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Abstract—Fractional curl operator is utilized to construct the
solutions corresponding to fractional dual rectangular waveguides.
Fractional dual rectangular waveguides may be considered as
intermediate of two given waveguides, where both waveguides are
related through principle of duality. Characteristic impedance of
fractional waveguide is determined. Behavior of field lines in transverse
plane is also investigated.

1. INTRODUCTION

Fractional Calculus is a branch of Mathematics which deals with the
operators of general orders, including integer order, real non integer
order and even complex order [1]. Concept of fractional curl operator
was introduced by Engheta [2] and work was extended to operator
having higher and complex order [3]. Fractional curl operator may
be utilized to find the intermediate solutions between a given solution
and electromagnetic dual to the given solution. This operator had been
applied to many problems to study the intermediate or fractional dual
solutions [4–8]. Waveguide problems had been analyzed in different
respects [9–11]. In this paper, we have extended work on fractional
dual parallel plates waveguide [5] to rectangular waveguide. Field
expressions corresponding to fractional dual rectangular waveguide are
† Also with Electronics Department, Quaid-i-Azam University, Islamabad, Pakistan
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determined. Impedance of fractional dual rectangular waveguide has
been derived.

2. FRACTIONAL RECTANGULAR WAVEGUIDE

Consider a rectangular waveguide, filled with a dielectric medium with
constitutive parameters ε and µ. Walls of the guide are PEC and are
located at x = 0, x = a and y = 0, y = b. Let us suppose that a TM
wave (Hz = 0) is propagating in z-direction. The axial component of
electric field is given by [9]

ẑEz(x, y, z) = ẑAmn sin (kxx) sin (kyy) exp(−jβz) (1a)

where kx = mπ
a , ky = nπ

b , β2 = k2 − k2
c and k2

c = k2
x + k2

y. m and n are
arbitrary integers. The transverse components of the fields propagating
inside the waveguide are [9]

x̂Ex(x, y, z) = −x̂
jβkx

k2
c

Amn cos (kxx) sin (kyy) exp(−jβz) (1b)

ŷEy(x, y, z) = −ŷ
jβky

k2
c

Amn sin (kxx) cos (kyy) exp(−jβz) (1c)

x̂ηHx(x, y, z) = −x̂
k

β
Ey(x, y, z) (1d)

ŷηHy(x, y, z) = ŷ
k

β
Ex(x, y, z) (1e)

where k =
√
k2

c + β2 = ω
√
µε.

We may express the field in the waveguide as superposition of 4
TEM plane waves. That is

E = E1 + E2 + E3 + E4 (2a)
ηH = ηH1 + ηH2 + ηH3 + ηH4 (2b)

where (Ei, ηHi) and i = 1, 2, 3, 4 are the electric and magnetic fields
associated with ith plane wave and are given below

E1 =
Amn

4

(
−x̂

βkx

k2
c

− ŷ
βky

k2
c

− ẑ

)
ej(kxx+kyy−βz) (3a)

E2 =
Amn

4

(
x̂
βkx

k2
c

− ŷ
βky

k2
c

+ ẑ

)
ej(kxx−kyy−βz) (3b)

E3 =
Amn

4

(
−x̂

βkx

k2
c

+ ŷ
βky

k2
c

+ ẑ

)
ej(−kxx+kyy−βz) (3c)

E4 =
Amn

4

(
x̂
βkx

k2
c

+ ŷ
βky

k2
c

− ẑ

)
ej(−kxx−kyy−βz) (3d)
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ηH1 =
kAmn

4k2
c

(x̂ky − ŷkx) ej(kxx+kyy−βz) (3e)

ηH2 =
kAmn

4k2
c

(x̂ky + ŷkx) ej(kxx−kyy−βz) (3f)

ηH3 =
kAmn

4k2
c

(−x̂ky − ŷkx) ej(−kxx+kyy−βz) (3g)

ηH4 =
kAmn

4k2
c

(−x̂ky + ŷkx) ej(−kxx−kyy−βz) (3h)

Fields Ei and ηHi given by Equations (3) are related through the
Maxwell equations as

∇× Ei = −jωµHi

ki × Ei = ηHi
(4a)

Similarly

ki × ηHi = −Ei (4b)

where

k1 =
1
jk

(−jkxx̂− jkyŷ + jβẑ) (5a)

k2 =
1
jk

(−jkxx̂ + jkyŷ + jβẑ) (5b)

k3 =
1
jk

(jkxx̂− jkyŷ + jβẑ) (5c)

k4 =
1
jk

(jkxx̂ + jkyŷ + jβẑ) (5d)

