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Abstract

From the point of view of the general theory of the hyper-Bessel op-
erators, we consider a particular operator that is suitable to generalize
the standard process of relaxation by taking into account both memory
effects of power law type and time variability of the characteristic coeffi-
cient. According to our analysis, the solutions are still expressed in terms of
functions of the Mittag-Leffler type as in case of fractional relaxation with
constant coefficient but exhibit a further stretching in the time argument
due to the presence of Erdélyi-Kober fractional integrals in our operator.
We present solutions, both singular and regular in the time origin, that are
locally integrable and completely monotone functions in order to be con-
sistent with the physical phenomena described by non-negative relaxation
spectral distributions.
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1. Introduction

The applications of fractional calculus in the mathematical theory of
the relaxation processes have a long history and have gained great interest
in different fields of the applied science. These models, usually applied for
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anomalous (that is non-exponential) relaxation in linear viscoelastic and
dielectric media, consider memory effects by replacing in the governing
evolution equation the ordinary derivatives with fractional derivatives but
keeping constant the coefficients, see e.g. [3, 16] and references therein. In
this paper we discuss some mathematical results about fractional relaxation
models with power law time-varying coefficients. We apply the McBride-
Lamb theory of the fractional powers of Bessel-type operators. By doing
so, we can give an explicit representation of the fractional order operator
in terms of Erdélyi-Kober and Hadamard integrals. For this we refer the
reader to the books [11, 17] and references recalled in the following.

In order to be consistent with most relaxation processes described by
non-negative relaxation spectral distributions, we concentrate our attention
to the cases for which the solutions are locally integrable and completely
monotone functions. Our solutions turn out to be both singular and reg-
ular in the time origin. The regularization is carried out with a Caputo-
like counterpart of our operators. The solutions are still represented via
functions of the Mittag-Leffler type with one or two parameters as in the
standard fractional relaxation with constant coefficient but with a further
time stretching due to the Erdélyi-Kober integrals involved in our operator.

The plan of the paper is the following. In Section 2 we first provide
the definition of the time operator (tθd/dt)α that for 0 < α ≤ 1 and θ ∈ R

is assumed by us to generalize the usual fractional derivative (both in the
Riemann-Liouville and Caputo sense) in the more common fractional relax-
ation equation with constant coefficient often investigated in the literature,
see for example the survey by Gorenflo and Mainardi [8]. Our definition
is justified in the framework of the theory of fractional powers of hyper-
Bessel operators recalled in Appendix (Section 5) along with the relevant
references, for reader’s convenience. Indeed our main purpose is to find
the solutions of the relaxation-type equation obtained by our operator that
turns out to be related to the Erdélyi-Kober and Hadamard integrals. Be-
cause of the effect of these integrals on the power laws we find the power
series representations of the solutions (both singular and regular in the time
origin) that we easily recognize as functions of the Mittag-Leffler type.

In Section 3 we point out the relevance of the completely monotonicity
to ensure that solutions will be suitable to represent physical relaxation
processes with a non-negative spectral distribution. In view of this require-
ment we devote our attention to investigate the zones in the parameter
plane {α, θ} where the solutions are both locally integrable and completely
monotone. We then exhibit some illustrative plots of the solutions versus
time in a few case-studies in order to remark the role of the parameter θ
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with respect to the case of fractional relaxation with constant coefficient
(θ = 0).

Section 4 is reserved to the concluding remarks and directions to future
work.

2. Fractional operators and differential equations of relaxation
type with time-varying coefficient

In this section we consider fractional differential equation with time-
varying coefficient of the form(

tθ
d

dt

)α

u(t) = −λu(t), 0 < α ≤ 1, θ ∈ R, t ≥ 0. (2.1)

By means of the theory of fractional powers of the general hyper-Bessel
operators (see Appendix), we have an explicit representation of the operator(
tθ d

dt

)α
in terms of the Erdélyi–Kober integrals, that is(
tθ

d

dt

)α

f(t) =

{
(1 − θ)αt−(1−θ)αI0,−α

1−θ f(t), if θ < 1,

(θ − 1)αI−1,−α
1−θ t(1−θ)αf(t), if θ > 1.

(2.2)

The case θ = 1 will be considered separately.

The first result that we are going to consider is the following.

