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Fractional pure birth processes
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We consider a fractional version of the classical nonlinear birth process of which the Yule–Furry model
is a particular case. Fractionality is obtained by replacing the first order time derivative in the difference-
differential equations which govern the probability law of the process with the Dzherbashyan–Caputo frac-
tional derivative. We derive the probability distribution of the number Nν(t) of individuals at an arbitrary
time t . We also present an interesting representation for the number of individuals at time t , in the form of
the subordination relation Nν(t) = N (T2ν(t)), where N (t) is the classical generalized birth process and
T2ν(t) is a random time whose distribution is related to the fractional diffusion equation. The fractional
linear birth process is examined in detail in Section 3 and various forms of its distribution are given and
discussed.

Keywords: Airy functions; branching processes; Dzherbashyan–Caputo fractional derivative; iterated
Brownian motion; Mittag–Leffler functions; nonlinear birth process; stable processes; Vandermonde
determinants; Yule–Furry process

1. Introduction

We consider a birth process and denote by N (t), t > 0, the number of components in a stochasti-
cally developing population at time t . Possible examples are the number of particles produced in
a radioactive disintegration and the number of particles in a cosmic ray shower where death is not
permitted. The probabilities pk(t) = Pr{N (t) = k} satisfy the difference-differential equations

dpk

dt
= −λkpk + λk−1pk−1, k ≥ 1, (1.1)

where, at time t = 0,

pk(0) =
{

1, k = 1,

0, k ≥ 2.
(1.2)

This means that we initially have one progenitor igniting the branching process. For information
on this process, consult Gikhman and Skorokhod [5], page 322.

Here, we will examine a fractional version of the birth process where the probabilities are
governed by

dνpk

dtν
= −λkpk + λk−1pk−1, k ≥ 1, (1.3)

and where the fractional derivative is understood in the Dzherbashyan–Caputo sense, that is, as

dνpk

dtν
= 1

�(1 − ν)

∫ t

0

(d/ds)pk(s)

(t − s)ν
ds for 0 < ν < 1 (1.4)
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(see Podlubny [12]). The use of a Dzherbashyan–Caputo derivative is preferred because in this
case, initial conditions can be expressed in terms of integer-order derivatives.

Extensions of continuous-time point processes like the homogeneous Poisson process to the
fractional case have been considered in Jumarie [7], Cahoy [3], Laskin [9], Wang and Wen [17],
Wang, Wen and Zhang [18], Wang, Zhang and Fan [19], Uchaikin and Sibatov [15], Repin and
Saichev [13] and Beghin and Orsingher [2]. A recently published paper (Uchaikin, Cahoy and
Sibatov [16]) considers a fractional version of the Yule–Furry process where the mean value
ENν(t) is analyzed.

By recursively solving equation (1.3) (we write pk(t), t > 0, in equations (1.3) and pν
k (t) for

the solutions), we obtain that

pν
k (t) = Pr{Nν(t) = k}

(1.5)

=

⎧⎪⎨
⎪⎩

k−1∏
j=1

λj

k∑
m=1

{
1∏k

l=1,l �=m(λl − λm)
Eν,1(−λmtν)

}
, k > 1,

Eν,1(−λ1t
ν), k = 1.

Result (1.5) generalizes the classical distribution of the birth process (see Gikhman and Sko-
rokhod [5], page 322, or Bartlett [1], page 59), where, instead of the exponentials, we have the
Mittag–Leffler functions, defined as

Eν,1(x) =
∞∑

h=0

xh

�(νh + 1)
, x ∈ R, ν > 0. (1.6)

The fractional pure birth process has some specific features entailed by the fractional derivative
appearing in (1.4), which is a non-local operator. The process governed by fractional equations
(and therefore the related probabilities pν

k (t) = Pr{Nν(t) = k}, k ≥ 1) displays a slowly decreas-
ing memory which seems a characteristic feature of all real systems (for example, the hereditari-
ety and the related aspects observed in phenomena such as metal fatigue, magnetic hysteresis and
others). Fractional equations of various types have proven to be useful in representing different
phenomena in optics (light propagation through random media), transport of charge carriers and
also in economics (a survey of applications can be found in Podlubny [12]). Below, we show
that for the linear birth process Nν(t), t > 0, the mean values ENν(t), VarNν(t) are increasing
functions as the order of fractionality ν decreases. This shows that the fractional birth process
is capable of representing explosively developing epidemics, accelerated cosmic showers and,
in general, very rapidly expanding populations. This is a feature which the fractional pure birth
process shares with its Poisson fractional counterpart whose practical applications have been
studied in recent works (see, for example, Laskin [9] and Cahoy [3]).

We are able to show that the fractional birth process Nν(t) can be represented as

Nν(t) = N (T2ν(t)), t > 0,0 < ν ≤ 1, (1.7)

where T2ν(t), t > 0, is the random time process whose distribution at time t is obtained from
the fundamental solution to the fractional diffusion equation (the fractional derivative is defined
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in (1.4))

∂2νu

∂t2ν
= ∂2u

∂s2
, 0 < ν ≤ 1, (1.8)

subject to the initial conditions u(s,0) = δ(s) for 0 < ν ≤ 1 and also ut (s,0) = 0 for 1/2 < ν ≤ 1,
as

Pr{T2ν(t) ∈ ds} =
{

2u2ν(s, t)ds for s > 0,

0 for s < 0.
(1.9)

This means that the fractional birth process is a classical birth process with a random time T2ν(t)

which is the sole component of (1.7) affected by the fractional derivative. In equation (1.8) and
throughout the whole paper, the fractional derivative must be understood in the Dzherbashyan–
Caputo sense (1.3). The representation (1.7) leads to

Pr{Nν(t) = k} =
∫ ∞

0
Pr{N (s) = k}Pr{T2ν(t) ∈ ds}, (1.10)

where

Pr{N (s) = k} =

⎧⎪⎪⎨
⎪⎪⎩

k−1∏
j=1

λj

k∑
m=1

e−λms∏k
l=1,l �=m(λl − λm)

, k > 1, s > 0,

e−λ1s , k = 1, s > 0.

