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FRACTIONAL SOBOLEV EXTENSION AND IMBEDDING

YUAN ZHOU

Abstract. Let Ω be a domain of Rn with n ≥ 2 and denote by W s, p(Ω) the
fractional Sobolev space for s ∈ (0, 1) and p ∈ (0, ∞). We prove that the
following are equivalent:

(i) there exists a constant C1 > 0 such that for all x ∈ Ω and r ∈ (0, 1],

|B(x, r) ∩ Ω| ≥ C1r
n;

(ii) Ω is a W s, p-extension domain for all s ∈ (0, 1) and all p ∈ (0, ∞);

(iii) Ω is a W s, p-extension domain for some s ∈ (0, 1) and some p ∈ (0, ∞);

(iv) Ω is a W s, p-imbedding domain for all s ∈ (0, 1) and all p ∈ (0, ∞);

(v) Ω is a W s, p-imbedding domain for some s ∈ (0, 1) and some p ∈ (0, ∞).

1. Introduction

Let n ≥ 2 and Ω be a domain (namely, connected open subset) of R
n. For

s ∈ (0, 1) and p ∈ (0, ∞), define the fractional Sobolev space on the domain Ω as

(1.1) W s, p(Ω) ≡
{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|n/p+s

∈ Lp(Ω× Ω)

}
with the norm

(1.2) ‖u‖W s, p(Ω) ≡
(∫

Ω

|u(x)|p dx+

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

)1/p

,

which is also called a Aronszajn, Gagliardo or Slobodeckij space in the literature
after the names of those who introduced them almost simultaneously; see [1, 6,
26]. The fractional Sobolev spaces are special cases of Besov and Triebel-Lizorkin
spaces; for a comprehensive treatment and their applications in different subjects
see [16, 17, 21, 22, 27–30] and the references therein.

Due to the applications, it attracts a lot of attention to extend fractional Sobolev
(and also Besov and Triebel-Lizorkin) functions on a domain to the entire R

n

continuously; see [4, 16, 17, 23–25, 27, 29, 30]. We say that Ω ⊂ R
n is a W s, p-

extension domain if every function u ∈ W s, p(Ω) can be extended to a function
ũ ∈ W s, p(Rn) continuously, that is, ũ(x) = u(x) for all x ∈ Ω, and there exists
a constant C = C(n, p, s,Ω) such that ‖ũ‖W s, p(Rn) ≤ C‖u‖W s, p(Ω). Jonsson and
Wallin [17] (and also Shvartsman [24]) essentially proved that a regular domain
must be a W s, p-extension domain for all 0 < s < 1 and all p ≥ 1. Recall that Ω
is called a regular domain (also called a plump domain) if it satisfies the measure
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density condition: there exists a constant C1 > 0 such that for all x ∈ Ω and all
r ∈ (0, 1],

(1.3) |B(x, r) ∩ Ω| ≥ C1r
n.

However, an arbitrary domain is not necessarily a W s, p-extension domain. For
example, Ω ≡ {x = (x1, x2) ∈ R

2 : 0 < x1 < 1, 0 < x2 < x2
1} is not a W s, p-

extension domain for all s ∈ (0, 1) and all p ∈ (2/s, ∞), as we show by hand in
Remark 1.5 below (without using Theorems 1.1 and 1.2). Such a fact was well
understood earlier by mathematicians.

The main aim of this paper is to characterize the W s, p-extension domains for
all s ∈ (0, 1) and all p ∈ (0, ∞) as below, and hence, give an answer to a question
by Nezza, Palatucci and Valdinoci (see [21, Section 5]).

Theorem 1.1. Let n ≥ 2 and Ω be a domain of R
n. Then the following are

equivalent:
(i) Ω is a regular domain;
(ii) Ω is a W s, p-extension domain for all s ∈ (0, 1) and all p ∈ (0, ∞);
(iii) Ω is a W s, p-extension domain for some s ∈ (0, 1) and some p ∈ (0, ∞).

Extension properties play important roles in applications; in particular, they can
be used to establish some imbedding properties. A domain Ω ∈ R

n is said to be a
W s, p-imbedding domain if the following holds:

(a) when sp < n , there exists a constant C > 0 such that for all u ∈ W s, p(Ω),
we have u ∈ Lnp/(n−sp)(Ω) and ‖u‖Lnp/(n−sp)(Ω) ≤ C‖u‖W s, p(Ω);

(b) when sp = n, there exist constants C3, C > 0 such that for all u ∈ W s, p(Ω)
and all balls B,

(1.4) inf
c∈R

∫
B∩Ω

exp

(
C3

|u(x)− c|
‖u‖W s, n/s(Ω)

)n/(n−s)

dx ≤ C|B|;

(c) when sp > n, there exists a constant C > 0 such that for all u ∈ W s, p(Ω)
and every pair of x, y ∈ Ω, we have |u(x)− u(y)| ≤ C‖u‖W s, p(Ω)|x− y|s−n/p.

We also have the following results.

Theorem 1.2. Let n ≥ 2 and Ω be a domain of R
n. Then the following are

equivalent:
(i) Ω is a regular domain;
(iv) Ω is a W s, p-imbedding domain for all s ∈ (0, 1) and all p ∈ (0, ∞);
(v) Ω is a W s, p-imbedding domain for some s ∈ (0, 1) and some p ∈ (0, ∞).

The proofs of Theorems 1.1 and 1.2 will be given in Section 2. We borrow some
ideas from [13, 14, 18, 24, 32].

Case (i)⇒(ii). If p ∈ [1, ∞), the proof has already been given by [16,24] via con-
structing an extension operator with the mean value uX = 1

|X|
∫
X
u(z) dz. Recall

that the procedure to construct an extension operator was essentially known after
[18]. If p ∈ (0, 1), the mean value uX makes no sense since a function u ∈ W s, p(Ω)
may fail to be local integrable. So the extension operator in [14,24] with the mean
value does not work here. To overcome the possible non-integrability, we improve
the extension operator in [14, 24] by replacing the mean vale uX with the median
value mu(X) defined in (2.2) below; this is the main novelty of this paper. The
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FRACTIONAL SOBOLEV EXTENSION AND IMBEDDING 961

point is that the median value mu(X) is well defined for arbitrary measurable func-
tions and enjoys the nice properties (2.5) and (2.6); see Lemma 2.2. The extension
operator with the median value works for all p ∈ (0, ∞) as shown in Section 2.

Case (ii)⇒(iv) or (iii)⇒(v). When n = sp, we need Lemma 2.4 below; when
sp < n and p ∈ (0, 1), we need to use property (2.6) of the median value; the other
cases are well known (see for example [21, Theorems 6.7 and 8.2]).

Case (v)⇒(i). We first control the W s, p(Ω)-norms of test functions by using the
volume of the ball B(x, r)∩Ω in Lemma 2.4 below. Then with a suitable slicing of
the ball B(x, r) ∩ Ω and iteration, we obtain a lower bound Crn for |B(x, r) ∩ Ω|
and hence give (1.3). We should point out that the idea to derive the measure
density property from the imbedding was originally invented by Haj�lasz, Koskela
and Tuoninen [13] for Sobolev W 1, p-extension domains with p ∈ [1, ∞). Here we
adapt their arguments to the setting of the fractional Sobolev W s, p-extension.