Theorem 2.1. The function

u(t) = t(α−1)(1−θ)Eα,α

(
−λtα(1−θ)

(1 − θ)α

)
(2.3)

solves the fractional relaxation equation (2.1).

P r o o f. By using the fact that (see Lemma 5.3 in Appendix)

Iη,α
m tβ =

Γ
(
η + β

m + 1
)

Γ
(
α + η + 1 + β

m

)tβ, (2.4)

we have that(
tθ

d

dt

)α

tβ = (1 − θ)αt−(1−θ)αI0,−α
1−θ tβ = (1 − θ)α

Γ( β
1−θ + 1)

Γ( β
1−θ + 1 − α)

tβ−(1−θ)α.

(2.5)

Then, we have(
tθ

d

dt

)α

u(t) = (1 − θ)α
∞∑

k=0

(−λ)k

(1 − θ)αk

t(1−θ)kα−(1−θ)

Γ(kα)
(2.6)
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= −λ
∞∑

k=0

(−λ)k

(1 − θ)αk

t(1−θ)kα+(α−1)(1−θ)

Γ(kα + α)
= −λu(t),

as claimed. �

In analogy with the classical theory of fractional calculus operators, we
can also define a regularized Caputo-like counterpart of the operator (2.2),
that is given by

C

(
tθ

d

dt

)α

f(t) =
(

tθ
d

dt

)α

f(t) − f(0+)
(1 − θ)−α

t−(1−θ)α

Γ(1 − α)
, (2.7)

where f(0) = f(t = 0) is the initial condition.
Caputo-type generalized fractional derivatives of rather general form,

including also fractional powers of hyper-Bessel-type operators, have been
recently introduced by Kiryakova and Luchko [13], see also the so-called
Gelfond-Leontiev generalized differentiation with respect to the Mittag-
Leffler function, [11, Ch.2].

We are now able to prove the following

Theorem 2.2. The function

u(t) = Eα,1

(
−λtα(1−θ)

(1 − θ)α

)
(2.8)

solves the fractional Cauchy problem{
C
(
tθ d

dt

)α
u(t) = −λu(t), α ∈ (0, 1), θ < 1, t ≥ 0,

u(0) = 1.
(2.9)

P r o o f. First of all, we recall that, in this case,

C

(
tθ

d

dt

)α

u(t) =
(

tθ
d

dt

)α

u(t) − (1 − θ)α
t−(1−θ)α

Γ(−α + 1)
, (2.10)

so that the fractional equation becomes(
tθ

d

dt

)α

u(t) = −λu(t) + (1 − θ)α
t−(1−θ)α

Γ(−α + 1)
. (2.11)

By using (2.4), we have that(
tθ

d

dt

)α

tβ = (1 − θ)αt−(1−θ)αI0,−α
1−θ tβ = (1 − θ)α

Γ( β
1−θ + 1)

Γ( β
1−θ + 1 − α)

tβ−(1−θ)α.

(2.12)
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Then, we have that(
tθ

d

dt

)α

Eα,1

(
−λtα(1−θ)

(1 − θ)α

)
= (1 − θ)α

∞∑
k=0

(−λ)k

(1 − θ)αk

t(1−θ)kα−(1−θ)α

Γ(kα + 1 − α)

= −λ

∞∑
k=−1

(−λ)k

(1 − θ)αk

t(1−θ)kα

Γ(kα + 1)
= −λf(t) +

1
(1 − θ)−α

t−(1−θ)α

Γ(−α + 1)
,

as claimed. �

An analogous result for the case θ > 1 can be achieved with the same
reasoning of Theorem 2.2. However this case has not a physical interest in
this framework.

Remark 2.1. We observe that in the limiting case α = 1, we have

u(t) = exp
(−λt1−θ

(1 − θ)

)
, (2.13)

that is the analytic solution of the ordinary differential equation

tθ
du

dt
= −λu, (2.14)

as expected.

Remark 2.2. We observe that in the case θ = 0, from (2.8), we
recover the solution of the fractional relaxation equation involving Caputo
time-fractional derivatives. Indeed in this case the function (2.8) becomes
the eigenfunction of the Caputo derivative.

