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Abstract

We study the dynamics of the Schrödinger equation with a fractional Laplacian (−∆)α, and
the decoherence of the solution is observed. Analytically, we obtain equations of motion for
the expected position and momentum in the fractional Schödinger equation, equations that are
the fractional counterpart of the well-known Newtonian equations of motion for the standard
(α = 1) Schrödinger equation. Numerically, we propose an explicit, effective numerical method
for solving the time-dependent fractional nonlinear Schrödinger equation–a method that has
high order spatial accuracy, requires little memory, and has low computational cost. We apply
our method to study the dynamics of fractional Schrödinger equation and find that the nonlocal
interactions from the fractional Laplacian introduce decoherence into the solution. The local
nonlinear interactions can however reduce or delay the emergence of decoherence. Moreover, we
find that the solution of the standard NLS behaves more like a particle, but the solution of the
fractional NLS behaves more like a wave with interference effects.

Keywords. Fractional Schrödinger equation, Fourier pseudo-spectral method, center of mass,
fractional momentum, decoherence.

1 Introduction

Dispersive equations with nonlocal operators like the fractional Laplacian are of great interest:
fractional Schrödinger equations arise in physical systems where particles interact with one another
over long distances [1–4], especially in models of charge transport in large-scale organic polymers
such as DNA [5]. A special case, the square root of the Laplacian, can be viewed as a model for
pseudo-relativistic Boson stars [6, 7]. These fractional Schrödinger equations have been studied in
the physics literature [1, 5], with heuristic arguments justifying the derivation of these nonlocal
continuum dynamics from the underlying biophysics, which is understood to be modeled by a
discrete nonlinear Schrödinger equation (NLS), with interactions (e.g., between different base pairs
in a strand of DNA) that decay like inverse power laws. Recently, this heuristic derivation has
been rigorously justified for classes of fractional NLS equations, that they arise from microscopic
(or properly speaking, mesoscopic) lattice systems with long-range interactions when passing to
the continuum limit [8].

We consider the dimensionless fractional NLS equation [2, 9, 10]:

i
∂ψ(x, t)

∂t
=

(
1

2
(−∆)α + V (x) + β|ψ(x, t)|2

)
ψ(x, t), x ∈ R

d, t > 0, (1.1)

ψ(x, 0) = ψ0(x), x ∈ R
d, (1.2)
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where ψ(x, t) is a complex-valued wave function of spatial coordinate vector x ∈ R
d (d = 1, 2, or 3)

and time t ≥ 0. The constant β ∈ R describes the strength of local interactions, and the interactions
are repulsive or defocusing (resp. attractive or focusing) if β > 0 (resp. β < 0). The real-valued
function V (x) represents an external trapping potential. In this paper, we consider a harmonic
potential of the form: V (x) = 1

2x
TΛx; the diagonal matrix Λ = γ2x if d = 1, Λ = diag(γ2x, γ

2
y) if

d = 2, and Λ = diag(γ2x, γ
2
y , γ

2
z ) if d = 3, with γx, γy and γz the dimensionless trapping frequencies

in x-, y-, and z-direction, respectively. For α > 0, the fractional Laplacian (−∆)α is defined
by [11,12]

(−∆)αψ(x, t) := F−1
[
|ξ|2αF(ψ)

]
, x ∈ R

d, (1.3)

where F defines the Fourier transform, i.e.,

F(ψ)(ξ, t) =

∫

Rd

ψ(x, t)e−iξ·xdx,

and F−1 represents the inverse Fourier transform. If α = 1, (1.1) becomes the standard (non-
fractional) NLS equation, also known as the Gross–Pitaevskii equation (GPE) in the literature of
Bose–Einstein condensation [13–15]. The case α = 1/2 is interesting because it corresponds to
the Hilbert-NLS and is challenging because the dispersion relation ω(k) = −|k| is like the water
wave dispersion. In this paper, we are interested in the case 1/2 < α ≤ 1, with dispersion relation
ω(k) = −|k|2α between the wave and Schrödinger cases, and will leave the case of α = 1/2 for
future study.

The general fractional NLS (1.1) has some conserved quantities for t ≥ 0: the L2–norm, or
mass of the wave function, which we will take to be normalized,

‖ψ(·, t)‖2 :=

∫

Rd

|ψ(x, t)|2dx =

∫

Rd

|ψ(x, 0)|2dx = 1, (1.4)

and the total energy,

E(t) :=

∫

Rd

[
1

2
|∇αψ|2 + V (x)|ψ|2 +

β

2
|ψ|4

]
dx = E(0), (1.5)

where we write the operator ∇s = −(−∆)s/2, for s > 0. These conserved quantities can be used as
benchmarks in analysis and simulation of the fractional NLS.

Existence and uniqueness of ground states of the elliptic problem associated with the fractional
NLS have been studied in one dimension [16] and higher dimensions in the radial case [17]. By con-
trast, the time-evolution of initial states for the fractional NLS is not well understood qualitatively,
though there are abstract well-posedness results in the literature [8,18,19] and finite-time blow-up
results for closely related equations [7, 20]. Recently, soliton dynamics have been studied for the
fractional NLS in the semi-classical limit, and found to concentrate along a trajectory determined
by the Newtonian type equation [9]. However, the fractional counterpart of the NLS equations of
motion for expected position and momentum were thought hard to obtain [9, Remark 4.7], equa-
tions of motion that we will present in Theorem 2.1. Additionally, numerical investigations on the
fractional NLS dynamics in the literature remain scant.