(1.11)

Formula (1.10) immediately shows that
∑

k Pr{Nν(t) = k} = 1 if and only if∑
k Pr{N (t) = k} = 1. It is well known that the process N (t), t > 0, is such that Pr(N (t) <

∞) = 1 for all t > 0 (non-exploding) if
∑

k λ−1
k = ∞ (see Feller [4], page 452).

A special case of the above fractional birth process is the fractional linear birth process where
λk = λk. In this case, the distribution (1.5) reduces to the simple form

pν
k (t) =

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν), k ≥ 1, t > 0. (1.12)

For ν = 1, we retrieve from (1.12) the classical geometric structure of the linear birth process
with a single progenitor, that is,

p1
k(t) = (1 − e−λt )k−1e−λt , k ≥ 1, t > 0. (1.13)

An interesting qualitative feature of the fractional linear birth process can be extracted
from (1.12); it permits us to highlight the dependence of the branching speed on the order of
fractionality ν. We show in Section 3 that

Pr{Nν(dt) = n0 + 1|Nν(0) = n0} ∼ λn0(dt)ν

�(ν + 1)
(1.14)
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and this proves that a decrease in the order of fractionality ν speeds up the reproduction of
individuals. We are not able to generalize (1.14) to the case

Pr{Nν(t + dt) = n0 + 1|Nν(t) = n0} (1.15)

because the process we are investigating is not time-homogeneous. For the fractional linear birth
process, the representation (1.7) reduces to the form

Nν(t) = N(T2ν(t)), t > 0,0 < ν ≤ 1, (1.16)

and has an interesting special structure when ν = 1/2n. For example, for n = 2, the random time
appearing in (1.16) becomes a folded iterated Brownian motion. This means that

N1/4(t) = N(|B1(|B2(t)|)|). (1.17)

Clearly, |B2(t)| is a reflecting Brownian motion starting from zero and |B1(|B2(t)|)| is a reflect-
ing iterated Brownian motion. This permits us to write the distribution of (1.17) in the following
form:

Pr{N1/4(t) = k|N1/4(0) = 1}
(1.18)

=
∫ ∞

0
(1 − e−λs)k−1e−λs

{
22

∫ ∞

0

e−s2/(4ω)

√
2π2ω

e−ω2/(4t)

√
2π2t

dω

}
ds.

The case ν = 1/2n involves the (n − 1)-times iterated Brownian motion

In−1(t) = B1(|B2(· · · |Bn(t)| · · ·)|) (1.19)

with distribution

Pr{|B1(|B2(· · · |Bn(t)| · · ·))| ∈ ds}
(1.20)

= ds2n

∫ ∞

0

e−s2/(4ω1)

√
4πω1

dω1

∫ ∞

0

e−ω2
1/(4ω2)

√
4πω2

dω2 · · ·
∫ ∞

0

e−ω2
n−1/(4t)

√
4πt

dωn−1.

For details on this point, see Orsingher and Beghin [11].

2. The distribution function for the generalized fractional birth
process

We now present the explicit distribution

Pr{Nν(t) = k|Nν(0) = 1} = pν
k (t), t > 0, k ≥ 1,0 < ν ≤ 1, (2.1)

of the number of individuals in the population expanding according to (1.3). Our technique is
based on successive applications of the Laplace transform. Our first result is the following theo-
rem.
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Theorem 2.1. The solution to the fractional equations

⎧⎪⎨
⎪⎩

dνpk

dtν
= −λkpk + λk−1pk−1, k ≥ 1,0 < ν ≤ 1,

pk(0) =
{

1, k = 1,

0, k ≥ 2,

(2.2)

is given by

pν
k (t) = Pr{Nν(t) = k|Nν(0) = 1}

(2.3)

=

⎧⎪⎨
⎪⎩

k−1∏
j=1

λj

k∑
m=1

{
1∏k

l=1,l �=m(λl − λm)
Eν,1(−λmtν)

}
, k > 1,

Eν,1(−λ1t
ν), k = 1.

Proof. We prove the result (2.3) by a recursive procedure.
For k = 1, the equation

dνp1

dtν
= −λ1p1, p1(0) = 1, (2.4)

is immediately solved by

pν
1(t) = Eν,1(−λ1t

ν). (2.5)

For k = 2, equation (1.3) becomes

{ dνp2

dtν
= −λ2p2 + λ1Eν,1(−λ1t

ν),

p2(0) = 0.

(2.6)

In view of the fact that ∫ ∞

0
e−μtEν,1(−λ1t

ν)dt = μν−1

μν + λ1
, (2.7)

the Laplace transform of (2.6) yields

L2(μ) = λ1μ
ν−1

λ2 − λ1

[
1

μν + λ1
− 1

μν + λ2

]
. (2.8)

In the light of (2.7), from (2.8), we can determine the probability pν
2(t):

pν
2(t) = [Eν,1(−λ1t

ν) − Eν,1(−λ2t
ν)] λ1

λ2 − λ1
. (2.9)

Now, the Laplace transform of

dνp3

dtν
= −λ3p3 + λ2λ1

λ2 − λ1
[Eν,1(−λ1t

ν) − Eν,1(−λ2t
ν)] (2.10)
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yields, after some computation,

L3(μ) = λ2λ1μ
ν−1

[
1

(λ2 − λ1)(λ3 − λ1)

1

μν + λ1

+ 1

(λ1 − λ2)(λ3 − λ2)

1

μν + λ2
(2.11)

+ 1

(λ1 − λ3)(λ2 − λ3)

1

μν + λ3

]
.

From this result, it is clear that

pν
3(t) = λ2λ1

[
1

(λ2 − λ1)(λ3 − λ1)
Eν,1(−λ1t

ν)

+ 1

(λ1 − λ2)(λ3 − λ2)
Eν,1(−λ2t

ν) (2.12)

+ 1

(λ1 − λ3)(λ2 − λ3)
Eν,1(−λ3t

ν)

]
.