2.1. The singular case θ = 1

The limiting case θ = 1 brings us to the fractional relaxation equation(
t
d

dt

)α

u(t) = −λu(t), α ∈ (0, 1). (2.15)

The explicit form of the operator
(
t d
dt

)α
is well known from the theory

of fractional powers of operators. It is the so-called Hadamard fractional
derivative of order α ∈ (0, 1), that is (see for example [14])(

t
d

dt

)α

f(t) = δ
(
J 1−α

t+0
f
)

(t), 0 < α < 1, t0 ≥ 0, (2.16)

where δ = t
d

dt
, and(

J 1−α

t+0
f
)

(t) =
1

Γ(1 − α)

∫ t

t0

(
ln

x

u

)−α
f(u)

du

u
, t0 ≥ 0, (2.17)
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is the Hadamard fractional integral of order 1 − α. For completeness we
recall that the definition of Hadamard fractional derivative for any real
α > 0 is given by(

t
d

dt

)α

f(t) = δnJ n−α
t+0

f(t), n − 1 < α ≤ n. (2.18)

For the aims of this paper, we consider the case α ∈ (0, 1). For the utility
of the reader, we recall the following result (see [14], Theorem 8).

Theorem 2.3. A solution of (2.15), for t0 > 0 is given by

u(t) =
[
ln
(

t

t0

)]α−1

Eα,α

(
−λ

(
ln

t

t0

)α)
. (2.19)

In recent papers, like [9], a regularized Caputo-like Hadamard fractional
derivative has been introduced, as follows:

C

(
t
d

dt

)α

f(t) = J n−α
t+0

δnf(t), α > 0, n − 1 < α ≤ n. (2.20)

The relation between (2.20) and (2.18) is given by

C

(
t
d

dt

)α

f(t) =
(

t
d

dt

)α
[
f(t) −

n−1∑
k=0

δky(t0)
k!

(
ln

t

t0

)k
]

. (2.21)

We now consider the fractional relaxation equation governed by the regu-
larized fractional Hadamard derivative, that is

C

(
t
d

dt

)α

u(t) = −λu(t), α ∈ (0, 1). (2.22)

Theorem 2.4. The solution of (2.22), under the initial condition
u(t0) = 1 at initial time t0 > 0, is given by

u(t) = Eα,1

(
−λ

(
ln

t

t0

)α)
. (2.23)

P r o o f. Recalling that (see equation (38) in [9])

C

(
t
d

dt

)α(
ln

t

t0

)β

=
Γ(β + 1)

Γ(β + 1 − α)

(
ln

t

t0

)β−α

, (2.24)

we have

C

(
t
d

dt

)α

Eα,1

(
−λ

(
ln

t

t0

)α)
=

∞∑
k=1

(−λ)k(ln t)αk−α

Γ(αk + 1 − α)
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= −λ
∞∑

k′=0

(−λ)k
′
(ln t)αk′

Γ(αk′ + 1)
= −λEα,1

(
−λ

(
ln

t

t0

)α)
.

�

3. Completely monotone solutions and numerical results

Let us recall that a real non-negative function f(t) defined for t ∈ R
+

is said to be completely monotone (CM) if it possesses derivatives f (n)(t)
for all n = 0, 1, 2, 3, .. that are alternating in sign, namely

(−1)nf (n)(t) ≥ 0, t > 0 . (3.1)

The limit f (n)(0+) = lim
t→0+

f (n)(t) finite or infinite exists. For the existence

of the Laplace transform of f(t) (in the classical sense) we require that the
function be locally integrable in R

+.
For the Bernstein theorem that states a necessary and sufficient con-

dition for the CM, the function f(t) can be expressed as a real Laplace
transform of non-negative (generalized) function, namely

f(t) =
∫ ∞

0
e−rt K(r) dr , K(r) ≥ 0 , t ≥ 0 . (3.2)

For more details see e.g. the survey by Miller & Samko [21]. In physical
applications the function K(r) is usually referred to as the spectral distri-
bution, in that it is related to the fact that the process governed by the
function f(t) with t ≥ 0 can be expressed in terms of a continuous distribu-
tion of elementary (exponential) relaxation processes with frequencies r on
the whole range (0,∞). In the case of the pure exponential f(t) = exp(−λt)
with a given relaxation frequency λ > 0, we have K(r;λ) = δ(r − λ).