Finally, we make some remarks. The first remark says that the geometric char-
acterizations of W s, p-extension/-imbedding domains have some jumps both when
p goes from p < ∞ to p = ∞ for fixed s ∈ (0, 1) and when s goes from s < 1 to
s = 1 for fixed p ∈ [1, ∞]. In the second remark, we state some related results.
The third remark focuses on a domain which is not a W s, p-extension domain for
all s ∈ (0, 1) and all p > 2/s.

Remark 1.3. At the endpoint case s ∈ (0, 1) and p = ∞, and case s = 1 and
p ∈ [1, ∞], the geometric characterizations of W s, p-extension/-imbedding domains
are quite different from Theorems 1.1 and 1.2. Precisely,

Case s ∈ (0, 1) and p = ∞. We can define W s,∞(Ω) exactly by (1.1) with the
norm

‖u‖W s,∞(Ω) ≡ ‖u‖L∞(Ω) + sup
x, y∈Ω, x�=y

|u(x)− u(y)|
|x− y|s .

Then every domain is a W s,∞-extension domain. Indeed, notice that W s,∞(Ω) is
exactly the space of Hölder continuous functions of order s, and can be viewed as
the Lipschitz space with respect to the distance | ·− · |s. By the McShane extension
(see for example [15, Section 2.2]), every function u ∈ W s,∞ can be extended to a
function u, defined by

u(x) = sup
z∈Ω

[u(z) + L|x− z|s]

for all x ∈ R
n, where L = supx, y∈Ω, x�=y

|u(x)−u(y)|
|x−y|s . Set

ũ = min{‖u‖L∞(Ω), max{−‖u‖L∞(Ω), u}}.

It is easy to check that ũ = u on Ω, and, moreover, we obtain ũ ∈ W s,∞(Rn) with
‖ũ‖W s,∞(Rn) ≤ ‖u‖W s,∞(Ω) as desired. We omit the details.

Case s = 1 and p ∈ [1, ∞]. Define W 1, p(Ω) as the classical Sobolev space, that
is, W 1, p = {u ∈ Lp(Rn) : ∇u ∈ Lp(Ω)} with the norm ‖u‖W 1, p(Ω) = ‖u‖Lp(Ω) +

‖∇u‖Lp(Ω), where ∇u denotes the distributional gradient of u. Let Ω ⊂ R
2 be a

bounded simply connected domain. Then Gehring and Martio [8] proved that Ω
is a W 1,∞-extension domain if and only if it is quasiconvex. Goldshtein, Latfullin
and Vodop’yanov proved that Ω is a W 1, 2-extension domain if and only if it is a
uniform domain; see [11, 12, 31] and also [18]. When p ∈ (2, ∞), Buckley, Koskela
and Shvartsman proved that Ω is a W 1, p-extension/-imbedding domain if and only
if it is a weak (p − 2)/(p − 1)-cigar domain; see [3, 19, 25]. When p ∈ [1, 2), Ω
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962 YUAN ZHOU

is a W 1, p-imbedding domain if and only if it is a John domain; see [2]. Higher
dimensional analogies were also established therein.

Remark 1.4. The following results are closely relevant to our Theorems 1.1 and 1.2.
In [13, 14], Haj�lasz, Koskela and Tuominen first proved that the Wm,p-extension/-
imbedding domains satisfy the measure density property (1.3) for all m ∈ N and
p ∈ [1, ∞). With the aid of (1.3), they further give a characterization of Sobolev
W 1, p-extension domains for all p ∈ [1, ∞). Rychkov [23] and Triebel [29] consider
the extensions and restrictions of Besov and Triebel-Lizorkin spaces on Lipschitz
domains. Moreover, Shvartsman [24] considered the extensions and restrictions of
Besov and Triebel-Lizorkin spaces on regular domains. This, as well as the extension
of Besov spaces on regular sets established by Jonsson and Wallin [17], also works
for W s, p(Ω) when s ∈ (0, 1) and p ∈ [1, ∞].

Remark 1.5. In this remark, we check by hand (without using Theorems 1.1 and
1.2) that the domain Ω ≡ {x = (x1, x2) ∈ R

2 : 0 < x1 < 1, 0 < x2 < x2
1} is not a

W s, p-extension domain for all s ∈ (0, 1) and all p > 2/s. Such a fact was already
well understood by mathematicians.

Let s − 3/p < α < s − 2/p, and set u(x) = |x|α. Then u ∈ W s, p(Ω). Indeed,
by |u(x)− u(y)| ∼ |x|α−1|x− y|, if |x− y| ≤ |x|/2 and |u(x)− u(y)| ≤ |x− y|α, we
write

‖u‖pW s, p(Ω) �
∫
Ω

|x|αp dx+

∫
Ω

∫
B(x, |x|/2)

|x|p(α−1)

|x− y|2−p+sp
dy dx

+

∫
Ω

∫
Ω\B(x, |x|/2)

1

|x− y|2+sp−αp
dy dx.

Observing that when x = 0,
∫
B(x, |x|/2)

1
|x−y|2−p+sp dy � |x|p−sp and∫

Rn\B(x, |x|/2)

1

|x− y|2+sp−αp
dy � |x|αp−sp,

by 2 + αp− sp > −1 (due to s− 3/p < α), we have

‖u‖pW s, p(Ω) � 1 +

∫ 1

0

∫ x2
1

0

1

|x|−αp+sp
dx2 dx1 � 1 +

∫ 1

0

x2+αp−sp
1 dx1 � 1.

Assume that u can be extended continuously as a function ũ ∈ W s, p(R2). Then
by the imbedding of W s, p(R2) into the space of Hölder continuous functions or
order s− 2/p, we know that

sup
x, y∈Ω,x�=y

|u(x)− u(y)|
|x− y|s−2/p

� ‖u‖W s, p(Ω).

However, it is easy to see that

|u(x)− u(x/2)|
|x− x/2|s−2/p

∼ |x|α−s+2/p → ∞

as x → 0, which is a contradiction. So Ω is not a W s, p-extension domain.

The notation used in what follows is standard. We denote by C a positive
constant which is independent of the main parameters, but which may vary from
line to line. Constants with subscripts, such as C0, do not change in different
occurrences. The symbol A � B or B � A means that A ≤ CB. If A � B and
B � A, we then write A ∼ B. For any locally integrable function u and measurable
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set X, we denote by –
∫
X
u the average of f on X, namely, –

∫
X
f ≡ 1

|X|
∫
X
f dx. For

a set Ω and x ∈ R
n, we use d(x, Ω) to denote infz∈Ω |x− z|, the distance from x to

Ω.

2. Proofs of Theorems 1.1 and 1.2

Obviously, it is easy to see that (ii)⇒(iii) and (iv)⇒(v). It suffices to prove
(i)⇒(ii), (ii)⇒(iv), (iii)⇒(v), and (v)⇒(i) . Without loss of generality, we assume
that diamΩ = supx, y∈Ω |x− y| ≥ 2.