In this paper, we analytically and numerically study the solution dynamics of the fractional NLS
in comparison with the standard NLS, so as to understand the nonlocal effects of the fractional
Laplacian on the dynamics. We study solutions of the fractional linear and nonlinear Schrödinger
equations in the presence of an external harmonic potential, and we observe conditions under which
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there is a loss of the ground state profile when it evolves additional peak(s), and conditions under
which there is emergence of high frequencies. The loss of the ground state profile in the fractional
NLS does not appear to arise from the nonlinearity, but from the nonlocal interactions of the
fractional Laplacian, possibly from its interaction with the potential, especially if the initial state is
not symmetric with respect to the center of the external potential. In fact, our simulations suggest
that the nonlinearity helps to maintain the shape of the ground state profile, delaying or reducing
the leakage to high frequencies, albeit with some fluctuations. Our main contributions in this paper
include:

(i) We obtain the equations of motion for expected positions and momentum for the fractional
Schrödinger equation, extending the results in the literature [9]. We show that the equations
of motion for the fractional NLS do not form a closed system, and they also depend on the
nonlinearity, which is different from the well-known Newtonian equations of motion for the
standard NLS.

(ii) We propose a time-splitting Fourier pseudo-spectral method for simulating the dynamics of
fractional NLS. It has the spectral-order accuracy in space and the second-order accuracy in
time. One main merit of our method is that it requires low memory and computational costs,
independent of the fractional power α.

(iii) We numerically study the dynamics of the fractional Schrödinger equation with a harmonic
potential in both linear and nonlinear cases, examine the loss of the ground state profile that
is associated to the nonlocal interactions of the fractional Laplacian rather than the nonlinear
term.

2 Equations of motion for expected position and momentum

For the standard (non-fractional) Schrödinger equation, the Ehrenfest theorem gives Newtonian
equations of motion for the expectations of position and momentum observables, equations that
are closed and have periodic solutions [21]. For example, in the traditional nonlinear Schrödinger
equation, Ehrenfest-type results have been proved [22], and in the semiclassical limit of the nonlinear
Schrödinger equation, the center of mass (expected position) is also known to converge to the
solution of a Newtonian equation [23,24]. However, the fractional counterpart of the NLS equations
of motion for expected position and momentum still remains open (see [9, Remark 4.7]). In this
section, we obtain the analogous equations for the fractional Schrödinger equation and show that
they are not closed and have a fractional momentum differing from the usual momentum.

The center of mass 〈X〉 is the expected value of the position operator X[ψ(x, t)] := xψ(x, t),
which can be written using the Hilbert space inner product 〈·, ·〉 or explicitly as an integral:

〈X〉 := 〈ψ,Xψ〉 =

∫

Rd

x|ψ(x, t)|2dx, t ≥ 0. (2.1)

Following [2], we define the fractional momentum operator:

Pα := −iα∇2α−1 = α|P 2|α−1P, for
1

2
< α ≤ 1,

where P = −i∇ is the usual momentum operator. The operator ∇2α−k, for positive integer k, can
be defined by composing ∇2α−k := ∇2α∇−k, where the k-th order integral operator ∇−k is defined,
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for instance, through Cauchy’s formula for iterated integrals in one dimension (here a is arbitrary
and fixed):

∇−kf(x) = f (−k)(x) =
1

(k − 1)!

∫ x

a
(x− y)k−1f(y)dy.

It is easy to see that the Fourier multiplier of the fractional momentum operator Pα is iα ξ|ξ|2α−2.
Then the expected fractional momentum is defined as

〈Pα〉 := 〈ψ, Pαψ〉 = −iα

∫

Rd

ψ∗∇2α−1ψ dx, t ≥ 0, for 1
2 < α ≤ 1, (2.2)

where ψ∗ represents the complex conjugate of the function ψ. The following theorem establishes
the time evolution of the expected position and fractional momentum (addressing the open problem
in [9, p. 20]).

Theorem 2.1. For a solution ψ = ψ(x, t) of the fractional NLS (1.1) with harmonic potential and
α ∈ (12 , 1], we have the following equations of motion for t > 0:

d

dt
〈X〉 = 〈Pα〉, (2.3)

d

dt
〈Pα〉 = 〈Wα〉, (2.4)

where the quantity 〈Wα〉 is the expectation of an operator and can be defined by:

〈Wα〉 := α(2α− 1)〈(−∇V )|P 2|α−1〉 − α(α− 1)(2α− 1)
〈
(∇2V )∇2α−3

〉

−αβ
∑

j≥1

(
2α− 1

j

)〈
ψ,

(
∇2α−1−jψ

) (
∇j(|ψ|2)

)〉
. (2.5)

Proof. The time derivative of the center of mass can be computed:

d

dt
〈X〉 = 〈ψt,xψ〉+ 〈ψ,xψt〉

=

〈
−
i

2
(−∆)αψ − iV ψ − iβ|ψ|2ψ,xψ

〉

+

〈
ψ,−

i

2
x(−∆)αψ − ixV ψ − iβx|ψ|2ψ

〉

=
i

2
〈ψ, (−∆)αxψ − x(−∆)αψ〉.

