0918 1.1113 0.0824 0.0835 

15 1.1476 0.1109 0.0854 1.0853 0.0856 0.0768 

16 2.0745 0.1097 0.0945 2.0074 0.0800 0.0863 

17 1.9168 0.1088 0.0929 1.8488 0.0791 0.0847 

18 1.8238 0.1137 0.0981 1.7553 0.0823 0.0900 

19 3.4914 0.1283 0.1083 3.4179 0.1053 0.1007 

20 2.2095 0.1145 0.0988 2.1401 0.0834 0.0908 

21 4.4994 0.1270 0.1064 4.4233 0.1049 0.0987 

22 1.5153 0.1081 0.0910 1.4488 0.0798 0.0827 

23 4.5328 0.1192 0.1015 4.4586 0.0916 0.0936 

24 2.3973 0.1094 0.0882 2.3315 0.0827 0.0797 

25 1.2414 0.1093 0.0927 1.1763 0.0803 0.0845 

Expected Sum 2.2462(MW) 0.1126(p.u.) 0.0952(p.u.) 2.1782(MW) 0.0841(p.u.) 0.0870(p.u.) 

Times (sec) 38.70 40.92 48.23 42.49 40.21 48.91 
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