(i)⇒(ii). We first observe that |Ω \ Ω| = 0; see [14, Lemma 9], but we also give
the argument here. Indeed, for every x ∈ Ω \ Ω and r ∈ (0, 1], take xj ∈ Ω such
that xj → x as j → ∞. We have

|B(x, r) ∩ Ω| = lim
j→∞

|B(xj , r) ∩ Ω| ≥ C1r
n,

and hence

lim sup
r→0

|B(x, r) ∩ (Ω \ Ω)|
|B(x, r)| ≤ 1− C1C(n) < 1.

Thus x is not a Lebesgue point of χΩ\Ω. By the Lebesgue differential theorem, the

set of non-Lebesgue points, and hence Ω \ Ω, has measure 0. Therefore, without
loss of generality, we may assume that Ω = R

n. Let U ≡ R
n \Ω. Then U is an open

set and hence enjoys the following Whitney covering; see, for example, [14, Lemma
7].

Lemma 2.1. There exist a family {B(xi, ri)}i∈I of countable balls and a constant
M ≥ 1 such that

1. ri = d(xi, Ω)/10 for all i ∈ I, and the family of balls {B(xi, ri/5)}i∈I is a
maximal family of pairwise disjoint balls;

2. U =
⋃

i∈I B(xi, ri) =
⋃

i∈I B(xi, 5ri);
3. if x ∈ B(xi, 5ri) for some i ∈ I, then 5ri < d(x,Ω) < 15ri;
4. for each i ∈ I, there is x∗

i ∈ Ω such that d(xi, x
∗
i ) < 15ri;

5.
∑

i∈I χB(xi,5ri)(x) ≤ M for all x ∈ U .

Associated to this covering, there exists a partition of unity (see for example
[14, Lemma 8]). That is, there exists a family of smooth functions {ϕi}i∈I such
that

1. suppϕi ⊂ 2B(xi, ri) for all i ∈ I;
2. ϕi(x) ≥ 1/M for all x ∈ B(xi, ri) and all i ∈ I;
3. there exists a constant L > 0 such that for all i ∈ I, |∇ϕi| ≤ L/ri;
4.
∑

i∈I ϕi = χΩ.
Let J be the collection of all i ∈ I such that ri ≤ 1, and set V ≡ {x ∈ R

n :
d(x, Ω) ≤ 8}. For each u ∈ W s, p(Ω), we define

(2.1) Ẽu(x) ≡

⎧⎨⎩
u(x), x ∈ Ω,
0, x ∈ Ω \ Ω,∑

i∈J ϕi(x)mu(B(x∗
i , ri) ∩ Ω), x ∈ U,

where x∗
i is as in Lemma 2.1 and mu(X) denotes the median value of u on set X

defined by

(2.2) mu(X) ≡ max

{
a ∈ R, |{x ∈ X : u(x) < a}| ≤ |X|

2

}
.
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964 YUAN ZHOU

Moreover, let Ψ be a Lipschitz function on R
n such that Ψ = 1 on Ω, Ψ = 0 on

R
n \ V and 0 ≤ Ψ ≤ 1 on V \ Ω. Set

(2.3) Eu ≡ ΨẼu.

We point out that the extension operator Ẽ in (2.1), and hence E in (2.3), is an
improvement of the construction of [14, Proof of Theorem 6], where, instead of the
median value mu(B(x∗

i , ri)∩Ω), they use the mean value –
∫
B(x∗

i , ri)∩Ω
u(z) dz. But

we do need the median value to handle the case p ∈ (0, 1) since it has the important
property (2.6).

We are going to show that Eu gives the desired extension of u into W s, p(Rn).
Obviously, Eu = u on Ω. To see ‖Eu‖W s, p(Rn) � ‖u‖W s, p(Ω), it suffices to prove

that Ẽu ∈ W s, p(V ) and

(2.4) ‖Ẽu‖W s, p(V ) � ‖u‖W s, p(Ω).

Indeed, assume that (2.4) holds for the moment. From this and 0 ≤ Ψ ≤ 1, it
follows that

‖Eu‖Lp(Rn) ≤ ‖Ẽu‖Lp(V ) � ‖u‖Lp(Ω).

Moreover, by Fubini’s theorem, we have∫
Rn

∫
Rn

|Eu(x)− Eu(y)|p
|x− y|n+sp

dx dy

=

∫
V

∫
V

|Ψ(x)Ẽu(x)−Ψ(y)Ẽu(y)|p
|x− y|n+sp

dx dy

�
∫
V

(∫
V \B(x, 1)

|Ẽu(x)|p + |Ẽu(y)|p
|x− y|n+sp

dy

)
dx

+

∫
V

(∫
V ∩B(x, 1)

|Ψ(x)Ẽu(x)−Ψ(y)Ẽu(y)|p
|x− y|n+sp

dy

)
dx

≡ L1 + L2.

By noticing that
∫
Rn\B(x, 1)

1
|x−y|n+sp dx � 1 and

∫
Rn\B(y, 1)

1
|x−y|n+sp dy � 1 and by

Fubini’s theorem, we have

L1 ≤
∫
V

|Ẽu(x)|p
(∫

V \B(x, 1)

1

|x− y|n+sp
dy

)
dx

+

∫
V

|Ẽu(y)|p
(∫

V \B(y, 1)

1

|x− y|n+sp
dx

)
dy

� ‖Ẽu‖pLp(V ).

Since
∫
B(x, 1)

|x − y|−n−sp+p dy � 1, 0 ≤ Ψ ≤ 1 and Ψ is a Lipschitz function, we

also have

L2 �
∫
V

(∫
V ∩B(x, 1)

|Ẽu(x)− Ẽu(y)|p
|x− y|n+sp

dy

)
dx

+

∫
V

(∫
V ∩B(x, 1)

|Ψ(x)−Ψ(y)|p|Ẽu(x)|p
|x− y|n+sp

dy

)
dx
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� ‖Ẽu‖pW s, p(V ) +

∫
V

|Ẽu(x)|p
(∫

B(x, 1)

1

|x− y|n+sp−p
dy

)
dx

� ‖Ẽu‖pW s, p(V ).

Thus Eu ∈ W s, p(Rn) and ‖Eu‖W s, p(Rn) � ‖Ẽu‖W s, p(Ω). So if (2.4) holds, we will
have Eu ∈ W s, p(Rn) and ‖Eu‖W s, p(Rn) � ‖u‖W s, p(Ω).

To prove (2.4), we need the following important properties of the median value,
which were essentially proved in [5, Lemma 2.4] and [10, (2.4)] (see also [20, (5.9)]).

Lemma 2.2. For every δ ∈ (0, 1] and u ∈ Lδ
loc (Ω), we have

(2.5) u(x) = lim
r→0

mu(B(x, r) ∩ Ω)

for almost all x ∈ Ω. Moreover, for every ball B with its center in Ω and each
c ∈ R,

(2.6) |mu(B ∩ Ω)− c| ≤
{
2 –

∫
B∩Ω

|u(w)− c|δ dw
}1/δ

.