Then using the fractional version of the Leibniz rule [12], this becomes:

d

dt
〈X〉 =

i

2

〈
ψ,−

∞∑

j=0

(
2α

j

)
(∇2α−jψ)(∇jx) + x∇2αψ

〉

= 〈ψ,−iα∇2α−1ψ〉 = 〈Pα〉.

To compute the time derivative of the expected fractional momentum, we split it into three
terms, one for each of the three terms in the fractional NLS (1.1): kinetic, external potential, and
nonlinear.

d

dt
〈Pα〉 = 〈ψt, α|P

2|α−1Pψ〉+ 〈ψ, α|P 2|α−1Pψt〉

= 〈iψt, α|P
2|α−1∇ψ〉+ 〈ψ, α|P 2|α−1(−∇)iψt〉

= I + II + III, (2.6)
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where the terms I, II, and III are defined using the fractional NLS (1.1) by:

I =
〈1
2
(−∆)αψ, α|P 2|α−1∇ψ

〉
+
〈
ψ, α|P 2|α−1(−∇)

1

2
(−∆)αψ

〉
,

II =
〈
V ψ, α|P 2|α−1∇ψ

〉
+
〈
ψ, α|P 2|α−1(−∇)(V ψ)

〉
,

III =
〈
β|ψ|2ψ, α|P 2|α−1∇ψ

〉
+
〈
ψ, α|P 2|α−1(−∇)(β|ψ|2ψ)

〉
.

Term I vanishes, because it comes from the kinetic part of the Hamiltonian, commutativity of the
differential operators, and self-adjointness of the fractional Laplacian:

I =

〈
1

2
(−∆)αψ, α|P 2|α−1∇ψ

〉
+

〈
ψ, α|P 2|α−1(−∇)

1

2
(−∆)αψ

〉

=

〈
1

2
(−∆)αψ, α|P 2|α−1∇ψ

〉
+

〈
1

2
(−∆)αψ, α|P 2|α−1(−∇)ψ

〉
= 0.

Term II comes from the external potential, and we rewrite it using the commutator [A,B] =
AB −BA:

II = 〈V ψ, α|P 2|α−1∇ψ〉+ 〈ψ, α|P 2|α−1(−∇)(V ψ)〉

= 〈ψ, V α|P 2|α−1∇ψ〉 − 〈ψ, α|P 2|α−1∇(V ψ)〉

= 〈ψ, [V, α|P 2|α−1∇]ψ〉.

Then by the fractional Leibniz rule on the second term in the commutator, the j = 0 term canceling
with the first term in the commutator, and V being harmonic, only the j = 1 and j = 2 terms
survive:

II =
〈
ψ, V α|P 2|α−1∇ψ

〉
−

〈
ψ, α

∞∑

j=0

(
2α− 1

j

)(
∇2α−1−jψ

)
(∇jV )

〉

=

〈
ψ, α

(
2α− 1

1

)
(∇2α−2ψ)(−∇V )− α

(
2α− 1

2

)
(∇2α−3ψ)(∇2V )

〉

= α(2α− 1)〈ψ, (−∇V )|P 2|α−1ψ〉 − α(α− 1)(2α− 1)
〈
ψ, (∇2V )∇2α−3ψ

〉
.

This fractional Leibniz rule corresponds to the choice of the Riesz fractional derivative in the
beginning; a different choice of fractional derivative or pseudo-differential calculus would result in
a different Leibniz rule with lower-order correction terms.

The last term III in the derivative of the momentum (2.6) comes from the nonlinearity:

III = 〈β|ψ|2ψ, α|P 2|α−1∇ψ〉+ 〈ψ, α|P 2|α−1(−∇)(β|ψ|2ψ)〉

= αβ〈ψ,
[
|ψ|2, |P 2|α−1∇

]
ψ〉.

The second term of the commutator can be expanded using the fractional Leibniz formula, and the
j = 0 term cancels with the first term of the commutator, giving:

III = −αβ
∑

j≥1

(
2α− 1

j

)〈
ψ,

(
∇2α−1−jψ

) (
∇j(|ψ|2)

)〉
.

Putting the three terms together, we get the equation of motion (2.4) and (2.5).
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Remark 2.1. The threshold α = 1/2 is an important one in the study of symmetric stable processes
whose infinitesimal generator is the fractional Laplacian: for instance, if α > 1/2 the mean of the
stable distribution is well-defined (equal to the location parameter µ), but if α < 1/2 the mean of the
stable distribution is undefined. This threshold is reflected in the signs of the coefficients in 〈Wα〉,
which are nonnegative if α ∈ (1/2, 1].

Remark 2.2. If V (x) is nonzero and not harmonic, then there may be an infinite series in 〈Wα〉.
But, if there is no external potential, i.e., V (x) = 0, 〈Wα〉 has only the last term III in it, i.e.,

〈Wα〉 = −αβ
∑

j≥1

(
2α− 1

j

)〈
ψ,

(
∇2α−1−jψ

) (
∇j(|ψ|2)

)〉
.

Additionally, if there is no nonlinearity, then 〈Wα〉 = 0 as in the non-fractional case.

Remark 2.3. If α = 1, then integration by parts shows that term III in (2.6) is zero, and the
operator is simply Wα = −∇V = −Λx, a multiplication operator. Thus the equations of motion
(2.3)–(2.4) reduce to:

d

dt
〈X〉 = 〈P 〉, (2.7)

d

dt
〈P 〉 = −Λ〈X〉, (2.8)

where Λ is the diagonal matrix of trapping frequencies of a harmonic potential.