The procedure for k > 3 becomes more complicated. However, the special case k = 4 is instruc-
tive and so we treat it first.

The Laplace transform of the equation

dνp4

dtν
= −λ4p4 + λ1λ2λ3

[
1

(λ2 − λ1)(λ3 − λ1)
Eν,1(−λ1t

ν)

+ 1

(λ1 − λ2)(λ3 − λ2)
Eν,1(−λ2t

ν) (2.13)

+ 1

(λ1 − λ3)(λ2 − λ3)
Eν,1(−λ2t

ν)

]
,

subject to the initial condition p4(0) = 0, becomes

L4(μ) = λ1λ2λ3μ
ν−1

[
1

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

{
1

μν + λ1
− 1

μν + λ4

}

+ 1

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)

{
1

μν + λ2
− 1

μν + λ4

}
(2.14)

+ 1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

{
1

μν + λ3
− 1

μν + λ4

}]
.
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The critical point of the proof is to show that

−(
(λ3 − λ2)(λ4 − λ2)(λ4 − λ3) − (λ3 − λ1)(λ4 − λ1)(λ4 − λ3)

+ (λ2 − λ1)(λ4 − λ1)(λ4 − λ2)
)

(2.15)

× 1

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)(λ3 − λ2)(λ4 − λ2)(λ4 − λ3)

= 1

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
.

We note that

0 = det

⎛
⎜⎝

1 1 1 1
1 1 1 1
λ1 λ2 λ3 λ4

λ2
1 λ2

2 λ2
3 λ2

4

⎞
⎟⎠

= det

⎛
⎝ 1 1 1

λ2 λ3 λ4

λ2
2 λ2

3 λ2
4

⎞
⎠

− det

⎛
⎝ 1 1 1

λ1 λ3 λ4

λ2
1 λ2

3 λ2
4

⎞
⎠+ det

⎛
⎝ 1 1 1

λ1 λ2 λ4

λ2
1 λ2

2 λ2
4

⎞
⎠− det

⎛
⎝ 1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎞
⎠ (2.16)

= (λ3 − λ2)(λ4 − λ2)(λ4 − λ3) − (λ3 − λ1)(λ4 − λ1)(λ4 − λ3)

+ (λ2 − λ1)(λ4 − λ1)(λ4 − λ2) − (λ2 − λ1)(λ3 − λ1)(λ3 − λ2),

where, in the last step, the Vandermonde formula is applied.
By inserting (2.16) into (2.14), we now have that

L4(μ) = λ1λ2λ3μ
ν−1

[
1

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

1

μν + λ1

+ 1

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)

1

μν + λ2
(2.17)

+ 1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

1

μν + λ3

+ 1

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

1

μν + λ4

]

so that by inverting (2.17), we obtain the following result:

pν
4(t) =

3∏
j=1

λj

{
4∑

m=1

1∏4
l=1,l �=m(λl − λm)

Eν,1(−λmtν)

}
. (2.18)
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We now tackle the problem of showing that (2.3) solves the Cauchy problem (2.2) for all k > 1,
by induction. This means that we must solve

⎧⎪⎨
⎪⎩

dνpk

dtν
= −λkpk +

k−1∏
j=1

λj

{
k−1∑
m=1

1∏k−1
l=1,l �=m(λl − λm)

Eν,1(−λmtν)

}
,

pk(0) = 0,

k > 4. (2.19)

The Laplace transform of (2.19) reads

Lk(μ) =
k−1∏
j=1

λj

[
k−1∑
m=1

μν−1∏k
l=1,l �=m(λl − λm)

1

μν + λm

(2.20)

− μν−1

μν + λk

k−1∑
m=1

1∏k
l=1,l �=m(λl − λm)

]
.

We must now prove that

−
k−1∑
m=1

1∏k
l=1,l �=m(λl − λm)

= 1∏k
l=1,l �=k(λl − λk)

(2.21)

and this relation is also important for the proof of (1.11).
In order to prove (2.21), we rewrite the left-hand side as

−
k−1∑
m=1

∏k−1
h=1

∏k
l>h(λl − λh)∏k

l=1,l �=m(λl − λm)
· 1∏k−1

h=1
∏k

l>h(λl − λh)
(2.22)

and concentrate our attention on the numerator of (2.22). By analogy with the calculations
in (2.16), we have that

0 = det

⎛
⎜⎜⎜⎝

1 1 · · · 1 · · · 1
1 1 · · · 1 · · · 1
λ1 λ2 · · · λm · · · λk

· · · · · · · · · · · · · · · · · ·
λk−2

1 λk−2
2 · · · λk−2

m · · · λk−2
k

⎞
⎟⎟⎟⎠

=
k∑

m=1

(−1)m−1 det

⎛
⎝ 1 · · · 1 1 · · · 1

λ1 · · · λm−1 λm+1 · · · λk

λk−2
1 · · · λk−2

m−1 λk−2
m+1 · · · λk−2

k

⎞
⎠ (2.23)

=
k∑

m=1

∏k−1
h=1

∏k
l>h(λl − λh)∏k

l=1,l �=m(λl − λm)
=

k−1∑
m=1

∏k−1
h=1

∏k
l>h(λl − λh)∏k

l=1,l �=m(λl − λm)
+

∏k−1
h=1

∏k
l>h(λl − λh)∏k

l=1,l �=k(λl − λk)
.
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In the third step of (2.23), we applied the Vandermonde formula and considered the fact that
the nth column is missing. It must also be taken into account that

∏k
l>1(λl − λ1)

(λm − λ1)
·
∏k

l>2(λl − λ2)

(λm − λ2)
· · ·

∏k
l>m−1(λl − λm−1)

(λm − λm−1)

×
∏k

l>m(λl − λm)∏k
l>m(λl − λm)

·
k∏

l>m+1

(λl − λm+1) · · ·
k∏

l>k−1

(λl − λk−1) (2.24)

=
∏k−1

h=1
∏k

l>h(λl − λh)

(−1)m−1
∏k

l=1,l �=m(λl − λm)
.