It may be deduced from above expressions that for set of fields
(Ei, ηHi), the operator

(
1
jk∇×

)
is equivalent to cross product operator

(ki×). It is also obvious that if (Ei, ηHi) is one set of solutions to
Maxwell’s equation then other set of solutions to Maxwell’s equations
is (ηHi,−Ei). Our interest is to determine the fields which may be
regarded as intermediate step of the field (E, ηH) and (ηH,−E), that
is, new set of solutions (Efd, ηHfd). For this purpose solutions sets
(Eifd, ηHifd) with i = 1, 2, 3, 4 are required. (Eifd, ηHifd) may be
obtained by using the following relations [2]

Eifd =
1

(jk)α
[(∇×)αEi]

= (ki×)α Ei (6a)
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ηHifd =
1

(jk)α
[(∇×)αηHi]

= (ki×)α ηHi, i = 1, 2, 3, 4 (6b)

Solutions (Efd, ηHfd) may be obtained by linear combination of
(Eifd, ηHifd), that is

Efd = E1fd + E2fd + E3fd + E4fd (7a)
ηHfd = ηH1fd + ηH2fd + ηH3fd + ηH4fd (7b)

In order to determine the fractional dual solutions (Eifd, ηHifd), the
eigenvalues and eigenvectors of the cross product operators ki× are
required. Eigenvectors and eigenvalues of the operator (k1×) are

A11 =
1√
2kkc

[
(βkx + jkky)x̂ + (βkz − jkkx)ŷ + k2

c ẑ
]
, a1 = j (8a)

A12 =
1√
2kkc

[
(βkx − jkky)x̂ + (βkz + jkkx)ŷ + k2

c ẑ
]
, a2 = −j (8b)

A13 =
1
k
(−kxx̂− kyŷ + kz ẑ), a3 = 0 (8c)

Eigenvectors and eigenvalues of the operator (k2×) are

A21=
1√
2kkc

[
(βkx − jkky)x̂ + (−βkz − jkkx)ŷ + k2

c ẑ
]
, a1 = j (8d)

A22=
1√
2kkc

[
(βkx + jkky)x̂ + (−βkz + jkkx)ŷ + k2

c ẑ
]
, a2 = −j (8e)

A23=
1
k
(−kxx̂ + kyŷ + kz ẑ), a3 = 0 (8f)

Eigenvectors and eigenvalues of the operator (k3×) are

A31=
1√
2kkc

[
(−βkx + jkky)x̂ + (βkz + jkkx)ŷ + k2

c ẑ
]
, a1 = j (8g)

A32=
1√
2kkc

[
(−βkx − jkky)x̂ + (βkz − jkkx)ŷ + k2

c ẑ
]
, a2 = −j (8h)

A33=
1
k
(kxx̂− kyŷ + kz ẑ), a3 = 0 (8i)

Eigenvectors and eigenvalues of the operator (k4×) are

A41=
1√
2kkc

[
(−βkx − jkky)x̂+(−βkz + jkkx)ŷ + k2

c ẑ
]
, a1 =j (8j)

A42=
1√
2kkc

[
(−βkx + jkky)x̂+(−βkz − jkkx)ŷ + k2

c ẑ
]
, a2 =−j (8k)
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A43=
1
k
(kxx̂ + kyŷ + kz ẑ), a3 =0 (8l)

Fields (Ei, ηHi) may be expressed in terms of the eigenvectors of
the operator (dropping the exponential terms), that is

Ei = [PiAi1 + QiAi2 + RiAi3] (9a)
ηHi = [SiAi1 + TiAi2 + UiAi3] (9b)

The coefficients are given below

P1 = Q1 = P4 = Q4 = −jS1 = −jS4 = −jT2 = −jT3 = −Amn

4
√

2
k

kc

P2 = Q2 = P3 = Q3 = −jT1 = −jT4 = −jS2 = −jS3 =
Amn

4
√

2
k

kc

Using (6), (8) and (9) the fractional fields are given as

E1fd = −Amn

8k2
c

[cos
(
α
π

2

) {
2βkxx̂ + 2βkyŷ + 2k2

c ẑ
}

−j sin
(
α
π

2

)
{2jkkyx̂− 2jkkxŷ}]ejkxx+jkyy−jβz (10a)

E2fd =
Amn

8k2
c

[cos
(
α
π

2

) {
2βkxx̂− 2βkyŷ + 2k2

c ẑ
}

+j sin
(
α
π

2

)
{−2jkkyx̂− 2jkkxŷ}]ejkxx−jkyy−jβz (10b)