Remark 2.3 shows that when α = 1, the equations of motion (2.7)–(2.8) form a closed system,
independent of the nonlinear parameter β, and their solution is periodic with period depending
on the trapping frequency of the harmonic potential. By contrast, Theorem 2.1 shows that the
equations of motion in the fractional (α < 1) case are not closed, which is a difference between the
fractional and standard NLS dynamics. In the following, we present a numerical illustration of this
difference.

Figure 1 displays the time evolution of 〈X〉 and 〈P 〉 in the one-dimensional (1D) standard
(α = 1) Schrödinger equation (1.1) with harmonic potential V (x) = 1

2x
2, obtained by numerically

simulating (1.1) with the initial condition ψ0(x) as given in (4.1). It shows that both 〈X〉 and
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t
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Figure 1: Oscillation of 〈X〉 and 〈P 〉 in the 1D standard (α = 1) Schrödinger equation with
harmonic potential V (x) = 1

2x
2, obtained by numerically simulating (1.1) with (4.1).

〈P 〉 oscillate periodically with period T = 2π, and their evolution is independent of β and 〈X〉(0).
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This observation is consistent with our analytical results in Remark 2.3 and those reported in the
literature [14, 15,25–27].

By contrast, the dynamics of 〈X〉 and 〈Pα〉 for the fractional NLS are more complicated (see
Figure 2), depending not only on α but also on 〈X〉(0) and β. Decay of 〈X〉 and 〈Pα〉 is observed
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Figure 2: Oscillation and decay of the time evolution of 〈X〉 and 〈Pα〉 in the 1D fractional
Schrödinger equation (1.1) with harmonic potential V (x) = 1

2x
2, obtained by numerically sim-

ulating (1.1) with the initial state (4.1). There is complexity in the solutions that is not apparent
in this figure, complexity including decoherence and emergence of high frequencies (discussed in
Section 4) even in the linear cases (left).

along with oscillation, especially when β = 0; including the nonlinear interactions can reduce the
decay of 〈X〉 and 〈Pα〉 during the dynamics. However, the time evolution of 〈X〉 and 〈Pα〉 fails
to show the decoherence and emergence of high frequencies in the dynamics of fractional NLS; see
more discussion in Section 4.

3 Time-splitting Fourier pseudo-spectral method

There have been numerous studies on fractional differential equations, and various numerical meth-
ods have been proposed to solve fractional-in-space diffusion equations; see [28–33] and references
therein. Most of these methods are finite difference or finite element methods, which usually have
low-order spatial accuracy, and at each time step, they result in solving linear systems of the form
Au = b. However, due to its nonlocality, the discretization of the fractional Laplacian (−∆)α

yields a full matrix A, and thus solving the linear system Au = b could be costly. Additionally, the
storage of A could be challenging, especially in high spatial dimensions (e.g., d = 2 or 3). Recently,
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a Fourier spectral method was presented in [34] to solve the fractional linear reaction-diffusion
equation, and collocation methods based on little sinc functions were proposed in [35] to compute
solutions of the fractional linear Schrödinger equation. Both of these new methods have spectral
accuracy in space, in contrast to the finite difference and finite element methods. All the above
methods, however, are for solving linear equations.

For nonlinear equations, Fourier spectral type methods were proposed in [36–38] to solve the
nonlinear dispersive equations, in which the temporal discretization is realized by the integrating
factor method or the fourth-order Runge-Kutta method. These methods are conditionally stable,
and moreover they are difficult to be applied to solve the fractional NLS with external trapping
potential. In this paper, we propose a time-splitting Fourier pseudo-spectral method to solve the
time-dependent fractional NLS (1.1)–(1.2), with the following merits: (i) It has spectral-order
accuracy in space and second-order accuracy in time. In addition, the temporal accuracy can
be easily improved by using a higher-order splitting method. (ii) The method is explicit and
straightforward to implement, requiring much less memory and computational costs than finite
difference/element methods. (iii) The generalization of our method for solving one-dimensional
(1D) fractional NLS to higher spatial dimensions is straightforward. (iv) Our method can be used
to solve not only fractional NLS but also the traditional non-fractional NLS (α = 1).

First, we truncate (1.1)–(1.2) into a sufficiently large bounded computational domain Ω ∈ R
d,

and without loss of generality, we consider the following problem:

i∂tψ(x, t) = c(−∆)αψ + V (x)ψ + β|ψ|2σψ, x ∈ Ω, t > 0, (3.1)

ψ(x, 0) = ψ0(x), x ∈ Ω̄, (3.2)

with constants c > 0 and σ > 0. The fractional NLS in (1.1) corresponds to choosing c = 1
2 and

σ = 1 in (3.1). Here, we consider periodic boundary conditions for the problem (3.1)–(3.2). The
use of other boundary conditions for the nonlocal (fractional) equation is a topic that remains to
be examined [39,40].