From (2.22) and (2.23), we have that

−
k−1∑
m=1

1∏k
l=1,l �=m(λl − λm)

= −
k−1∑
m=1

∏k−1
h=1

∏k
l>h(λl − λh)∏k

l=1,l �=m(λl − λm)
· 1∏k−1

h=1
∏k

l>h(λl − λh)
(2.25)

= 1∏k
l=1,l �=k(λl − λk)

.

In view of (2.25), we can write that

Lk(μ) =
k−1∏
j=1

λj

k∑
m=1

μν−1∏k
l=1,l �=m(λl − λm)

· 1

μν + λm

(2.26)

because the kth term of (2.26) coincides with the last term of (2.20) and therefore, by inversion
of the Laplace transform, we get (2.3). �

Remark 2.1. We now prove that for the generalized fractional birth process, the representation

Nν(t) = N (T2ν(t)), t > 0,0 < ν ≤ 1, (2.27)

holds. This means that the process under investigation can be viewed as a generalized birth
process at a random time T2ν(t), t > 0, whose distribution is the folded solution to the fractional
diffusion equation (1.8).∫ ∞

0
e−μt Gν(u, t)dt

by (2.3)=
∫ ∞

0

{ ∞∑
k=2

uk
k−1∏
j=1

λj

k∑
m=1

Eν,1(−λmtν)∏k
j �=m(λj − λm)

+ uEν,1(−λ1t
ν)

}
e−μt dt

=
∞∑

k=2

uk

k−1∏
j=1

λj

k∑
m=1

μν−1

μν + λm

1∏k
j �=m(λj − λm)

+ uμν−1

μν + λ1
(2.28)
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=
∫ ∞

0

{ ∞∑
k=2

uk
k−1∏
j=1

λj

k∑
m=1

μν−1∏k
j �=m(λj − λm)

e−s(μν+λm) + ue−s(μν+λ1)

}
ds

=
∫ ∞

0
G(u, s)μν−1e−sμν

ds =
∫ ∞

0
G(u, s)

∫ ∞

0
e−μtfT2ν

(s, t)dt ds

=
∫ ∞

0
e−μt

{∫ ∞

0
G(u, s)fT2ν

(s, t)ds

}
dt,

where ∫ ∞

0
e−μtfT2ν

(s, t)dt = μν−1e−sμν

, s > 0, (2.29)

is the Laplace transform of the folded solution to (1.8). From (2.28), we infer that

Gν(u, t) =
∫ ∞

0
G(u, s)fT2ν

(s, t)ds (2.30)

and from this, the representation (2.27) follows.

Remark 2.2. The relation (2.27) permits us to conclude that the functions (2.3) are non-negative
because

Pr{Nν(t) = k} =
∫ ∞

0
Pr{N (s) = k}Pr{T2ν(t) ∈ ds}, (2.31)

and Pr{N (s) = k} > 0 and
∑

k Pr{N (s) = k} = 1, as shown, for example, in Feller [4], page 452.
Furthermore, the fractional birth process is non-exploding if and only if

∑
k(1/λk) = ∞ for all

values of 0 < ν ≤ 1.

3. The fractional linear birth process

In this section, we examine in detail a special case of the previous fractional birth process, namely
the fractional linear birth process which generalizes the classical Yule–Furry model. The birth
rates in this case have the form

λk = λk, λ > 0, k ≥ 1, (3.1)

and indicate that new births occur with a probability proportional to the size of the population.
We denote by Nν(t) the number of individuals in the population expanding according to the
rates (3.1) and we have that the probabilities

pν
k (t) = Pr{Nν(t) = k|Nν(0) = 1}, k ≥ 1, (3.2)
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satisfy the difference-differential equations⎧⎪⎨
⎪⎩

dνpk

dtν
= −λkpk + λ(k − 1)pk−1, 0 < ν ≤ 1, k ≥ 1,

pk(0) =
{

1, k = 1,

0, k ≥ 2.

(3.3)

The distribution (3.2) can be obtained as a particular case of (2.3) or directly, by means of a
completely different approach, as follows.

Theorem 3.1. The distribution of the fractional linear birth process with a simple initial progen-
itor has the form

pν
k (t) = Pr{Nν(t) = k|Nν(0) = 1}

(3.4)

=
k∑

j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν), k ≥ 1,0 < ν ≤ 1,

where Eν,1(x) is the Mittag–Leffler function (1.6).

Proof. We can prove the result (3.4) by solving equation (3.3) recursively. This means that
pν

k−1(t) has the form (3.4), so pν
k (t) maintains the same structure. This is tantamount to solving

the Cauchy problem⎧⎪⎨
⎪⎩

dνpk(t)

dtν
= −λkpk(t) + λ(k − 1)

k−1∑
j=1

(
k − 2
j − 1

)
(−1)j−1Eν,1(−λjtν),

pk(0) = 0, k > 1.

(3.5)

By applying the Laplace transform Lk,ν(μ) = ∫ ∞
0 e−μtpk(t)dt to (3.5), we have that

Lk,ν(μ) = λ(k − 1)

{
k−1∑
j=1

(
k − 2
j − 1

)
(−1)j−1 μk−1

μν + λj

}
1

μν + λk
. (3.6)

Conveniently, the Laplace transform (3.6) can be written as

Lk,ν(μ) = μν−1
{[

1

μν + λ
− 1

μν + λk

]
− (k − 1)

[
1

μν + 2λ
− 1

μν + λk

]

+ (k − 1)(k − 2)

2

[
1

μν + 3λ
− 1

μν + kλ

]
+ · · ·

(3.7)

+ (k − 1)(−1)k−2
[

1

μν + (k − 1)λ
− 1

μν + λk

]}

= μν−1
k−1∑
j=1

(
k − 1
j − 1

)
(−1)j−1 1

μν + jλ
− μν−1

μν + λk

k−1∑
j=1

(
k − 1
j − 1

)
(−1)j−1.
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This permits us to conclude that

Lk,ν(μ) = μν−1
k∑

j=1

(
k − 1
j − 1

)
(−1)j−1 1

μν + jλ
. (3.8)

By inverting (3.8), we immediately arrive at the result (3.4). �

For ν = 1, (3.8) can be written as

∫ ∞

0
e−μtp1

k(t)dt =
∫ ∞

0
e−λte−μt

k−1∑
j=0

(
k − 1

j

)
(−1)j e−λjt dt

(3.9)

=
∫ ∞

0
e−μt {e−λt (1 − e−λt )k−1}dt

and this is an alternative derivation of the Yule–Furry linear birth process distribution.