E3fd =
Amn

8k2
c

[cos
(
α
π

2

) {
−2βkxx̂ + 2βkyŷ + 2k2

c ẑ
}

+j sin
(
α
π

2

)
{2jkkyx̂ + 2jkkxŷ}]e−jkxx+jkyy−jβz (10c)

E4fd = −Amn

8k2
c

[cos
(
α
π

2

) {
−2βkxx̂− 2βkyŷ + 2k2

c ẑ
}

−j sin
(
α
π

2

)
{−2jkkyx̂ + 2jkkxŷ}]e−jkxx−jkyy−jβz (10d)

ηH1fd = −jAmn

8k2
c

[cos
(
α
π

2

)
{2jkkyx̂− 2jkkxŷ}

−j sin
(
α
π

2

) {
2βkxx̂ + 2βkyŷ + 2k2

c ẑ
}
]ejkxx+jkyy−jβz (10e)

ηH2fd =
jAmn

8k2
c

[cos
(
α
π

2

)
{−2jkkyx̂− 2jkkxŷ}

+j sin
(
α
π

2

) {
2βkxx̂− 2βkyŷ + 2k2

c ẑ
}
]ejkxx−jkyy−jβz (10f)
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ηH3fd =
jAmn

8k2
c

[cos
(
α
π

2

)
{2jkkyx̂ + 2jkkxŷ}

+j sin
(
α
π

2

)
{−2βkxx̂+2βkyŷ+2k2

c ẑ}]e−jkxx+jkyy−jβz (10g)

ηH4fd = −jAmn

8k2
c

[cos
(
α
π

2

)
{−2jkkyx̂+2jkkxŷ}

−j sin
(
α
π

2

){
−2βkxx̂− 2βkyŷ+2k2

c ẑ
}
]e−jkxx−jkyy−jβz (10h)

Putting (10) in (7), the fractional field (Efd, ηHfd) are given by

Efd = Exfdx̂ + Eyfdŷ + Ezfdẑ (11a)
ηHfd = ηHxfdx̂ + ηHyfdŷ + ηHzfdẑ (11b)

where

Exfd = −jAmn

k2
c

{
βkx cos

(
α
π

2

)
+ kky sin

(
α
π

2

)}
cos

(
kxx− α

π

2

)

× sin
(
kyy − α

π

2

)
e−jβz (12a)

Eyfd = −jAmn

k2
c

{
βky cos

(
α
π

2

)
− kkx sin

(
α
π

2

)}
sin

(
kxx− α

π

2

)

× cos
(
kyy − α

π

2

)
e−jβz (12b)

Ezfd = Amn cos
(
α
π

2

)
sin

(
kxx− α

π

2

)
sin

(
kyy − α

π

2

)
e−jβz (12c)

ηHxfd =
jAmn

k2
c

{
kky cos

(
α
π

2

)
− βkx sin(α

π

2
)
}

sin
(
kxx− α

π

2

)

× cos
(
kyy − α

π

2

)
e−jβz (12d)

ηHyfd = −jAmn

k2
c

{
kkx cos

(
α
π

2

)
+ βky sin

(
α
π

2

)}
cos

(
kxx− α

π

2

)

× sin
(
kyy − α

π

2

)
e−jβz (12e)

ηHzfd = −Amn sin
(
α
π

2

)
cos

(
kxx−α

π

2

)
cos

(
kyy−α

π

2

)
e−jβz (12f)

Equation (12) gives the fractional dual solution.
For α = 0,

Exfd = −jAmn

k2
c

βkx cos(kxx) sin(kyy)e−jβz = Ex (13a)

Eyfd = −jAmn

k2
c

βky sin(kxx) cos(kyy)e−jβz = Ey (13b)
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Ezfd = Amn sin(kxx) sin(kyy)e−jβz = Ez (13c)

ηHxfd =
jAmn

k2
c

kky sin(kxx) cos(kyy)e−jβz = ηHx (13d)

ηHyfd = −jAmn

k2
c

kkx cos(kxx) sin(kyy)e−jβz = ηHy (13e)

ηHzfd = 0 = ηHz (13f)

yields original TM solution in PEC waveguide.
For α = 1, we get

Exfd =
jAmn

k2
c

kky sin(kxx) cos(kyy)e−jβz = ηHx (14a)

Eyfd = −jAmn

k2
c

kkx cos(kxx) sin(kyy)e−jβz = ηHy (14b)

Ezfd = 0 = ηHz (14c)

ηHxfd =
jAmn

k2
c

βkx cos(kxx) sin(kyy)e−jβz = −Ex (14d)