Since f̃(s) turns to be the iterated Laplace transform of K(r) we recog-
nize that f̃(s) is the Stieltjes transform of K(r) and therefore, the spectral
distribution can be determined as the inverse Stieltjes transform of f̃(s) via
the Titchmarsh inversion formula, see e.g. [25, 26],

f̃(s) =
∫ ∞

0

K(r)
s + r

dr , K(r) = ∓π Im
[
f̃(s)

∣∣∣
s=re±iπ

]
. (3.3)

Another relevant class of functions related to complete monotonicity are
the Bernstein functions. Let us recall that a real non-negative function
g(t) defined for t ∈ R

+ is said to be Bernstein, if it possesses derivatives
g(n)(t) for all n = 0, 1, 2, 3, .. and its first derivative is CM. So, characteristic
examples of CM and Bernstein functions are respectively f(t) = exp(−t)
and g(t) = 1 − exp(−t). Other simple examples are provided by φ(t) = tγ

that is CM if γ < 0, but locally integrable if −1 < γ < 0 and Bernstein if
0 < γ ≤ 1.
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We recall two fundamental properties useful in the following:

- Let f(t) be CM and let g(t) be Bernstein, then f [g(t)] is a CM function.
- The product of two CM functions is CM.

Our solutions in Eqs. (2.3) and (2.8) are functions of Mittag-Leffler
type. We recall that for the Mittag-Leffler functions in one and two pa-
rameters the conditions to be CM on the negative real axis were derived
by Pollard [22] in 1948, for 0 < α ≤ 1, and by Schneider [24] in 1996, for
0 < α ≤ 1 and β ≥ α. See also Miller and Samko [20, 21] for further details.
As a consequence, it is straightforward to derive the conditions of locally
integrability and complete monotonicity for our solutions in (2.3) and (2.8)
taking into account the exponents of the powers of t in the argument of the
Mittag-Leffler functions and in the pre-factor. Then we have:

Theorem 3.1. The solution in (2.8) is locally integrable and CM if

0 < α < 1, θ < 1, 0 < α(1 − θ) < 1,

and the solution in (2.3) is locally integrable and CM if we add to the
previous conditions

−1 < (α − 1)(1 − θ) < 0.

We recall that functions tγ with γ ≤ −1 (t ∈ R
+ ) are non-local inte-

grable; they are referred to as pseudo-functions in the treatise by Doetsch
[7] on Laplace transforms and consequently treated as distributions.

Hereafter we exhibit in the plane {θ, α} the zones of CM of both locally
integrable solutions.

Fig. 1: The zones of CM of the locally integrable solutions (2.8) (left) and
(2.3) (right) in the plane {α, θ} limited by thick lines. Whereas the left
zone continues indefinitely for −∞ < θ < 1, the right zone is limited to
−1 < θ < 1.



432 R. Garra, A. Giusti, F. Mainardi, G. Pagnini

Then, for illustration we show some plots of the solutions in (2.8) for
fixed α = 0.25, 0.50, 0.75, 1 with a few values of θ included in the zone of
CM in order to remark the role of the parameter θ with respect to the case
of fractional relaxation (θ = 0) with constant coefficient, investigated in [8].

Fig. 2: Log-log plots of the locally integrable CM solutions, regular at
t = 0 provided by (2.8), versus time for selected values of {α, θ}. We note
a power law decay for α < 1 and an exponential decay for α = 1.

4. Conclusions and further work

Based on the general theory of fractional powers of hyper-Bessel op-
erators, we have introduced and discussed a particular integro-differential
operator characterized by two parameters {α, θ} that is suitable to general-
ize the process of standard relaxation by taking into account both memory
effects and time variability of the characteristic coefficient. To be consistent
with most relaxation processes, we have required the local integrability and
complete monotonicity of the solutions that turn out to be functions of the
Mittag-Leffler type involving the two characteristic parameters.

Further work can be done still in relation to our model equation (2.1).
For example, the solutions of (2.1) for 1 < α ≤ 2 can be studied in the
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framework of models of fractional oscillations with a time varying coeffi-
cient.

Note that the results presented in Theorems 2.1, 2.2 can be considered
as an interesting realization in explicit form of the more abstract results
from Kiryakova et al. [1], [12] for differential equations involving fractional
multi-order analogues of the hyper-Bessel operators L (see Appendix), pre-
sented in terms of the so-called multi-index Mittag-Leffler functions.