Remark 3.1. An alternative form of the distribution (3.4) can be derived by explicitly writing the
Mittag–Leffler function and conveniently manipulating the double sums obtained. We therefore
have

pν
k (t) =

k−1∑
m=0

(−λtν)m

�(νm + 1)

k−1∑
j=0

(
k − 1

j

)
(−1)j (j + 1)m

+
∞∑

m=k

(−λtν)m

�(νm + 1)

k−1∑
j=0

(
k − 1

j

)
(−1)j (j + 1)m (3.10)

= (λtν)k−1(k − 1)!
�(ν(k − 1) + 1)

+
∞∑

m=k

(−λtν)m

�(νm + 1)

k−1∑
j=0

(
k − 1

j

)
(−1)j (j + 1)m.

The last step of (3.10) is justified by the following formulas (see 0.154(6) and 0.154(5) on page 4
of Gradshteyn and Ryzhik [6]):

N∑
k=0

(−1)k
(

N

k

)
(α + k)n−1 = 0, valid for N ≥ n ≥ 1, (3.11)

n∑
k=0

(−1)k
(

n

k

)
(α + k)n = (−1)nn!. (3.12)
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What is remarkable about (3.12) is that the result is independent of α. This can be ascertained as
follows:

Sα
n =

n∑
k=0

(−1)k
(

n

k

) n∑
r=0

(
n

r

)
αrkn−r =

n∑
r=0

(
n

r

)
αr

n∑
k=0

(−1)k
(

n

k

)
kn−r+1−1. (3.13)

By formula 0.154(3) on page 4 of Gradshteyn and Ryzhik [6], the inner sum in the third mem-
ber of (3.13) equals zero for 1 ≤ n − r + 1 ≤ n (that is, for 1 ≤ r ≤ n). Therefore (see for-
mula 0.154(4) on page 4 of Gradshteyn and Ryzhik [6]),

Sα
n =

(
n

0

)
α0

n∑
k=0

(−1)k
(

n

k

)
kn = (−1)nn!. (3.14)

We now provide a direct proof that the distribution (3.4) sums to unity. This is based on combi-
natorial arguments and will subsequently be validated by resorting to the representation of Nν(t)

as a composition of the Yule–Furry model with the random time T2ν(t).

Theorem 3.2. The distribution (3.4) is such that

∞∑
k=1

pν
k (t) =

∞∑
k=1

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν) = 1. (3.15)

Proof. We start by evaluating the Laplace transform Lν(μ) of (3.15) as follows:

Lν(μ) =
∞∑

k=1

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1 μν−1

μν + λj

(3.16)

= μν−1

λ

∞∑
k=1

k−1∑
j=0

(
k − 1

j

)
(−1)j

1

μν/λ + 1 + j
.

A crucial role is played here by the well-known formula (see Kirschenhofer [8])

N∑
k=0

(
N

k

)
(−1)k

1

x + k
= N !

x(x + 1) · · · (x + N)
. (3.17)

Therefore,

Lν(μ) = μν−1

λ

∞∑
k=1

(k − 1)!
(μν/λ + 1)(μν/λ + 2) · · · (μν/λ + k)

= μν−1

λ

∞∑
l=0

�(l + 1)�(μν/λ + 1)

�(μν/λ + 1 + (l + 1))
(3.18)
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= μν−1

λ

∞∑
l=0

B

(
l + 1,

μν

λ
+ 1

)
= μν−1

λ

∫ 1

0

∞∑
l=0

xl(1 − x)μ
ν/λ dx

= μν−1

λ

∫ 1

0
(1 − x)μ

ν/λ−1 dx =
∫ ∞

0
e−μt dt,

where B(p, q) = ∫ 1
0 xp−1(1 − x)q−1 dx for p,q > 0. This concludes the proof of (3.15). �

The presence of alternating sums in (3.4) imposes the check that pν
k (t) ≥ 0 for all k. This is

the purpose of the next remark.

Remark 3.2. In order to check the non-negativity of (3.4), we exploit the results of the proof of
Theorem 3.2, suitably adapted. The expression

∞∑
k=1

∫ ∞

0
e−μtpν

k (t)dt = μν−1

λ

∞∑
k=1

B

(
k,

μν

λ
+ 1

)
(3.19)

which emerges from (3.18) permits us to write

∫ ∞

0
e−μtpν

k (t)dt =
∫ 1

0
xk−1 μν−1

λ
(1 − x)μ

ν/λ dx

=
∫ 1

0
xk−1 μν−1

λ
e(μν/λ) ln(1−x) dx

(3.20)

=
∫ 1

0
xk−1 μν−1

λ
e−μν/λ

∑∞
r=1 xr/r dx

=
∫ 1

0
xk−1 μν−1

λ
e−μνx/λ

∞∏
r=2

e−μνxr/(λr) dx.