Choose a time step τ > 0 and define a time sequence tn = nτ for n = 0, 1, . . .. From time t = tn
to t = tn+1, we solve (3.1) in two splitting steps, i.e., solving:

i∂tψ(x, t) = V (x)ψ + β|ψ|2σψ, (3.3)

i∂tψ(x, t) = c(−∆)αψ. (3.4)

Multiplying (3.3) by ψ∗ and then subtracting it from its complex conjugate, we obtain ∂t(|ψ(x, t)|
2) =

0, which implies that |ψ(x, t)| is time invariant on [tn, tn+1], i.e., |ψ(x, t)| = |ψ(x, tn)| for t ∈
[tn, tn+1]. Consequently, for tn ≤ t ≤ tn+1 we can write (3.3) as

i∂tψ(x, t) =
[
V (x) + β|ψ(x, tn)|

2σ
]
ψ(x, t), (3.5)

an equation that is linear in ψ(x, t). Integrating (3.5) in time gives the solution to (3.3):

ψ(x, t) = ψ(x, tn) e
−i(V (x)+β|ψ(x,tn)|2σ)(t−tn), tn ≤ t ≤ tn+1. (3.6)

Due to the definition of the fractional Laplacian in (1.3), it is natural to use the Fourier pseudo-
spectral method for the spatial discretization of (3.4) [34, 41–43]. For simplicity, we present the
discretization of (3.4) in one dimension, though the generalization to higher dimension is straight-
forward. Let Ω = (a, b) be the 1D computational domain and J be a positive even integer. Define
the mesh size h = (b−a)/J and grid points xj = a+ jh for 0 ≤ j ≤ J . We assume the approximate
ansatz

ψ(x, t) =

J/2−1∑

l=−J/2

ψ̂l(t) e
iµl(x−a), (3.7)
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where ψ̂l(t) represents the l-th mode of the Fourier transform of ψ(x, t), and

µl =
2lπ

b− a
, −

J

2
≤ l ≤

J

2
− 1.

Substituting (3.7) into (3.4) and using the orthogonality of the Fourier basis functions, we obtain

i
dψ̂l(t)

dt
= c|µl|

2αψ̂l(t), tn ≤ t ≤ tn+1, −
J

2
≤ l ≤

J

2
− 1.

Integrating it in time, we get

ψ̂l(t) = ψ̂l(tn) e
−ic|µl|

2α(t−tn), t ∈ [tn, tn+1], −
J

2
≤ l ≤

J

2
− 1. (3.8)

Combining (3.8) with (3.7) gives the solution to (3.4).
In practice, we use the second-order Strang splitting method [44] to couple (3.3) and (3.4), i.e.,

from t = tn to t = tn+1, we solve

ψ
(1)
j = ψnj e

−iτ [V (xj)+β|ψ
n
j |

2σ ]/2,

ψ
(2)
j =

J/2−1∑

l=−J/2

(
ψ̂
(1)
l e−icτ |µl|

2α)
eiµl(xj−a), 0 ≤ j ≤ J, n ≥ 0, (3.9)

ψn+1
j = ψ

(2)
j e−iτ [V (xj)+β|ψ

(2)
j |2σ ]/2,

where ψnj denotes the numerical approximation of ψ(xj , tn). When n = 0, we have

ψ0
j = ψ0(xj), 0 ≤ j ≤ J. (3.10)

For more general discussions on the time-splitting method, we refer readers to [44,45] and references
therein. Our method has spectral-order accuracy in space and second-order accuracy in time. It
is also explicit, making it easy to implement via the fast Fourier transform (FFT). The memory
cost is O(J) and the computational cost per time step is O(J ln J) for 1D cases. In 2D (resp.
3D), the memory cost is O(JK) (resp. O(JKL)), and the computational cost per time step is
O(JK ln(JK)) (resp. O(JKL ln(JKL))), where K and L represent the number of intervals in y-
and z-direction, respectively.

4 Dynamics of the fractional Schrödinger equation

We numerically study the dynamics of the 1D fractional Schrödinger equation with harmonic po-
tential V (x) = x2/2, and remarkably, we see decoherence and emergence of high frequencies in the
linear case. We choose the initial condition as a translation of the ground state ψg:

ψ0(x) = ψg(x− x0), x ∈ R. (4.1)

It can be viewed as a perturbation of the ground state: the larger the value of x0, the stronger the
perturbation. The ground state ψg(x) is computed numerically with the same parameters α and β
used in the dynamics.

We have verified that our numerical results are invariant as decreasing the mesh size h and time
step τ . Additionally, we make sure that the mass of the wave function (1.4) and the total energy
(1.5) are conserved in our simulations.
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4.1 Ground states

To prepare for the dynamics, we first present the ground states of the Schrödinger equation. Figure
3 shows the modulus of the ground state |ψg(x)| for different values of the parameters α and β,
computed using the numerical methods proposed in [46]. The nonlocal effect from the fractional
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Figure 3: Ground states of the Schrödinger equation (1.1) with harmonic potential V (x) = 1
2x

2.
(a) β = 0 (where nonlocal effects are significant); (b) β = 10.

Laplacian (−∆)α is significant when β = 0: the ground states are narrower and taller for smaller α
(see Fig. 3(a)). By contrast, the local nonlinear interactions dominate when β is large: the ground
states are almost the same for different α (see Fig. 3(b)).