Namely, one could consider noteworthy cases of equations, generalizing
(2.1) and having the form

Lu(t) := ta1Dα1 ta2Dα2 ... tanDαn tan+1 u(t) = −λu(t), D = d/dt, (4.1)
with the so-called fractional hyper-Bessel operators L, introduced in [11,
Ch.5]. In Kiryakova et al. [12], [1], etc. it is proved that the multi-index
Mittag-Leffler functions solve the differential equation (4.1) of fractional
multi-order (α1, ..., αn), thus replacing the role of the Delerue hyper-Bessel
functions in the case of hyper-Bessel differential equations Lu(t) = −λu(t)
of order n = (1, ..., 1), with the operators (5.1) considered below. Much
work has to be done to show the relevance of these exact results in the
numerous applications of fractional operators in mathematical physics.

Finally, a probabilistic analysis of the obtained results can be of interest
in relation to generalized fractional Poisson processes and Mittag-Leffler
waiting time distributions, based the recent results by Beghin [2].

5. Appendix: On the theory of fractional powers
of hyper-Bessel operators

In this section we recall some useful results from the theory of fractional
powers of the so-called hyper-Bessel operators.

The linear singular differential operators with variable coefficients of
arbitrary integer order n = 1, 2, 3, ... of the form

L = ta1Dta2D . . . tanDtan+1 , 0 < t < ∞, (5.1)
where a1, . . . , an+1 are real numbers and D = d/dt, have been introduced
and considered by Dimovski [4], Kiryakova [10], McBride [19], and called
later by the name hyper-Bessel operators in the works by Kiryakova as
[11]. The reason is because the hyper-Bessel functions of Delerue (variants
of the generalized hypergeometric function 0Fn−1, reducing to the Bessel
functions 0F1 for n = 2) are the solutions (forming f.s.s. around t = 0) of
the equations Lu(t) = −λu(t).

The operator L generalizes the 2nd order Bessel differential operator,
the n-th order hyper-Bessel operator of Ditkin and Prudnikov [6]

LBn = t−n t
d

dt
t
d

dt
. . . t

d

dt︸ ︷︷ ︸
n times

,
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as well as many other differential operators considered by different au-
thors (see e.g. Refs. in [11], [19]) and appearing very often in differential
equations of mathematical physics, specially in the theory of potential, vis-
coelasticity, etc.

McBride [19], on whose results we base in this paper, considers the
operator L defined in (5.1) to act on the functional space

Fp,μ = {f : t−μf(t) ∈ Fp}, (5.2)
where

Fp = {f ∈ C∞ : tkdkf/dtk ∈ Lp, k = 0, 1, . . . }, (5.3)

for 1 ≤ p < ∞ and for any complex number μ, for details see [18, 17].
Dimovski and Kiryakova, and other authors made their studies on L in
weighted spaces of continuous or Lebesgue integrable functions. Especially,
the fractional powers Lα can be defined and represented by means of con-
volutions ([4]) or in terms of the Meijer G-function ([19], [10], [11]) for func-
tions of the form f(t) = tp f̃(t) with p > max

1≤k≤n
[(a−n)(bk +1)], f̃ ∈ C[0,∞).

The following lemma gives an alternative representation of the operator
L, in the denotations of McBride.

Lemma 5.1. The operator L in (5.1) can be written as

Lf = mnta−n
n∏

k=1

tm−mbkDmtmbkf, (5.4)

where

Dm :=
d

dtm
= m−1t1−m d

dt
.

The constants appearing in (5.4) are defined as

a =
n+1∑
k=1

ak, m = |a − n|, bk =
1
m

(
n+1∑

i=k+1

ai + k − n

)
, k = 1, . . . , n.

For the proof, see Lemma 3.1, page 525 of [19].

In the analysis of the integer power (as well as of the fractional power)
of the operator L, a key role is played by the differentiation Dm with respect
to tm, appearing in (5.4).