The terms

e−μνxr/(λr) = Ee−μXr =
∫ ∞

0
e−μtqr

ν (x, t)dt (3.21)

are the Laplace transforms of stable random variables Xr = S(σr ,1,0), where σr =
( xr

λr
cos πν

2 )1/ν (for details on this point, see Samorodnitsky and Taqqu [14], page 15). The term
μν−1

2λ
exp(−μν |x|

λ
) is the Laplace transform of the solution of the fractional diffusion equation

⎧⎨
⎩

∂2νu

∂t2ν
= λ2 ∂2u

∂x2
, 0 < ν ≤ 1,

u(x,0) = δ(x),

(3.22)
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with the additional condition that ut (x,0) = 0 for 1/2 < ν ≤ 1, and can be written as

u2ν(x, t) = 1

2λ�(1 − ν)

∫ t

0

pν(x, s)

(t − s)ν
ds (3.23)

(see formula (3.5) in Orsingher and Beghin [10]), where pν(x,1) = q1
ν (x,1) is the stable law

with σ1 = ( x
λ

cos πν
2 )1/ν . We can represent the product

μν−1

λ
e−xμν/λ

∞∏
r=2

e−μνxr/(λr) =
∫ ∞

0
e−μt

{∫ t

0
u2ν(x, s)qν(x, t − s)ds

}
dt, (3.24)

where ∫ ∞

0
e−μtqν(x, t)dt =

∞∏
r=2

e−μνxr/(λr). (3.25)

Thus qν(x, t) appears as an infinite convolution of stable laws whose parameters depend on r

and x. In the light of (3.24), we therefore have that

∫ ∞

0
e−μtpν

k (t)dt = 2
∫ ∞

0
e−μt

∫ 1

0
xk−1

∫ t

0
u2ν(x, s)qν(x, t − s)ds dx dt. (3.26)

Since pν
k (t) appears as the result of the integral of probability densities, we can conclude that

pν
k (t) ≥ 0 for all k ≥ 1 and t > 0.

We provide an alternative proof of the non-negativity of pν
k (t), t > 0, and of

∑
k pν

k (t) = 1,
based on the representation of the fractional linear birth process Nν(t) as

Nν(t) = N(T2ν(t)), 0 < ν ≤ 1, (3.27)

where T2ν(t) possesses a distribution coinciding with the folded solution of the fractional diffu-
sion equation ⎧⎨

⎩
∂2νu

∂t2ν
= ∂2u

∂x2
, 0 < ν ≤ 1,

u(x,0) = δ(x),

(3.28)

with the further condition that ut (x,0) = 0 for 1/2 < ν ≤ 1.

Theorem 3.3. The probability generating function Gν(u, t) = EuNν(t) of Nν(t), t > 0, has the
Laplace transform

∫ ∞

0
e−μtGν(u, t)dt =

∫ ∞

0

ue−λt

1 − u(1 − e−λt )
μν−1e−μνt dt. (3.29)
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Proof. We evaluate the Laplace transform (3.29) as follows:

∫ ∞

0
e−μtGν(u, t)dt =

∫ ∞

0
e−μt

∞∑
k=1

uk
k∑

j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν)dt

=
∞∑

k=1

uk
k∑

j=1

(
k − 1
j − 1

)
(−1)j−1 μν−1

μν + λj

= μν−1

λ

∞∑
k=1

uk
k−1∑
j=0

(
k − 1

j

)
(−1)j

1

μν/λ + 1 + j
(by (3.17))

= μν−1

λ

∞∑
k=1

uk (k − 1)!
(μν/λ + 1)(μν/λ + 2) · · · (μν/λ + k)

= uμν−1

λ

∞∑
l=0

ul l!
(μν/λ + 1) · · · (μν/λ + 1 + l)

(3.30)

= uμν−1

λ

∞∑
l=0

ulB

(
l + 1,

μν

λ
+ 1

)

= uμν−1

λ

∫ 1

0

∞∑
l=0

ulxl(1 − x)μ
ν/λ dx (for 0 < ux < 1)

= uμν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

(1 − ux)
dx = (1 − x = e−λt )

=
∫ ∞

0

ue−λt

1 − u(1 − e−λt )
e−tμν

μν−1 dt. �

Remark 3.3. In order to extract from (3.29) the representation (3.27), we note that

∫ ∞

0
e−μt

{ ∞∑
k=0

uk Pr{N(T2ν(t)) = k}
}

dt

=
∫ ∞

0
e−μt

{∫ ∞

0

∞∑
k=0

uk Pr{N(s) = k}fT2ν
(s, t)ds

}
dt (3.31)

=
∫ ∞

0
G(u, s)μν−1e−μνs ds,
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which coincides with (3.29). It can be shown that∫ ∞

0
e−μtfT2ν

(s, t)dt = μν−1e−sμν

, s > 0, (3.32)

is the Laplace transform of the folded solution to

∂2νu

∂t2ν
= ∂2u

∂s2
, 0 < ν ≤ 1, (3.33)

with the initial condition u(s,0) = δ(s) for 0 < ν ≤ 1 and also ut (s,0) = 0 for 1/2 < ν ≤ 1.
In the light of (3.27), the non-negativity of pν

k (t) is immediate because

Pr{Nν(t) = k} =
∫ ∞

0
Pr{N(s) = k}Pr{T2ν(t) ∈ ds}. (3.34)

The relation (3.34) immediately leads to the conclusion that
∑∞

k=1 Pr{Nν(t) = k} = 1.

Some explicit expressions for (3.34) can be given when the Pr{T2ν(t) ∈ ds} can be worked out
in detail.

We know that for ν = 1/2n, we have that

Pr{T1/2n−1(t) ∈ ds}
= Pr{|B1(|B2(· · · |Bn(t)| · · ·)|) ∈ ds} (3.35)

= ds2n

∫ ∞

0

e−s2/(4ω1)

√
4πω1

dω1

∫ ∞

0

e−ω2
1/(4ω2)

√
4πω2

dω2 · · ·
∫ ∞

0

e−ω2
n−1/(4t)

√
4πt

dωn−1.

For details concerning (3.35), see Theorem 2.2 of Orsingher and Beghin [11], where the dif-
ferences of the constants depend on the fact that the diffusion coefficient in equation (3.33)
equals 1 instead of 2(1/2n)−2. The distribution (3.35) represents the density of the folded (n− 1)-
times iterated Brownian motion and therefore B1, . . . , Bn are independent Brownian motions
with volatility equal to 2.