Remark 4.1. In work of Amore et al. [35], collocation methods based on little sinc functions were
introduced to compute the ground states of the fractional linear Schrödinger equation:

i∂tψ(x, t) = (−∆)γ/2ψ(x, t) + x2ψ(x, t), x ∈ R; ‖ψ(·, t)‖ = 1. (4.2)

When γ = 2, (4.2) reduces to the standard linear Schrödinger equation, and its ground state can

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

x

0
(x
)

Figure 4: Left: Ground states of Amore et al. [35], where α = γ is twice as large as our α. Right:
The exact ground state (4.3) of standard Schrödinger equation which should correspond to the
middle red dashed line in the left panel for α = 2. To be consistent with the notations in [35], the
modulus of ground states is represented by ψ0(x) = |ψg(x)|.

be found exactly with constant θ ∈ R:

ψg(x) =
1

π1/4
e−

x2

2 eiθ, x ∈ R. (4.3)
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However, the ground state of the standard Schrödinger equation in Figure 1 of the literature [35]
(or see our Fig. 4 (left) with α = 2) is not consistent with the exact solution in (4.3), which may
imply that the numerical method proposed in [35] for computing ground states is incorrect.

4.2 Decoherent dynamics in linear cases

We numerically study the dynamics of the 1D fractional linear (β = 0) Schrödinger equation,
considering different initial translations x0 in (4.1), or equivalently by ground state symmetry,
different initial centers of mass 〈X〉(0) = x0. Figures 5 and 6 show the time evolution of the
solution |ψ(x, t)| for various 〈X〉(0) and α = 0.75 or α = 1. We display the results in a small
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Figure 5: Time evolution of the solution of the fractional (left) and standard (right) linear
Schrödinger equation (1.1) with relatively small shifts of the initial state (4.1). Decoherence emerges
in the fractional linear case once the initial shift is large enough, as in the case of 〈X〉(0) = 1.

region, although our computational domain is much larger.
For reference, the non-fractional case with α = 1 appears in the right panel of Figs. 5 and

6, with the wave function oscillating around the trap center for t > 0, retaining its initial ground
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state profile independent of the initial center of mass 〈X〉(0), showing coherence, consistent with
previous results [14, 15, 25, 26, 47]. By contrast, for α < 1 in the left panel of Figs. 5 and 6, the
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Figure 6: Time evolution of the solution of the fractional (left) and standard (right) linear
Schrödinger equation (1.1) with larger shifts of the initial state (4.1). Decoherence is clear in
the fractional case with initial shift 〈X〉(0) = 2 (upper left) and high frequencies emerge with
larger shift 〈X〉(0) = 5 (middle left).

dynamics of the solution depends crucially on the initial center of mass 〈X〉(0). For relatively small
initial center of mass 〈X〉(0) as in Fig. 5, the solution oscillates around the trap center, and its
shape changes slightly. For larger 〈X〉(0) as in Fig. 6, the solution changes dramatically during
the dynamics, and the initial profile is completely destroyed after some time. Comparing Figs. 5
and 6, we find that the larger the initial center of mass 〈X〉(0), the stronger the decoherence of the
solution.

To further study the decoherence as the solution evolves, we introduce two quantities: one is

M(t) :=

(∫

Rd

(
|ψg(x− 〈X〉(t))| − |ψ(x, t)|

)2
dx

)1/2

, t ≥ 0, (4.4)
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where ψg is the ground states as in (4.1), that is, M(t) measures the difference in shape of the
solution at time t from its initial condition. If the solution at time t retains its initial profile, then
M(t) = 0. The other quantity is the variance

S(t) :=

∫

Rd

[x− 〈X〉(t)]2|ψ(x, t)|2dx, t ≥ 0. (4.5)

This measures the spread of the solution around its center of mass, estimating the square width of
the wave function [48]: If the shape of the solution does not change over time, then S(t) remains a
constant. Figure 7 displays the time evolution of M(t) and S(t) − S(0) for various α and 〈X〉(0).
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Figure 7: Time evolution of M(t) (top) and S(t) − S(0) (bottom) for measuring the decoherence
in the 1D linear Schrödinger equation. Note that the coherence of the non-fractional case α = 1 is
reflected in the dotted lines that are zeros for M(t) and S(t)− S(0).

For the standard NLS with α = 1, we findM(t) ≡ 0 and S(t) ≡ S(0), for any 〈X〉(0), which implies
that the solution retains its initial shape during the dynamics. If α < 1, the M(t) increases after
a short time, implying that the solution distorts quickly in the fractional cases. Furthermore, the
time evolution of S(t) − S(0) shows that for fixed α, the larger the initial center of mass 〈X〉(0),
the stronger the decoherence, which is consistent with our observations of density plots in Figs. 5
and 6.

We conjecture that for t ≥ t0 large enough, the paths of both M(t) and |S(t) − S(0)| are
bounded away from zero if 〈X〉(0) is sufficiently large. We find that the solution of the standard
NLS behaves more like a “particle,” but the solution of the fractional NLS behaves more like a
wave with effects that might be described as “interference” arising from the long-range interactions
of the fractional Laplacian. This is the main difference between the standard and fractional NLS
dynamics.