Proof. Observe that for all 0 < r < dist (x, ∂Ω), B(x, r)∩Ω = B(x, r), and hence
mu(B(x, r) ∩ Ω) = mu(B(x, r)). So the first conclusion (2.5) was exactly the one
proved in [5, Lemma 2.2]. The second conclusion (2.6) was essentially proved in
[10, (2.4)] (see also [20, (5.9)]). For convenience, we write the details here.

Let B be an arbitrary ball centered at Ω, and let c ∈ R. We first claim that

mu(B ∩ Ω)− c = mu−c(B ∩ Ω) and |mu(B ∩ Ω)| ≤ m|u|(B ∩ Ω).

Indeed, observe that

|{x ∈ B ∩ Ω, u(x) < mu(B ∩ Ω)}| ≤ |B ∩ Ω|/2
implies that

|{x ∈ B ∩ Ω, u(x)− c < mu(B ∩ Ω)− c}| ≤ |B ∩ Ω|/2.
By the definition of mu−c(B∩Ω), we have mu(B∩Ω)−c ≤ mu−c(B∩Ω). Similarly,

|{x ∈ B ∩ Ω, u(x)− c < mu−c(B ∩ Ω)}| ≤ |B ∩ Ω|/2
implies that

|{x ∈ B ∩ Ω, u(x) < mu−c(B ∩ Ω) + c}| ≤ |B ∩ Ω|/2.
So by the definition ofmu(B∩Ω), we havemu−c(B∩Ω)+c ≤ mu(B∩Ω). Therefore,
we have mu(B ∩ Ω)− c = mu−c(B ∩ Ω). Moreover, if mu(B ∩ Ω) ≥ 0, then

|{x ∈ B∩Ω, |u(x)| < mu(B∩Ω)}| ≤ |{x ∈ B∩Ω, u(x) < mu(B∩Ω)}| ≤ |B∩Ω|/2,
and hence, by the definition of m|u|(B∩Ω), implies that mu(B∩Ω) ≤ m|u|(B∩Ω).
If mu(B ∩ Ω) < 0, for every 0 < a < |mu(B ∩ Ω)|, we have

|{x ∈ B ∩ Ω, |u(x)| < a}| ≤ |{x ∈ B ∩ Ω, u(x) > −a}|
= |B ∩ Ω| − |{x ∈ B ∩ Ω, u(x) ≤ −a}|.

Observe that

|{x ∈ B ∩ Ω, u(x) ≤ −a}| ≥ |B ∩ Ω|/2;
otherwise, −a ≤ mu(B ∩ Ω), which is a contradiction. We obtain

|{x ∈ B ∩ Ω, |u(x)| < a}| ≤ |B ∩ Ω|/2,
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which implies that a ≤ m|u|(B ∩ Ω), and hence |mu(B ∩ Ω)| ≤ m|u|(B ∩ Ω).
The above claim leads to that

|mu(B ∩ Ω)− c| = |mu−c(B ∩ Ω)| ≤ m|u−c|(B ∩ Ω).

By this, (2.6) is reduced to

(2.7) m|u−c|(B ∩ Ω) ≤
{
2 –

∫
B∩Ω

|u(w)− c|δ dμ(w)
}1/δ

.

To see (2.7), set σ ≡ –
∫
B∩Ω

|u(w) − c|δ dw. By Chebyshev’s inequality, for every
a > 2, we have∣∣∣{w ∈ B ∩ Ω : |u(w)− c| ≥ (aσ)1/δ

}∣∣∣ = ∣∣{w ∈ B ∩ Ω : |u(w)− c|δ ≥ aσ
}∣∣

≤ (aσ)−1

∫
B∩Ω

|u(w)− c|δ dw

<
|B ∩ Ω|

2
.

This yields that ∣∣∣{w ∈ B ∩ Ω : |u(w)− c| < (aσ)1/δ
}∣∣∣ > |B ∩ Ω|

2
,

and hence, by the definition of m|u−c|(B ∩ Ω), we have m|u−c|(B ∩ Ω) ≤ (aσ)1/δ.
Letting a → 2, we obtain (2.7) and hence prove (2.6). This finishes the proof of
Lemma 2.2. �

We return to the proof of (2.4). First, we show that ‖Ẽu‖Lp(V ) � ‖u‖Lp(Ω). For

x ∈ V \ Ω, denote by Ix the collection of i ∈ I such that x ∈ B(xi, 2ri). Then by
Lemma 2.1,

(2.8) �Ix ≤ M,

and for i ∈ Ix, by (1.3),

(2.9)
B(x∗

i , ri) ⊂ B(x, 5d(x, Ω)),
|B(x∗

i , ri) ∩ Ω| ∼ |B(x, 5d(x, Ω)) ∩ Ω| ∼ |B(x, 5d(x, Ω))|.

Notice that if i ∈ I \ J , then ri ≥ 1 and hence d(z, Ω) > 8ri ≥ 8 for all z ∈
B(xi, 2ri); that is, B(xi, 2ri) ∩ Ω = ∅. Thus Ix ⊂ J and

∑
i∈Ix

ϕi(x) = 1. Take

δ ≡ min{1/2, p/2}. By Lemma 2.2, (2.8) and (2.9), we have

Ẽu(x) ≤
∑
i∈Ix

ϕi(x)|mu(B(x∗
i , ri) ∩ Ω)|

�
∑
i∈Ix

ϕi(x)

(
–

∫
B(x∗

i , ri)∩Ω

|u(z)|δ dz
)1/δ

�
(

–

∫
B(x, 5d(x,Ω))

|u(z)|δχΩ(z) dz

)1/δ

� Mδ(uχΩ)(x),
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where and in what follows,

Mδ(g)(x) ≡ sup
B(x, r)

(
–

∫
B(x, r)

|g(z)|δ dz
)1/δ

= [M(|g|δ)]1/δ,

and M is the Hardy-Littlewood operator. By the Lp/δ-boundedness of M, we

obtain ‖Ẽu‖Lp(V ) � ‖u‖Lp(Ω).
Moreover, we write∫

V

∫
V

|Ẽu(x)− Ẽu(y)|p
|x− y|n+sp

dx dy

=

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy + 2

∫
V \Ω

∫
Ω

|Ẽu(x)− u(y)|p
|x− y|n+sp

dy dx

+

∫
V \Ω

∫
V \Ω

|Ẽu(x)− Ẽu(y)|p
|x− y|n+sp

dx dy

≡ H1 +H2 +H3.

Obviously, H1 ≤ ‖u‖pW s, p(Ω). For x ∈ V \Ω and y ∈ Ω, by
∑

i∈Ix
ϕi(x) = 1, Lemma

2.2, (2.8) and (2.9), we obtain

|Ẽu(x)− u(y)| ≤
∑
i∈Ix

ϕi(x) |mu(B(x∗
i , ri) ∩ Ω)− u(y)|

≤
∑
i∈Ix

ϕi(x)

(
–

∫
B(x∗

i , ri)∩Ω

|u(z)− u(y)|δ dz
)1/δ

�
(

–

∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(y)|δ dz
)1/δ

.