For ν = 1/3, the process (3.27) has the form N1/3(t) = N(|A(t)|), where A(t) is a process
whose law is the solution of

∂2/3u

∂t2/3
= ∂2u

∂x2
, u(x,0) = δ(x). (3.36)

In Orsingher and Beghin [11], it is shown that the solution to (3.36) is

u2/3(x, t) = 3

2

1
3
√

3t
Ai

( |x|
3
√

3t

)
, (3.37)

where

Ai (x) = 1

π

∫ ∞

0
cos

(
αx + α3

3

)
dα (3.38)
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is the Airy function. Therefore, in this case, the distribution (3.34) has the form

p
1/3
k (t) =

∫ ∞

0
e−λs(1 − e−λs)k−1 3

3
√

3t
Ai

(
s

3
√

3t

)
ds, k ≥ 1, t > 0. (3.39)

Remark 3.4. From (3.3), it is straightforward to show that the probability generating function
Gν(u, t) = EuNν(t) satisfies the partial differential equation{

∂ν

∂tν
G(u, t) = λu(u − 1)

∂

∂u
G(u, t), 0 < ν ≤ 1,

G(u,0) = u,

(3.40)

and thus ENν(t) = ∂G
∂u

|u=1 is the solution to

{ dν

dtν
ENν = λENν, 0 < ν ≤ 1,

ENν(0) = 1.

(3.41)

The solution of (3.41) is

ENν(t) = Eν,1(λtν), t > 0. (3.42)

Clearly, the result (3.42) can be also derived by evaluating the Laplace transform

∫ ∞

0
e−μt

ENν(t)dt =
∫ ∞

0
e−μt

{ ∞∑
k=1

k

∫ ∞

0
Pr{N(s) = k}Pr{T2ν(t) ∈ ds}

}
dt

=
∫ ∞

0
e−μt

∫ ∞

0
eλs Pr{T2ν(t) ∈ ds}dt

=
∫ ∞

0
eλsμν−1e−sμν

ds = μν−1

μν − λ
=

∫ ∞

0
e−μtEν,1(λtν)dt

and this verifies (3.42). The mean value (3.42) can be obtained in a third manner:

∫ ∞

0
e−μt

ENν(t) =
∞∑

k=1

k

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1

∫ ∞

0
Eν,1(−λjtν)e−λt dt

=
∞∑

k=1

k

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1 μν−1

μν + λj

= μν−1

λ

∞∑
k=1

k

k−1∑
j=0

(
k − 1

j

)
(−1)j

1

μν/λ + 1 + j

(3.43)

= μν−1

λ

∞∑
k=1

k
(k − 1)!

(μν/λ + 1) · · · (μν/λ + k)
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= μν−1

λ

∞∑
k−1

k
�(k)�(μν/λ + 1)

�(μν/λ + k + 1)

= μν−1

λ

∫ 1

0

∞∑
k=1

kxk−1(1 − x)μ
ν/λ = μν−1

μν − λ
=

∫ ∞

0
e−μtEν,1(λtν)dt.

The result of Remark 3.4, ENν(t) = Eν,1(λtν), should be compared with the results of Uchaikin,
Cahoy and Sibatov [16].

An interesting representation of (3.42) following from (3.27) gives that

ENν(t) =
∫ ∞

0
eλs Pr{T2ν(t) ∈ ds} =

∫ ∞

0
EN(s)Pr{T2ν(t) ∈ ds}. (3.44)

The expansion of the population subject to the law of the fractional birth process is increasingly
rapid as the order of fractionality ν decreases. This is shown in Figure 1 and this behavior is
due to the increasing structure of the gamma function for ν > 0 appearing in the Mittag–Leffler

Figure 1. Mean number of individuals at time t for various values of ν.
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function Eν,1. This qualitative feature of the process being investigated here shows that it conve-
niently applies to explosively expanding populations.

Remark 3.5. By twice deriving (3.40) with respect to u, we obtain the fractional equation for
the second-order factorial moment

E
{
Nν(t)

(
Nν(t) − 1

)} = gν(t), (3.45)

that is, {
∂ν

∂tν
gν(t) = 2λgν(t) + 2λENν(t), 0 < ν ≤ 1,

gν(0) = 0.

(3.46)

The Laplace transform of the solution to (3.46) is

Hν(t) =
∫ ∞

0
e−μtgν(t)dt = 2λμν−1

(μν − λ)(μν − 2λ)
(3.47)

= 2μν−1
{

1

μν − 2λ
− 1

μν − λ

}
.

The inverse Laplace transform of (3.47) is

E
{
Nν(t)

(
Nν(t) − 1

)} = 2Eν,1(2λtν) − 2Eν,1(λtν). (3.48)

It is now straightforward to obtain the variance from (3.48),

VarNν(t) = 2Eν,1(2λtν) − Eν,1(λtν) − E2
ν,1(λtν). (3.49)

For ν = 1, we retrieve from (3.49) the well-known expression of the variance of the linear birth
process

VarN1(t) = eλt (eλt − 1). (3.50)

Remark 3.6. If X1, . . . ,Xn are i.i.d. random variables with common distribution F(x) =
Pr(X < x), then we can write the following probability:

Pr
{
max

(
X1, . . . ,XNν(t)

)
< x

}
=

∞∑
k=1

(Pr{X < x})k Pr{Nν(t) = k} (by (3.27))

(3.51)

=
∫ ∞

0
G(F(x), s)Pr{T2ν(t) ∈ ds}

=
∫ ∞

0

F(x)e−λs

1 − F(x)(1 − e−λs)
Pr{T2ν(t) ∈ ds}.
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Analogously, we have that

Pr
{
min

(
X1, . . . ,XNν(t)

)
> x

}
(3.52)

=
∫ ∞

0

(1 − F(x))e−λs

1 − (1 − F(x))(1 − e−λs)
Pr{T2ν(t) ∈ ds}.