The expected position and momentum observables (〈X〉, 〈Pα〉) reflect the decoherence, albeit in
a subtle way: For α = 1, the trajectory of (〈X〉, 〈P 〉) is a circle of radius |〈X〉(0)|, which is consistent
with the analytical solution of (2.7)–(2.8). When 1

2 < α < 1, the dynamics of (〈X〉, 〈Pα〉) depends
on the initial center of mass 〈X〉(0) (see Fig. 8). Note that due to the initial setup in (4.1), the
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initial expected momentum 〈Pα〉(0) vanishes for any α and 〈X〉(0). There are different regimes of

−0.5 0 0.5

−0.5

0

0.5

〈 X 〉

〈 
P

α
 〉

α = 0.75, 〈 X 〉(0) = 0.5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

〈 X 〉

〈 
P

α
 〉

α = 0.75, 〈 X 〉(0) = 1

−2 −1 0 1 2
−2

−1

0

1

2

α = 0.75, 〈 X 〉(0) = 2

〈 X 〉

〈 
P

α
 〉

−5 0 5
−5

0

5

α = 0.75, 〈 X 〉(0) = 5

〈 X 〉

〈 
P

α
 〉

−0.5 0 0.5

−0.5

0

0.5

〈 X 〉

〈 
P

α
 〉

α = 0.9, 〈 X 〉(0) =0.5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

〈 X 〉

〈 
P

α
 〉

α = 0.9, 〈 X 〉(0) =1

−2 −1 0 1 2

−2

0

2

〈 X 〉

〈 
P

α
 〉

α = 0.9, 〈 X 〉(0) =2

−5 0 5

−5

0

5

〈 X 〉

〈 
P

α
 〉

α = 0.9, 〈 X 〉(0) =5

Figure 8: Trajectory of (〈X〉, 〈Pα〉) for time t ∈ [0, 200] in the fractional linear Schrödinger equation
(1.1) with initial condition (4.1). A red asterisk represents the initial expectations.

behavior, depending on the size of |〈X〉(0)|. For small initial center of mass |〈X〉(0)|, the trajectory
of (〈X〉, 〈Pα〉) goes towards an elliptic attractor; for larger |〈X〉(0)|, the attractor is smaller, and if
|〈X〉(0)| is large enough, the oscillations of these expected values are damped out over time, and
the trajectory spirals towards (0, 0)T .

In addition, similar to [49,50], we define the center of mass of the wave function ψ (which could
be thought of as the expectation of a “complex probability measure”):

Z(t) :=

∫

R

xψ(x, t)dx, t ≥ 0,

and show the dynamics of (Re(Z), Im(Z)) for various α in Figure 9. For the standard NLS with
α = 1, the evolution of (Re(Z), Im(Z)) is periodic, implying the recurrence of the initial state during
the dynamics (see Fig. 9 bottom row). In the fractional case, the dynamics of (Re(Z), Im(Z))
becomes asymmetric around the origin (see Fig. 9 top and middle rows) and is not periodic,
in contrast with the standard case (see Fig. 9 bottom row). These results are similar to those
observed in [49,50] for the emergence of chaos in the discrete Schrödinger equation with long-range
interactions. Our results suggest that the decoherence comes from the long-range interactions due
to the fractional Laplacian rather than the nonlinearity.

4.3 Reduced decoherence in nonlinear cases

We study the dynamics of 1D fractional NLS with local (or short-range) interactions from β 6= 0 in
(1.1). Figures 10 and 11 show the time evolution of the solution |ψ(x, t)| for α = 0.75 or α = 0.9.
Here we omit the results for α = 1, as they are similar to those in Figs. 5 and 6 for linear cases.

For the fractional NLS, the dynamics of the solution depends on the fractional power α, the
nonlinear parameter β, and the initial center of mass 〈X〉(0). For fixed α and β, if |〈X〉(0)| is
small, the profile of the solution changes slightly during the dynamics, but almost no decoherence
is observed, especially when β is large (see Fig. 11 top row). If |〈X〉(0)| is large, however, weak
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Figure 9: Trajectory of (Re(Z), Im(Z)) for time t ∈ [0, 100] in fractional linear Schrödinger equation
(1.1) with initial condition (4.1). A red asterisk represents the initial condition.

decoherence might appear after some time, depending on the competition between the local non-
linear interactions and the nonlocal interactions from fractional Laplacian (−∆)α/2. For instance,
when α = 0.9 and 〈X〉(0) = 5, decoherence emerges around t = 40 if β = 1, and it remains weak
during the dynamics. But for the same α and initial offset, almost no decoherence is observed until
t = 150 if β = 10, implying that strong local nonlinear interactions might suppress the decoherence
especially when α is close to 1. Comparing the results of α = 0.75 in Fig. 10 and Figs. 5-6, we find
that even weak local nonlinear interactions can significantly reduce the decoherence of the solution
in the fractional NLS dynamics. For the same β and 〈X〉(0), the smaller the power α, the stronger
the nonlocal interactions, the stronger the decoherence.

To further understand the nonlinear effects, the time evolution of M(t) is presented in Figure
12 for β = 1 and 10. We find that: (i) For the same α and |〈X〉(0)|, the value of M(t) decreases
when increasing the nonlinear parameter β, which implies that the local nonlinear interactions
prevent the loss of soliton during the dynamics. (ii) For the same β and |〈X〉(0)|, the value of M(t)
is generally larger when the fractional power α is smaller, indicating the change in the shape of
solution is mainly caused by the nonlocal interactions from the fractional Laplacian (−∆)α/2.