For y ∈ Ω and z ∈ B(x, 5d(x, Ω)) ∩ Ω, since |x− y| ≥ d(x, Ω), we always have

|z − y| ≤ |z − x|+ |x− y| ≤ 5d(x, Ω) + |x− y| � |x− y|.
Hence

|Ẽu(x)− u(y)|
|x− y|n/p+s

�
(

–

∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(y)|δ
|z − y|nδ/p+sδ

dz

)1/δ

� Mδ

(
|u(·)− u(y)|
| · −y|n/p+s

χΩ(·)
)
(x),

which together with the Lp/δ-boundedness of Hardy-Littlewood maximal operator
implies that

H2 �
∫
V \Ω

∫
Ω

[
Mδ

(
|u(·)− u(y)|
| · −y|n/p+s

χΩ(·)
)
(x)

]p
dy dx

�
∫
Ω

∫
Rn

[
Mδ

(
|u(·)− u(y)|
| · −y|n/p+s

χΩ(·)
)
(x)

]p
dx dy

�
∫
Ω

∫
Rn

|u(x)− u(y)|p
|x− y|n/p+s

χΩ(x) dx dy

�
∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy � ‖u‖pW s, p(Ω).
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To estimate H3 for the given x, we split V \ Ω into two parts:

X1(x) ≡ {y ∈ V \ Ω : |x− y| ≥ 1

2
max{d(x, Ω), d(y, Ω)}}

and

X2(x) ≡ {y ∈ V \ Ω : |x− y| < 1

2
max{d(x, Ω), d(y, Ω)}}.

Write

H3 =

∫
V \Ω

∫
X1(x)

|Ẽu(x)− Ẽu(y)|p
|x− y|n+sp

dy dx+

∫
V \Ω

∫
X2(x)

|Ẽu(x)− Ẽu(y)|p
|x− y|n+sp

dy dx

≡ H3, 1 +H3, 2.

If x ∈ V \ Ω and y ∈ X1(x), by∑
i∈Ix

ϕi(x) = 1 =
∑
i∈Iy

ϕi(y)

we have

Ẽu(x)− Ẽu(y) =
∑
i∈Ix

∑
j∈Iy

ϕi(x)ϕj(y)[mu(B(x∗
i , ri) ∩ Ω)−mu(B(x∗

j , rj) ∩ Ω)].

Applying Lemma 2.2 twice, by (2.9) we have

|mu(B(x∗
i , ri) ∩ Ω)−mu(B(x∗

j , rj) ∩ Ω)|

�
(

–

∫
B(x∗

i , ri)∩Ω

–

∫
B(x∗

j , rj)∩Ω

|u(z)− u(w)|δ dz dw
)1/δ

�
(

–

∫
B(y, 5d(x,Ω))∩Ω

–

∫
B(x, 5d(y,Ω))∩Ω

|u(z)− u(w)|δ dz dw
)1/δ

.

Observe that for all z ∈ B(x, 5d(x, Ω)) ∩ Ω and w ∈ B(y, 5d(y, Ω)) ∩ Ω, since
|x− y| ≥ 1

2 max{d(x, Ω), d(y, Ω)},

|z − w| ≤ |x− y|+ 5d(x, Ω) + 5d(y, Ω) � |x− y|.

This together with (2.8) leads to the fact that

|Ẽu(x)− Ẽu(y)|
|x− y|n/p+s

�
(

–

∫
B(x, 5d(x,Ω))∩Ω

–

∫
B(y, 5d(y,Ω))∩Ω

|u(z)− u(w)|δ
|z − w|nδ/p+sδ

dz dw

)1/δ

� (Mδ ×Mδ)(F )(x, y),

where

F (z, w) ≡ |u(z)− u(w)|
|w − z|n/p+s

χΩ(z)χΩ(w),

and (Mδ ×Mδ)(F )(x, y) denotes the iterated Hardy-Littlewood maximal function
of F . That is, first for a given w, taking the maximal function of F (z, w) with re-
spect to the variable z and evaluating at x, we get Mδ(F (·, w)(x). Then for a given
x, taking maximal function of Mδ(F (·, w)(x) with respect to w and evaluating at
y, we obtain (Mδ ×Mδ)(F )(x, y).
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By the Lp/δ-boundedness of Hardy-Littlewood operator, we obtain

H3, 1 �
∫
Rn

∫
Rn

[(Mδ ×Mδ)(F )(x, y)]p dx dy

�
∫
Rn

∫
Rn

|u(x)− u(y)|p
|x− y|n+sp

χΩ(x)χΩ(y) dx dy

�
∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dy dx

� ‖u‖pW s, p(Ω).

If x ∈ V \ Ω and y ∈ X2(x), noticing that
∑

i∈Ix∪Iy
[ϕi(x) − ϕi(y)] = 0, by

Lemma 2.1, we arrive at

|Ẽu(x)− Ẽu(y)|

=

∣∣∣∣∣∣
∑

i∈Ix∪Iy

[ϕi(x)− ϕi(y)]mu(B(x∗
i , ri) ∩ Ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Ix∪Iy

[ϕi(x)− ϕi(y)] [mu(B(x∗
i , ri) ∩ Ω)−mu(B(x, 5d(x, Ω)) ∩ Ω)]

∣∣∣∣∣∣
�

∑
i∈Ix∪Iy

|x− y|
ri

|mu(B(x∗
i , ri) ∩ Ω)−mu(B(x, 5d(x, Ω)) ∩ Ω)| .

Applying Lemma 2.2 twice with δ < p and the Hölder inequality, we have

|mu(B(x∗
i , ri) ∩ Ω)−mu(B(x, 5d(x, Ω)) ∩ Ω)|

≤
{

–

∫
B(x∗

i , ri)∩Ω

–

∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(w)|δ dw dz

}1/δ

≤

⎧⎨⎩ –

∫
B(x∗

i , ri)∩Ω

[
–

∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(w)|p dw
]δ/p

dz

⎫⎬⎭
1/δ

.

For all i ∈ Ix ∪ Iy, we claim that ri ∼ d(x, Ω),

B(x∗
i , ri) ⊂ B(x, 20d(x, Ω)) and |B(x∗

i , ri)| ∼ |B(x, 20d(x, Ω)) ∩ Ω|.

If i ∈ Ix, this follows from (2.9). To see this for i ∈ Iy, observe that

(2.10)
1

3
d(y, Ω) ≤ d(x, Ω) ≤ 3d(y, Ω).

Indeed, taking y ∈ Ω so that |y−y| = d(y, Ω), by |x−y| ≤ 1
2 max{d(x, Ω), d(y, Ω)}

we have

d(x, Ω) ≤ |x− y| ≤ |x− y|+ |y − y|

≤ 1

2
d(x, Ω) +

1

2
d(y, Ω) + d(y, Ω)

=
1

2
d(x, Ω) +

3

2
d(y, Ω),
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which implies that d(x, Ω) ≤ 3d(y, Ω). Similarly, we have d(y, Ω) ≤ 3d(x, Ω). Thus
B(y, 5d(y, Ω)) ⊂ B(x, 20d(x, Ω)), and by (1.3),

|B(y, 5d(y, Ω)) ∩ Ω| ∼ |B(x, 20d(x, Ω)) ∩ Ω|.
So, for all i ∈ Iy, by Lemma 2.1 and (1.3) we have

B(x∗
i , ri) ⊂ B(y, 5d(y, Ω)) ⊂ B(x, 20d(x, Ω)),

|B(x∗
i , ri) ∩ Ω| ∼ |B(y, 5d(y, Ω)) ∩ Ω| ∼ |B(x, 20d(x, Ω)) ∩ Ω|,

as desired in the above claim.
Moreover, by (2.10), for all z, w ∈ B(x, 20d(x, Ω))∩Ω, we have |z−w| � d(x, Ω).