ηHyfd =
jAmn

k2
c

βky sin(kxx) cos(kyy)e−jβz = −Ey (14e)

ηHzfd = −Amn sin(kxx) sin(kyy)e−jβz = −Ez (14f)

The field for α = 1 is dual to the field for α = 0. For 0 < α < 1,
the field given by (12) may be regarded as intermediate between (13)
and (14), and may be called fractional dual field or fractional field.
Field expressions (14) are TE fields in a rectangular waveguide with
perfect magnetic conductor (PMC) walls. From (12) it may be noted,
for 0 < α < 1, behavior is changing in a same way as discussed in [7].
PEC guide is changing to PMC and TM mode is changing to TE mode.

For α = 2,

Exfd =
jAmn

k2
c

βkx cos(kxx) sin(kyy)e−jβz = −Ex (15a)

Eyfd =
jAmn

k2
c

βky sin(kxx) cos(kyy)e−jβz = −Ey (15b)

Ezfd = −Amn sin(kxx) sin(kyy)e−jβz = −Ez (15c)

ηHxfd = −jAmn

k2
c

kky sin(kxx) cos(kyy)e−jβz = −ηHx (15d)

ηHyfd =
jAmn

k2
c

kkx cos(kxx) sin(kyy)e−jβz = −ηHy (15e)

ηHzfd = 0 = −ηHz (15f)
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and we have TM mode in PEC waveguide and these solution are dual
to solution for α = 1.

For α = 3,

Exfd = −jAmn

k2
c

kky sin(kxx) cos(kyy)e−jβz = −ηHx (16a)

Eyfd =
jAmn

k2
c

kkx cos(kxx) sin(kyy)e−jβz = −ηHy (16b)

Ezfd = 0 = −ηHz (16c)

ηHxfd = −jAmn

k2
c

βkx cos(kxx) sin(kyy)e−jβz = Ex (16d)

ηHyfd = −jAmn

k2
c

βky sin(kxx) cos(kyy)e−jβz = Ey (16e)

ηHzfd = Amn sin(kxx) sin(kyy)e−jβz = Ez (16f)

we have TE solution in PMC waveguide and these solution are dual to
solution for α = 2.

For α = 4,

Exfd = −jAmn

k2
c

βkx cos(kxx) sin(kyy)e−jβz = Ex (17a)

Eyfd = −jAmn

k2
c

βky sin(kxx) cos(kyy)e−jβz = Ey (17b)

Ezfd = Amn sin(kxx) sin(kyy)e−jβz = Ez (17c)

ηHxfd =
jAmn

k2
c

kky sin(kxx) cos(kyy)e−jβz = ηHx (17d)

ηHyfd = −jAmn

k2
c

kkx cos(kxx) sin(kyy)e−jβz = ηHy (17e)

ηHzfd = 0 = ηHz (17f)

These are original solution so, fractional dual field are periodic with
period α = 4.

The characteristic impedance of the fractional guide is

Z =




Exfd

Hxfd

Exfd

Hyfd

−Eyfd

Hxfd

Eyfd

Hyfd


 (18)
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Z = η
−

βkx cos(α π
2
)+kky sin(α π

2
)

kky cos(α π
2
)−βkx sin(α π

2
)

cot(kxx−α π
2
)

cot(kyy−α π
2
)

βkx cos(α π
2
)+kky sin(α π

2
)

kkx cos(α π
2
)+βky sin(α π

2
)

βky cos(α π
2
)−kkx sin(α π

2
)

kky cos(α π
2
)−βkx sin(α π

2
)

βky cos(α π
2
)−kkx sin(α π

2
)

kkx cos(α π
2
)+βky sin(α π

2
)

tan(kxx−α π
2
)

tan(kyy−α π
2
)


(19)

Equation (19) gives the characteristic impedance of fractional
waveguide.

For α = 0

Z = η


−βkx

kky

cot(kxx)
cot(kyy)

β
k

β
k

βky

kkx

tan(kxx)
tan(kyy)


 (20)

we have characteristic impedance of TM mode.
For α = 1

Z = η




kky

βkx

tan(kxx)
tan(kyy)

k
β

k
β − kkx

βky

cot(kxx)
cot(kyy)


 (21)

we have characteristic impedance of TE mode. For α = 2, we get the
same result as for α = 0. It can be seen from (19), that characteristic
impedance is periodic with period α = 2.