The dynamics of S(t) − S(0) in Figure 13 shows the similar phenomena, where the coherence
of the standard NLS (α = 1) is reflected by S(t) ≡ S(0) for any t ≥ 0. In the fractional case
1
2 < α < 1, S(t)− S(0) oscillates around zero. When α is far from 1

2 , the oscillation of S(t)− S(0)
generally reduces as β increases, which implies that the spread of the solution around its center of
mass decreases with strong local nonlinear interactions. However, when α is near the lower end of
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Figure 10: Time evolution of the solution of the fractional NLS (1.1) with weak nonlinear interac-
tions (i.e., small β). Decoherence is reduced due to local nonlinear interactions.

the range (12 , 1] and |〈X〉(0)| is larger, the strong local nonlinear interactions could introduce large
fluctuations that increase the spread of solution S(t) (see Fig. 13 bottom right).

Figure 14 shows the trajectories of (〈X〉, 〈Pα〉) for α = 0.75, with the effect of local nonlinear
interactions in the fractional NLS. Note that when α = 1, the trajectory of (〈X〉, 〈P 〉) is a circle of
radius of |〈X〉(0)|, independent of nonlinear parameter β. Comparing Figs. 8 (upper row) and 14,
we find that the local nonlinear interactions have a strong effect on the dynamics of (〈X〉, 〈Pα〉),
which prevent the decay of the expected position and momentum. For example, when α = 0.75
and 〈X〉(0) = 5, the trajectory is a spiral in the linear case (see Fig. 8 upper right), implying that
〈X〉(t) and 〈Pα〉(t) decay over time, however, it appears to move towards an attractor when β 6= 0
(see Fig. 14 right column). This nonlinear effect can be also observed in the time evolution of
〈X〉(t) and 〈Pα〉(t) in Fig. 2. Additionally, our extensive simulations show that when β is large
and α is far from 1

2 , the dynamics of (〈X〉, 〈Pα〉) becomes less sensitive to β, and the trajectories
of (〈X〉, 〈Pα〉) are similar to those in Fig. 14 (lower row).
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Figure 11: Time evolution of the solution of the fractional NLS (1.1) with strong nonlinear inter-
actions (i.e., large β). Decoherence is reduced due to nonlinear interactions.

In Figures 15 and 16, we present the dynamics of (Re(Z), Im(Z)) for various α and β, which
shows that including local nonlinear interactions significantly affects the dynamics of the solution.
When α = 1, the phase diagrams (Re(Z), Im(Z)) in Fig. 15 are completely different from the
linear case in Fig. 9, even though the trajectories of (〈X〉, 〈P 〉) are the same for both linear and
nonlinear cases. In the fractional cases with 1

2 < α < 1, the dynamics of (Re(Z), Im(Z)) again
reflect the effects of nonlinear interactions. When β is large, the time evolution of (Re(Z), Im(Z))
in the fractional cases become closer to that in the non-fractional case (see the lower right diagrams
in Fig. 16, which are more like those in Fig. 15). The stronger nonlinearity appears to reduce the
decoherence effect of the fractional Laplacian (−∆)α/2.

Remark 4.2. In Sections 4.2 and 4.3, the initial condition ψ0(x) is chosen as a translation of
the ground state ψg in (4.1), and decoherence is observed in dynamics of fractional Schrödinger
equation. In fact, similar decoherence structure is also observed with other initial profiles. Hence,
we conclude that the emergence of the decoherence is dependent on the fractional Laplacian (−∆)α/2,
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Figure 12: Time evolution of M(t) for studying the decoherence in the 1D NLS.
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Figure 13: Time evolution of S(t)− S(0) for studying the decoherence in the 1D NLS.

but largely independent of the initial profile ψg.

5 Discussion and conclusion

We studied the solution dynamics of the fractional Schödinger equation with a harmonic potential.
First, we obtained Newtonian equations of motion for the expectations of the position and momen-
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Figure 14: Trajectory of (〈X〉, 〈Pα〉) for time t ∈ [0, 100] in the fractional NLS (1.1) with initial
condition (4.1). A red asterisk represents the initial expectations.
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Figure 15: Trajectories of (Re(Z), Im(Z)) for time t ∈ [0, 100] in the standard NLS (1.1) with initial
condition (4.1) represented by a red asterisk. The standard NLS has periodic trajectories.

tum observables in the fractional Schrödinger equation, solving an open problem in the study of
soliton dynamics [9]. These equations are not closed in the fractional case, unlike the corresponding
equations for the standard Schrödinger equations.

Second, we numerically simulated the dynamics of the fractional Schrödinger equation with
a soliton as the initial condition. In the standard Schrödinger dynamics, no decoherence was
observed, consistent with results in the literature. The decoherence emerges in the fractional
Schrödinger dynamics, however, it remains weak if the initial center of mass (expected position) is
small. If the initial center of mass is large, the decoherence could become very strong when the
fractional power is small. Our results are consistent with those observed in the study of the discrete
Schrödinger equation with long-range interactions [49–51]. When a nonlinearity is added to the
fractional Schrödinger dynamics, decoherence and fluctuations are observed if the initial center of
mass is large. Compared to the results in linear cases, we found that the local nonlinear interactions
can reduce or delay the emergence of decoherence in the dynamics. Our results suggest that the
decoherence comes from the long-range interactions due to the fractional Laplacian rather than the
nonlinearity. More work is needed to better understand this decoherence in the soliton dynamics
of fractional Schrödinger equations.
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Figure 16: Trajectory of (Re(Z), Im(Z)) for time t ∈ [0, 100] in the fractional NLS (1.1) with
initial condition (4.1) represented by a red asterisk. The stronger nonlinearity (bottom row) gives
trajectories closer to the periodic trajectories of the traditional NLS in Fig. 15.
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