This together with �Ix + �Iy � 1 (by Lemma 2.1) yields that

|Ẽu(x)− Ẽu(y)|

≤ |x− y|
d(x, Ω)

⎧⎨⎩ –

∫
B(x, 20d(x,Ω))∩Ω

[
–

∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(w)|p dw
]δ/p

dz

⎫⎬⎭
1/δ

≤ |x− y|
d(x, Ω)1−s

⎧⎨⎩ –

∫
B(x, 20d(x,Ω))∩Ω

[∫
B(x, 5d(x,Ω))∩Ω

|u(z)− u(w)|p
|z − w|n+sp

dw

]δ/p
dz

⎫⎬⎭
1/δ

≤ |x− y|
d(x, Ω)1−s

Mδ

((∫
Ω

|u(·)− u(w)|p
| · −w|n+sp

dw

)1/p

χΩ(·)
)
(x).

This implies that

H3, 2 �
∫
V \Ω

(∫
X2(x)

|x− y|p−n−sp

d(x, Ω)p−sp
dy

)

×
[
Mδ

((∫
Ω

|u(·)− u(w)|p
| · −w|n+sp

dw

)1/p

χΩ(·)
)
(x)

]p
dx.

Since (2.10) implies that X2(x) ⊂ B(x, 15d(x, Ω)), we have∫
X2(x)

|x− y|p−n−sp

d(x, Ω)p−sp
dy �

∫
B(x, 15d(x,Ω))

|x− y|p−n−sp

d(x, Ω)p−sp
dy � 1.

This together with the Lp(Rn)-boundedness of Mδ yields that

H3, 2 �
∫
Rn

[
Mδ

((∫
Ω

|u(·)− u(w)|p
| · −w|n+sp

dw

)1/p

χΩ(·)
)
(x)

]p
dx

�
∫
Rn

[(∫
Ω

|u(x)− u(w)|p
|x− w|n+sp

dw

)1/p

χΩ(x)

]p
dx

�
∫
Ω

∫
Ω

|u(x)− u(w)|p
|x− w|n+sp

dw dx

� ‖u‖pW s, p(Ω).

Now we arrive at

H3 ≤ H3, 1 +H3, 2 � ‖u‖pW s, p(Ω).

Combining the estimates of H1, H2 and H3 yields (2.4). This gives (iii).
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(ii)⇒(iv). If sp = n and p ≥ 1, this is well known; see, for example, [21, Theorems
6.5 and 8.2].

Case p ∈ (0, 1). For u ∈ Ẇ s, p(Rn), set

g(x) ≡ sup
j∈Z

2js

(
–

∫
B(x, 2−j)

|u(z)−mu(B(x, 2−j))|p dz
)1/p

.

For each j, by Lemma 2.2 and |x− z| ≤ 2−j for all z ∈ B(x, 2−j), we have

–

∫
B(x, 2−j)

|u(z)−mu(B(x, 2−j))|p dz

� –

∫
B(x, 2−j)

|u(z)− u(x)|p dz + |u(x)−mu(B(x, 2−j))|p

� –

∫
B(x, 2−j)

|u(z)− u(x)|p dz

� 2−jsp

∫
B(x, 2−j)

|u(z)− u(x)|p
2−j(n+sp)

dz

� 2−jsp

∫
B(x, 2−j)

|u(z)− u(x)|p
|z − x|n+sp

dz.

Hence

g(x) � sup
j∈Z

(∫
B(x, 2−j)

|u(z)− u(x)|p
|x− z|n+sp

dz

)1/p

�
(∫

Rn

|u(z)− u(x)|p
|x− z|n+sp

dz

)1/p

,

which implies that ‖g‖Lp(Rn) � ‖u‖W s, p(Rn). For each ball B(0, 2−k), we have

‖u‖Lnp/(n−sp)(B(0, 2−k)) ≤ ‖u−mu(B(·, 2−k))‖Lnp/(n−sp)(B(0, 2−k))

+ sup
x∈B(0, 2−k)

|mu(B(x, 2−k))||B(0, 2−k)|(n−sp)/np.

Notice that by Lemma 2.2, for each x ∈ B(0, 2−k),

|mu(B(x, 2−k))||B(0, 2−k)|(n−sp)/np

≤ |B(0, 2−k)|(n−sp)/np

(
–

∫
B(x, 2−k)

|u(z)|p dz
)1/p

� ‖u‖Lp(Rn)|B(0, 2−k)|−s/n.

Moreover, for almost all x ∈ B(0, 2−k), we claim that

(2.11) |u(x)−mu(B(x, 2−k))| �
(∫

B(0, 2−k+2)

[g(z)]p/2

|z − x|n−sp/2
dz

)2/p

.

Assume that this holds for the moment. Denoting by Isp/2 the Riesz potential of

order sp/2 and by its boundedness from L2(Rn) to L2n/(n−sp)(Rn), we have

‖u−mu(B(·, 2−k))‖Lnp/(n−sp)(B(0, 2−k))

� ‖Isp/2(gp/2)‖2/pL2n/(n−sp)(Rn)
� ‖gp/2‖2/pL2(Rn)

� ‖g‖Lp(Rn) � ‖u‖W s, p(Rn).
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Thus,

‖u‖Lnp/(n−sp)(B(0, 2−k)) � ‖u‖W s, p(Rn) + ‖u‖Lp(Rn)|B(0, 2−k)|−s/n,

which, when k → ∞, implies that ‖u‖Lnp/(n−sp)(Rn) � ‖u‖W s, p(Rn).

To see (2.11), for almost all x ∈ B, we have u(x) = limj→∞ mu(B(x, 2−j)) by
Lemma 2.2 with Ω = R

n, and hence

|u(x)−mu(B(x, 2−k))|

=

∣∣∣∣∣∣
∑
j≥k

[mu(B(x, 2−j−1))−mu(B(x, 2−j))]

∣∣∣∣∣∣
≤
∑
j≥k

|mu(B(x, 2−j−1))−mu(B(x, 2−j))|.

Choose a ball B(xj , 2
−j−2) ⊂ B(x, 2−j)\B(x, 2−j−1). For each z ∈ B(xj , 2

−j−2),
we have B(x, 2−j) ⊂ B(z, 2−j+2), and hence, by Lemma 2.2 again,

|mu(B(x, 2−j))−mu(B(x, 2−j−1))|
� |mu(B(x, 2−j))−mu(B(z, 2−j+2))|
+|mu(B(z, 2−j−4))−mu(B(x, 2−j+2))|

�
j∑

�=j−1

(
–

∫
B(x, 2−�)

|u(w)−mu(B(z, 2−j+2))|p dw
)1/p

�
(

–

∫
B(z, 2−j+2)

|u(w)−mu(B(z, 2−j+2))|p dw
)1/p

� 2−jsg(z),

which implies that

|mu(B(x, 2−j))−mu(B(x, 2−j−1))| � 2−js

(
–

∫
B(xj , 2−j−2)

[g(z)]p/2 dz

)p/2

.

