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Variational calculus and fractional calculus have played asignificant role in various areas of applied sciences such as, among
others, Physics, Engineering and Economics. This topic is deeply connected to the very recent developments in theoretical
aspects and especially in the numerical schemes of fractional differential equations. Based on 1+1 field formalism, a new
fractional Lagrangian and Hamiltonian formalisms are presented within the Riemann-Liouville fractional derivatives and the
an-harmonic oscillator is analyzed. This formalism can be applied to analyze the control problems as well as for the fractional
quantization procedure.
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1 Introduction

Fractional derivatives [1,2] started to play an important role in many branches of science and engineering. Various applications
of fractional calculus in physics [3–6], robotics [7] and control theory [8, 9] have been obtained. For almost all systems that
contain internal damping, the traditional energy-based approach cannot be used to obtain the correct equations describing the
behavior of a nonconservative system. By using fractional calculus techniques, the Lagrangian and the Hamiltonian equations
of motion for non-conservative systems can be obtained [5,6,8]. As it is known, a characteristic of the Hamiltonian formalism
for non-local theories is that it contains the Euler-Lagrange equations as Hamiltonian constraints.In this paper the fractional
Lagrangian to start with isLf(q(t), aDα

t q(t)) and it becomes the classical Lagrangian forα = 1 [5, 6, 8]. HereaDα
t q(t)

denotes the left Riemann-Liouville fractional derivatives defined as follows [1,2]

aDα
t q(t) =

1

Γ(n − α)

(

d

dt

)n
t

∫

a

(−τ + t)n−α−1q(τ)dτ, (1)

whereΓ(α) denotes the gamma function [2]. The fractional derivativescontain memory and they have more restrictive
properties compared to the classical ones [1, 2]. Let us takean analytic functionq(t) andp(t) = H(t − a), whereH(t) is
the Heaviside function. Using the fractional Leibniz rule and the formula for the fractional differentiation of the Heaviside
function we obtain [2]

aDα
t q(t) =

(t − a)−α

Γ(1 − α)
q(t) +

∞
∑

k=1

(

α

k

)

(t − a)k−α

Γ(k − α + 1)
q(k)(t) (2)

under the assumptiont > a.

2 A new fractional Hamilton formalism

For a given classical LagrangianL(q(t), q̇(t)) the corresponding fractional one is obtained by replacing the classical deriva-
tives with the fractional ones. The existence of the infinitehigher order derivatives in (2) and in the fractional Lagrangian
Lf(q(t), aDα

t q(t))lead us to an important issue regarding the form of the corresponding Euler-Lagrange and Hamiltonian
equations. The solution is to use the formula (2) and to consider the dynamical variableq(t) as a 1+1 dimensional field
Q(x, t) such that the following chirality conditiondQ(x,t)

dt
= ∂xQ(x, t) is valid [10]. Q(x, t) = q(x + t) assures the one-to-

one correspondence betweenq(t) andQ(x, t) [10]. Ostrogradski’s coordinates are defined as follows [10]

Q(n)(t) = (∂x)nQ(x, t) |x=x0 , (3)

where the discontinuity curvex0(t) = x0 is a constant. By making use of the inverse relation providedby the Taylor
expansion aroundx = x0 we obtain
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Q(x, t) =
∞
∑

n=0

(x − x0)
n

n!
Q(n)(t). (4)

The chirality condition is given bẏQ(n)(t) = Q(n+1)(t). The Ostrogradski’s momentaP(n)(t) are define as in the following

P(n)(t) =

∫

∞

−∞

dx
(x − x0)

n

n!
P (x, t). (5)

From (5) the form ofP (x, t) is given by

P (x, t) =

∞
∑

n=0

P(n)(t)(−∂x)nδR(x − x0). (6)

By using (6) the expression forP(n)(t) becomes

P(n)(t) =
∞
∑

m=n

(−∂t)
m−n ∂Lf [Q](t)

∂Q(m+1)(t)
. (7)

As a result, the fractional Euler-Lagrange equation becomes Ṗ(0)(t) =
∂Lf [Q](t)

∂Q(0)(t)
and the Hamilton’s equations are given

by

Ṗ(n)(t) + P(n−1)(t) =
∂Lf [Q](t)

∂Q(n)(t)
, n ∈ N. (8)

HereLf [Q](t) is obtained fromL(q(t), aDα
t q(t)) by taking into account thatQ(x, t) = q(x + t). The action can be

constructed by using the above Hamiltonian, therefore we can quantize the theory. In this manner a physical interpretation
for the fractional action is obtained. The effect of fractional derivative is given byα which appears in the decomposition of
the fractional derivative (2). We mention that this formalism differs from the classical ones [5, 6, 8] based by replacing the
classical derivatives by the fractional ones and by using the fractional integration by parts. This new formalism can beapplied
for the fractional control problems and it is an alternativemethod to the fractional variational principles developedin [5,6,8].

2.1 Example

For the an-harmonic oscillator of unit mass and frequencyω, the classical Lagrangian

L =
q̇(t)2

2
−

ω2q2(t)

2
−

ω2q3(t)

2
(9)

can be fractionalized as

Lf =
(aDα

t q(t))2

2
−

ω2q2(t)

2
−

ω2q3(t)

2
. (10)

According to the new formalism presented before we obtain the fractional Euler-Lagrange equation as

Ṗ(0)(t) = (t−a)−α

Γ(1−α) aDα
t Q(t, x) and the fractional Hamilton’s equations have the form

Ṗ(n)(t) + P(n−1)(t) = (aDα
t Q(t, x))

(

α

n

)

(t−a)n−α

Γ(n−α+1) , n ∈ N.
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