Remark 3.7. If the initial number of components of the population is n0, then the p.g.f. becomes

E
(
uNν(t)|Nν(0) = n0

)
(3.53)

=
∞∑

k=0

uk+n0

∫ ∞

0
e−λzn0

(
n0 + k − 1

k

)
(1 − e−λz)k Pr{T2ν(t) ∈ dz}.

From (3.53), we can extract the distribution of the population size at time t as

Pr{Nν(t) = k + n0|Nν(0) = n0}
(3.54)

=
(

n0 + k − 1
k

)∫ ∞

0
e−λzn0(1 − e−λz)k Pr{T2ν(t) ∈ dz}, k ≥ 0.

If we write k + n0 = k′, then we can rewrite (3.54) as

Pr{Nν(t) = k′|Nν(0) = n0}
(3.55)

=
(

k′ − 1
k′ − n0

)∫ ∞

0
e−λzn0(1 − e−λz)k

′−n0 Pr{T2ν(t) ∈ dz}, k′ ≥ n0,

where k′ is the number of individuals in the population at time t . For n0 = 1, formulas (3.54),
(3.55) coincide with (3.4). The random time T2ν(t), t > 0, appearing in (3.54) and (3.55) has a
distribution which is related to the fractional equation

∂2νu

∂t2ν
= ∂2u

∂z2
, 0 < ν ≤ 1. (3.56)

It is possible to slightly change the structure of formulas (3.54) and (3.55) by means of the
transformation λz = y so that the distribution of T2ν(t) becomes related to the equation

∂2νu

∂t2ν
= λ2 ∂2u

∂y2
, 0 < ν ≤ 1, (3.57)

where (3.1) shows the connection between the diffusion coefficient in (3.57) and the birth rate.

Remark 3.8. If we assume that the initial number of individuals in the population is Nν(0) = n0,
then we can generalize the result (3.4) offering a representation of the distribution of Nν(t)
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alternative to (3.55). If we take the Laplace transform of (3.55), then we have that∫ ∞

0
e−μt Pr{Nν(t) = k + n0|Nν(0) = n0}dt

=
∫ ∞

0

(
n0 + k − 1

k

)∫ ∞

0
e−λzn0(1 − e−λz)k Pr{T2ν(t) ∈ dz}dt (by(3.32))

=
∫ ∞

0

(
n0 + k − 1

k

)
e−λzn0(1 − e−λz)kμν−1e−μνz dz

(3.58)

=
(

n0 + k − 1
k

)
μν−1

∫ ∞

0
e−z(λn0+μν)(1 − e−λz)k dz

=
(

n0 + k − 1
k

)
μν−1

k∑
r=0

(
k

r

)
(−1)r

∫ ∞

0
e−z(λn0+λr+μν) dz

=
(

n0 + k − 1
k

)
μν−1

k∑
r=0

(
k

r

)
(−1)r

1

λ(n0 + r) + μν
.

By taking the inverse Laplace transform of (3.58), we have that

Pr{Nν(t) = k + n0|Nν(0) = n0}
(3.59)

=
(

n0 + k − 1
k

) k∑
r=0

(
k

r

)
(−1)rEν,1

(−(n0 + r)λtν
)
.

From (3.59), we can infer the interesting information

Pr{Nν(dt) = n0 + 1|Nν(0) = n0}

= n0

1∑
r=0

(
1
r

)
(−1)rEν,1

(−(n0 + r)λ(dt)ν
)

(3.60)

= n0
[
Eν,1

(−n0λ(dt)ν
)− Eν,1

(−λ(n0 + 1)(dt)ν
)] ∼ n0

λ(dt)ν

�(ν + 1)

by writing only the lower order terms. This shows that the probability of a new offspring at the
beginning of the process is proportional to (dt)ν and to the initial number of progenitors. From
our point of view, this is the most important qualitative feature of our results since it makes
explicit the dependence on the order ν of the fractional birth process.

Theorem 3.4. The Laplace transform of the probability generating function Gν(t, u) of the frac-
tional linear birth process has the form

Hν(μ,u) =
∫ ∞

0
e−μtGν(t, u)dt = uμν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

1 − xu
dx, 0 < u < 1, μ > 0. (3.61)
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Proof. We saw above that the function Gν solves the Cauchy problem

{
∂νGν

∂tν
= λu(u − 1)

∂Gν

∂u
, 0 < ν ≤ 1,

Gν(u,0) = u.

(3.62)

By taking the Laplace transform of (3.62), we have that

μνHν − μν−1u = λu(u − 1)
∂Hν

∂u
. (3.63)

By inserting (3.61) into (3.63) and performing some integrations by parts, we have that

uμ2ν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

1 − xu
dx − uμν−1

= λu(u − 1)

[
μν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

1 − xu
dx + uμν−1

λ

∫ 1

0

(1 − x)μ
ν/λx

(1 − xu)2
dx

]

= λu(u − 1)

[
μν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

1 − xu
dx + μν−1

λ

x(1 − x)μ
ν/λ

1 − xu

∣∣∣∣
x=1

x=0
(3.64)

− μν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

(1 − xu)
dx + μ2ν−1

λ2

∫ 1

0

x(1 − x)μ
ν/λ−1

(1 − xu)
dx

]

= u(u − 1)μ2ν−1

λ

∫ 1

0

x(1 − x)μ
ν/λ−1

(1 − xu)
dx

= −uμν−1 + uμ2ν−1

λ

∫ 1

0

(1 − x)μ
ν/λ

(1 − xu)
dx,

and this concludes the proof of Theorem 3.4. �

Remark 3.9. We note that Hν(μ,u)|u=1 = 1/μ because Gν(t,1) = 1. Furthermore,

∂Hν(μ,u)

∂u

∣∣∣∣
u=1

= μν−1

μν − λ
=

∫ ∞

0
e−μtEν,1(λtν)dt, (3.65)

which accords well with (3.42).
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