3. FIELD LINES IN TRANSVERSE PLANE

To study the behavior of field lines in the waveguide, we select xy-plane
which is transverse to the guide. We have plotted the field lines for
square guide(a = b = 1) for m = n = 1. For this mode kc =

√
2π so we

have taken k = 2π. To plot field lines we need to write instantaneous
field expression, by multiplying (12) with exp(jωt) and taking the real
part, that is

Exfd =
Amn

k2
c

{βkx cos(α
π

2
) + kky sin(α

π

2
)} cos(kxx− α

π

2
)

× sin(kyy − α
π

2
) sin(βz − ωt) (22a)

Eyfd =
Amn

k2
c

{βky cos(α
π

2
) − kkx sin(α

π

2
)} sin(kxx− α

π

2
)

× cos(kyy − α
π

2
) sin(βz − ωt) (22b)

Ezfd = Amn cos(α
π

2
) sin(kxx−α

π

2
) sin(kyy−α

π

2
) cos(βz−ωt) (22c)
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ηHxfd = −Amn

k2
c

{kky cos(α
π

2
) − βkx sin(α

π

2
)} sin(kxx− α

π

2
)

× cos(kyy − α
π

2
) sin(βz − ωt) (22d)

ηHyfd =
Amn

k2
c

{kkx cos(α
π

2
) + βky sin(α

π

2
)} cos(kxx− α

π

2
)

× sin(kyy − α
π

2
) sin(βz − ωt) (22e)

ηHzfd = −Amnsin(α
π

2
)cos(kxx−α

π

2
)cos(kyy−α

π

2
)cos(βz−ωt)(22f)

Slope of Electric field lines in xy-plane is given by

dy

dx
=

Eyfd

Exfd
(23)

putting values in (23) from (22) and integrating we get following
equation which describes electric field lines in the guide for different
values of constant

ln cos(kyy − απ
2 )

ky{βky cos(απ
2 )−kkx sin(απ

2 )} − ln cos(kxx− απ
2 )

kx{βkx cos(απ
2 )+kky sin(απ

2 )} =C1

(24)

where C1 is a constant. Plots of 30 such lines are given in Figure 1 for
different values of α. Similarly for magnetic field

dy

dx
=

Hyfd

Hxfd
(25)

and its solution is

ln sin(kyy − απ
2 )

ky{kkx cos(απ
2 )+βky sin(απ

2 )} − ln sin(kxx− απ
2 )

kx{kky cos(απ
2 )−βkx sin(απ

2 )} =C2

(26)

and C2 is another constant. Plots of 30 field lines is given in Figure 2
for different values of α. For α = 0, plot (1a) gives electric field
and plot (2a) gives magnetic field for TM11 mode in PEC waveguide.
These plots are in agreement with [10] and [11]. It can be seen from
these plots that electric field lines are perpendicular to guide walls
and magnetic field lines are parallel. Plot (1e) gives electric field lines
and plot (2e) magnetic field lines for α = 1. It is evident from these
plots that electric field lines are parallel and magnetic field lines are
perpendicular to guide walls, so, the guide can be considered as made
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Figure 1. Plots of electric field lines in transverse plane.

up of perfect magnetic conductor (PMC). Plots (1b–1d) shows the
electric field lines and plots (2b–2d) magnetic field lines for α = 0.2,
0.5 and 0.8 respectively. The electric and magnetic fields are neither
perpendicular nor parallel to walls so the walls can be considered as
intermediate of PEC and PMC.
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Figure 2. Plots of magnetic field lines in transverse plane.

4. CONCLUSION

In this paper we have studied the fractional dual field in rectangular
waveguide. It is noted that for α = 0, we have original solution i.e.,
TM solution in PEC waveguide. For α = 1, we have solution dual to
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original i.e., TE solution in PMC waveguide. For 0 < α < 1, we have
solution which may be regarded as intermediate of these two solutions.
It is noted that these solution are periodic with period α = 4. Also we
calculated the characteristic impedance of fractional or intermediate
waveguide. It is seen that for α = 0, we have impedance for TM mode
and for α = 1, we have impedance for TE mode. For 0 < α < 1, we
have fractional characteristic impedance (characteristic impedance of
fractional waveguide). At the end we have shown and discussed the
behavior of electric and magnetic field lines inside fractional waveguide.
It is noted that for α = 0, electric field lines are perpendicular and
magnetic field lines parallel, so guide walls may be considered as made
of walls PEC. For α = 1, magnetic field lines are perpendicular and
electric field lines are parallel, so, guide walls may be considered as of
PMC walls. For 0 < α < 1, both electric and magnetic field lines are
neither completely perpendicular nor parallel to waveguide walls, so,
guide walls can be considered intermediate between PEC and PMC.
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