Observing that |z − x| ∼ 2−j for all z ∈ B(xj , 2
−j−2) and {B(xj , 2

−j−2)}j≥k

are pairwise disjoint, by the Cauchy-Schwarz inequality we arrive at

|u(x)−mu(B(x, 2−k))| �
∑
j≥k

2−js

(
–

∫
B(xj , 2−j−2)

[g(z)]p/2 dz

)p/2

� 2−ks

⎛⎝∑
j≥k

–

∫
B(xj , 2−j−2)

[g(z)]p/2 dz

⎞⎠p/2

�
(∫

B(0, 2−k+2)

[g(z)]p/2

|z − x|n−sp/2
dz

)p/2

.

This gives (2.11).
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Case sp = n. This relies on the following result.

Lemma 2.3. Let s ∈ (0, 1). Then there exist positive constants C4, C > 0 such
that for all balls B ⊂ R

n and u ∈ W s, n/s(8B),

(2.12)

∫
B

exp

(
C4

|u(x)− uB|
‖u‖W s, n/s(8B)

)n/(n−s)

dx ≤ C|B|.

Now assume that Ω is a W s, n/s-extension domain and let u ∈ W s, p(Ω). Then
u has an extension ũ ∈ W s, p(Rn) with ‖u‖W s, p(Rn) ≤ C3‖u‖W s, p(Ω). For each ball
B = B(x, r) with x ∈ Ω and r ∈ (0, 1], by Lemma 2.3, we have that (2.12) holds
for ũ. Then ‖ũ‖Ẇ s, n/s(8B) ≤ ‖ũ‖W s, n/s(Rn) ≤ C‖u‖W s, n/s(Ω) yields that

inf
c∈R

∫
B∩Ω

exp

(
C3

|u(x)− c|
C‖u‖W s, n/s(Ω)

)n/(n−s)

dx � |B|.

This gives (iv).

Proof of Lemma 2.3. Assume that B ≡ B(x0, 2
−k0) for some x0 ∈ R

n and k0 ∈ Z.

Let u ∈ Ẇ s, p(4B) and take

g(x) ≡ sup
j≥k0−2

2js –

∫
B(x, 2−j)

|u(z)− uB(x, 2−j)| dz

for all x ∈ 2B and g(x) = 0 otherwise. Then ‖g‖Ln/s(8B) � ‖u‖W s, n/s(8B), which
follows from

g(x) � sup
j≥k0−2

(∫
B(x, 2−j)

|u(z)− u(x)|n/s
|x− z|2n dz

)n/s

�
(∫

8B

|u(z)− u(x)|n/s
|x− z|2n dz

)n/s

.

Moreover, for almost all x ∈ B, we have

(2.13) |u(x)− uB| �
∫
B(x0, 2−k0+2)

|g(y)|
|y − x|n−s

dy.

Indeed, by an argument similar to but easier than the case p ∈ (0, 1), for every
Lebesgue point x ∈ B of u,

|u(x)− uB(x, 2−k0−1)| �
∫
B(x0, 2−k0+2)

|g(y)|
|y − x|n−s

dy.

Similarly,

|uB − uB(x, 2−k0−1)| � –

∫
B

|u(z)− uB | dz �
∫
B(x0, 2−k0+2)

|M(g)(y)|
|y − x|n−s

dy.

This gives (2.13).
Applying [9, Lemma 7.2], for all q ≥ n/s, we obtain

‖u− uB‖Lq(B) ≤ q1−s/n+1/q|B(0, 1)|1−s/n|B|1/q‖M(g)‖Ln/s(4B),

which, together with the Ln/s(Rn)-boundedness of M and the fact that

‖g‖q
Ln/s(8B)

� ‖u‖W s, n/s(8B),
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implies that

–

∫
B

|u(z)− uB |q dz � q1+(n−s)/(nq)|B(0, 1)|nq/(n−s)‖u‖W s, n/s(8B).

Thus when q ≥ n/s− 1, we have

–

∫
B

|u(z)− uB|qn/(n−s) dz � nq

n− s

(
|B(0, 1)| nq

n− s
‖u‖n/(n−s)

W s, n/s(8B)

)q

.

Taking σ > [e|B(0, 1)|n/(n− s)](n−s)/n, this yields that

–

∫
B

∑
j≥
n/s�

1

j!

(
|u(x)− uB|

σ‖u‖W s, n/s(8B)

)jn/(n−s)

dx

�
∑
j≥1

(
n|B(0, 1)|

(n− s)σn/(n−s)

)j
jj

(j − 1)!

� 1.

Notice that by Hölder’s inequality, we have

–

∫
B


n/s�∑
j=0

1

j!

(
|u(x)− uB |

σ‖u‖W s, n/s(8B)

)jn/(n−s)

dx

�

n/s�∑
j=0

⎛⎝ –

∫
B

|u(x)− uB|n/s

‖u‖n/s
W s, n/s(8B)

dx

⎞⎠(n−s)/(j−s)

� 1.

This gives (2.12) and thus finishes the proof of Lemma 2.3. �

(iii)⇒(v). This case follows from the arguments that are exactly the same as in
the case (ii)⇒(iv).

(v)⇒(i). We need the following estimates.

Lemma 2.4. Let s ∈ (0, 1) and p ∈ (0, ∞). For z ∈ Ω and 0 < t < r ≤ 1, define
a function u on Ω by setting

(2.14) u(x) ≡

⎧⎪⎨⎪⎩
1, if x ∈ B(z, t) ∩ Ω,
r − |x− z|

r − t
, if x ∈ (B(z, r) \B(z, t)) ∩ Ω,

0, if x ∈ Ω \B(z, r).

Then there exists a constant C > 0 independent of z, t, r such that

(2.15) ‖u‖W s, p(Ω) ≤ C
|B(z, r) ∩ Ω|1/p

(r − t)s
.

The proof of Lemma 2.4 will be given later. With the help of Lemma 2.4, we
consider the following cases: Case sp < n, Case sp = n and Case sp > n, separately.