Lemma 5.2. Let r be a positive integer, f ∈ Fp,μ and

bk∈Ap,μ,m := {η∈C : �(mη+μ)+m 	= 1/p−ml, l = 0, 1, 2, ...}, k = 1, ..., n.
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Then

Lrf =

⎧⎪⎨⎪⎩
mnrt−mr

∏n
k=1 Ibk ,−r

m f, if a − n < 0,

mnr
∏n

k=1 Ibk−1,−r
m tmrf, if a − n > 0,

(5.5)

where for α > 0 and �(mη + μ) + m > 1/p, we mean the Erdélyi-Kober
fractional integral

Iη,α
m f =

t−mη−mα

Γ(α)

∫ t

0
(tm − um)α−1umηf(u) d(um), (5.6)

and for α ≤ 0, the interpretation is via the integro-differential operator

Iη,α
m f = (η + α + 1)Iη,α+1

m f +
1
m

Iη,α+1
m

(
t
d

dt
f

)
. (5.7)

For the proof of the lemma consult, for example [19], page 525.

Note that the expression for α ≤ 0 in (5.7) is called in the works of
Kiryakova (as [11]) and Luchko et al. (as [27]) as Erdélyi-Kober fractional
derivative denoted by Dη,α

m , namely, we mean Iη,−α
m := Dη+α,−α

m . In the
same terms, Kiryakova writes the operators (5.4), (5.5) as the products

Lf = mnt−m
n∏

k=1

[Dbk,1
m ]f, Lrf = mnrt−mr

n∏
k=1

[Dbk ,r
m ]f,

see details in [11, Ch.1, Ch.3, Ch.5].
Further, it is possible to give a definition and representation of the

fractional powers Lα, α > 0 of the operator L. By means of operational
calculus the operators Lα have been introduced by Dimovski [4], Dimovski
and Kiryakova [5] and further used by Kiryakova as a base of her generalized
fractional calculus [11].

However, in this paper we use the denotations and the results as exposed
in the McBride-Lamb theory of the fractional powers of operators, [19,
p.527] and [15].

Definition 5.1. Let α be any real number, bk ∈ Ap,μ,m, for k =
1, . . . , n. Then, for any f(t) ∈ Fp,μ

Lαf =

⎧⎪⎨⎪⎩
mnαt−mα

∏n
k=1 Ibk,−α

m f, if a − n < 0,

mnα
∏n

k=1 Ibk−1,−α
m tmαf, if a − n > 0.

(5.8)

In this paper we will consider however only α ∈ R
+.
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The relation between the two lemmas above emerges directly from the
analysis of the mathematical connection between the power of the operator
Dm and the generalized fractional integrals Iη,α

m , as we are going to discuss.
In order to understand this relationship we introduce the following operator
[18]

Iα
mf =

m

Γ(α)

∫ t

0
(tm − um)α−1um−1f(u) du, α > 0, (5.9)

which is connected to the Erdélyi-Kober fractional integral (5.6) by means
of the simple relation

Iα
mf = tmαI0,α

m f,

valid for all α ∈ R.
It is quite simple to prove that

Iα
mf = (Dm)Iα+1

m f

=
m

Γ(α + 1)
Dm

∫ t

0
(tm − um)αum−1f(u) du = Dm . . . Dm︸ ︷︷ ︸

r times

Iα+r
m f.

If α = −r, we have that

I−r
m f = Dm . . . Dm︸ ︷︷ ︸

r times

I0
mf = (Dm)rf.

For a real number α, the same relationship is extended in the form

I−α
m f = (Dm)α f. (5.10)

Since the semigroup property holds for the Erdélyi–Kober operator (5.9),
we have that

(Dm)αf = (Dm)n(Dm)α−nf = I−n
m In−α

m f (5.11)

=
m

Γ(n − α)
(Dm)n

∫ t

0
(tm − um)n−α−1um−1f(u) du.

Finally we observe that, for m = 1 we recover the definition of Riemann–
Liouville fractional derivative, [23].

A well-known result from fractional calculus, see e.g. [23] that is used
in this paper, is given by the following lemma.

Lemma 5.3. Let be η + β
m + 1 > 0, m ∈ N, we have that

Iη,α
m tβ =

Γ
(
η + β

m + 1
)

Γ
(
α + η + 1 + β

m

) tβ. (5.12)
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Finally we observe that the operator appearing in (2.1) is a special case
of (5.8) with n = 1, a1 = θ, a2 = 0, b1 = 0, a = θ and m = |1 − θ|. Then
by using Definition 5.1 we have (2.2).
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