Case sp < n. Take arbitrary z ∈ Ω and r ∈ (0, 1]. Notice that there always
exists a unique b ∈ (0, 1) such that

|B(z, br) ∩ Ω| = 1

2
|B(z, r) ∩ Ω|.
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We claim that there exists a constant C > 0, independent of x and r, such that

(2.16) r − br ≤ C|B(z, r) ∩ Ω|1/n.
Indeed, since Ω is a W s, p-imbedding domain, we know that ‖u‖Lnp/(n−sp)(Ω) �
‖u‖W s, p(Ω), and hence by Lemma 2.4 and ‖u‖Lnp/(n−sp)(Ω)≥|B(z, br)∩Ω|(n−sp)/(np),
we further have

|B(z, br) ∩ Ω|(n−sp)/(np) � |B(z, r) ∩ Ω|1/p
(r − br)s

,

which yields r − br � |B(z, r) ∩ Ω|1/n. This gives (2.16). Moreover, let b0 = 1 and
bj ∈ (0, 1) for j ∈ N such that

(2.17) |B(z, bjr) ∩ Ω| = 2−1|B(z, bj−1r) ∩ Ω| = 2−j |B(z, r) ∩ Ω|.
Then bj → 0 as j → ∞, and hence

r =
∑
j∈N

(bj−1r − bjr)

�
∑
j∈N

|B(z, bj−1r) ∩ Ω|1/n

�
∑
j∈N

2−j/n|B(z, r) ∩ Ω|1/n

≤ |B(z, r) ∩ Ω|1/n,
as desired.

Case sp = n. Take arbitrary z ∈ Ω and r ∈ (0, 1]. Let b0 = 1 and bj ∈ (0, 1) for
j ∈ N such that (2.17) holds. Considering the function u associated to z, b1r, b2r
as in (2.15), by Lemma 2.3, and applying (1.4) to the ball B(z, r), we have

inf
c∈R

∫
B(z, r)∩Ω

exp

(
C
|u(x)− c|(b1r − b2r)

s

|B(x, b1r) ∩ Ω|s/n

)n/(n−s)

dx ≤ C2r
n.

Observe that, for each c ∈ R, |u − c| ≥ 1/2 either on (B(z, r) \ B(z, b1r)) ∩ Ω or
on B(z, b2r) ∩ Ω. By (2.17), we have

|B(z, b1r) ∩ Ω| exp
(

(b1r − b2r)
sn/(n−s)

|B(x, b1r) ∩ Ω|s/(n−s)

)
� rn,

which implies that

b1r − b2r ≤ |B(x, b1r) ∩ Ω|1/n
[
log

(
Crn

|B(z, b1r) ∩ Ω|

)](n−s)/sn

.

Similar inequalities also hold for bjr − bj+1r with j ≥ 2. This leads to

b1r =
∑
j∈N

(bjr − bj+1r) ≤
∑
j∈N

|B(x, bjr) ∩ Ω|1/n
[
log

(
C(bj−1r)

n

|B(z, bjr) ∩ Ω|

)](n−s)/sn

≤
∑
j∈N

2−j/n|B(x, r) ∩ Ω|1/n
[
log

(
2j

Crn

|B(z, r) ∩ Ω|

)](n−s)/sn

� |B(x, r) ∩ Ω|1/n
[
log

(
Crn

|B(z, r) ∩ Ω|

)](n−s)/sn

.
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If b1 ≥ 1/10, observing that t(log 1
t )

(n−s)/s ≥ 1 implies that t � 1, we have

|B(x, r) ∩ Ω|1/n � r, as desired. If b1 ≤ 1/10, we choose R = 2r/5 and a point
y ∈ B(z, r)∩Ω such that |y−z| = b1r+R/2. Then B(z, b1r) ⊂ B(y, R) ⊂ B(z, r)

but B(y, R/2) ∩ B(z, b1r) = ∅. Therefore, if |B(y, b̃1R) ∩ Ω| = 1
2 |B(y, R) ∩ Ω|,

then by |B(z, b1r) ∩ Ω| ≥ 1
2 |B(y, R) ∩ Ω| we have b̃1 ≥ 1/2. Applying the re-

sult when b1 ≥ 1/10, we conclude that |B(y, R) ∩ Ω| � Rn, which implies that
|B(z, r) ∩ Ω| � rn, as desired.

Case sp > n. For z ∈ Ω and r ∈ (0, 1], take t ∈ (0, r/4), and for such z, r, t, set
u as in (2.14). Then for all x, y ∈ Ω, by Lemma 2.4 and r/2 ≤ r − t ≤ r, we have

|u(x)− u(y)| ≤ C‖u‖W s, p(Ω)|x− y|s−n/p � |B(z, r) ∩ Ω|1/p
rs

|x− y|s−n/p.

In particular, let x ∈ B(z, t) ∩ Ω and y ∈ (B(z, r + r/2) ∩ Ω) \ B(z, r). Then
|x − z| ≤ r/4, r ≤ |y − z| ≤ 3r/2, and hence r/2 ≤ |x − y| ≤ 2r. Therefore,
rn � |B(z, r) ∩ Ω|, as desired.

Proof of Lemma 2.4. Obviously, ‖u‖Lp(Ω) � |B(z, r) ∩ Ω|1/p. It then suffices to
prove that ∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy � |B(z, r) ∩ Ω|
(r − t)sp

.

To this end, observing u = 0 on Ω \B(z, r), we write∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy = 2

∫
B(z, r)∩Ω

∫
Ω\B(z, r)

|u(x)|p
|x− y|n+sp

dx dy

+

∫
B(z, r)∩Ω

∫
B(z, r)∩Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

≡ H1 +H2.

For each x ∈ B(z, r) ∩ Ω, we have Ω \B(z, r) ⊂ R
n \B(x, r − |x− z|), and hence∫

Ω\B(z, r)

1

|x− y|n+sp
dy ≤

∫
Rn\B(x, r−|x−z|)

1

|x− y|n+sp
dy ≤ 1

(r − |x− z|)sp .

Thus

H1 ≤
∫
(B(z, r)\B(z, t))∩Ω

(
r − |x− z|

r − t

)p
1

(r − |x− z|)sp dx

+

∫
B(z, t)∩Ω

1

(r − |x− z|)sp dx

� |B(z, r) ∩ Ω|
(r − t)sp

.

Write

H2 =

∫
B(z, r)∩Ω

∫
B(x, r−t)∩Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

+

∫
B(z, r)∩Ω

∫
(B(z, r)\B(x, r−t))∩Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

≡ H2,1 +H2,2.
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Since |∇u| ≤ 1/(r − t), for all x, y ∈ Ω, we have

|u(x)− u(y)| ≤ 1

r − t
||x− z| − |y − z|| ≤ 1

r − t
|x− y|.

Then by
∫
B(x, r−t)

1
|x−y|n+sp−p dy � (r − t)p−sp we obtain

H2, 1 ≤
∫
B(z, r)∩Ω

∫
B(x, r−t)

1

(r − t)p
1

|x− y|n+sp−p
dy dx

�
∫
B(z, r)∩Ω

(r − t)p−sp

(r − t)p
dx

� |B(z, r) ∩ Ω| 1

(r − t)sp
.

Observing 0 ≤ u ≤ 1 and
∫
Rn\B(x, r−t)

1
|x−y|n+sp dy � (r − t)−sp, we also have

H2, 2 �
∫
B(z, r)∩Ω

∫
Rn\B(x, r−t)

1

|x− y|n+sp
dy dx

�
∫
B(z, r)∩Ω

1

(r − t)sp
dx

� |B(z, r) ∩ Ω| 1

(r − t)sp
.

So H2 � Ω|
(r−t)sp , as desired. This finishes the proof of Lemma 2.4. �
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