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Variational calculus and fractional calculus have playstbaificant role in various areas of applied sciences suchrasng
others, Physics, Engineering and Economics. This topieéply connected to the very recent developments in theateti
aspects and especially in the numerical schemes of fradtifierential equations. Based on 1+1 field formalism, & ne
fractional Lagrangian and Hamiltonian formalisms are enésd within the Riemann-Liouville fractional derivativand the
an-harmonic oscillator is analyzed. This formalism cangygiad to analyze the control problems as well as for thetifvael
guantization procedure.
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1 Introduction

Fractional derivatives [1,2] started to play an importah in many branches of science and engineering. Variodgagipns
of fractional calculus in physics [3—6], robotics [7] anchtw! theory [8, 9] have been obtained. For almost all systémat
contain internal damping, the traditional energy-basem@gch cannot be used to obtain the correct equations degrthe
behavior of a nonconservative system. By using fractioakldus techniques, the Lagrangian and the Hamiltoniaatiapus
of motion for non-conservative systems can be obtained ., &s it is known, a characteristic of the Hamiltonian faism
for non-local theories is that it contains the Euler-Lagi@aequations as Hamiltonian constraints.In this paperrdetional
Lagrangian to start with id s(¢(¢), ,D*q(t)) and it becomes the classical Lagrangiandoe 1 [5, 6, 8]. Here,D{'q(t)

denotes the left Riemann-Liouville fractional derivawdefined as follows [1, 2]

Do) = o (4 /( oy lg(rr, &

a

whereI'(«) denotes the gamma function [2]. The fractional derivativestain memory and they have more restrictive
properties compared to the classical ones [1, 2]. Let usadakanalytic functiory(¢) andp(t) = H(t — a), whereH (t) is
the Heaviside function. Using the fractional Leibniz rukedghe formula for the fractional differentiation of the Wesde
function we obtain [2]

—a) @ o a —a k—«
Do) = S0 Sa0+ 30 () @
under the assumptian> a.

2 A new fractional Hamilton formalism

For a given classical Lagrangidr{q(t), ¢(t)) the corresponding fractional one is obtained by repladiegciassical deriva-
tives with the fractional ones. The existence of the infihigher order derivatives in (2) and in the fractional Lagyian
Ls(q(t), D q(t))lead us to an important issue regarding the form of the cporeding Euler-Lagrange and Hamiltonian
equations. The solution is to use the formula (2) and to clemghe dynamical variablg(t) as a 1+1 dimensional field
Q(z,t) such that the following chirality conditioﬁ% = 0,Q(z,t) is valid [10]. Q(z,t) = q(x + t) assures the one-to-
one correspondence betwegn) andQ(x, t) [10]. Ostrogradski’s coordinates are defined as followg [10

Q(n) (t) = (02)"Q(x,1) |o=z0> 3)

where the discontinuity curvey(t) = x is a constant. By making use of the inverse relation proviggthe Taylor
expansion around = z, we obtain
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The chirality condition is given b)(™) (t) = Q("*+1)(¢). The Ostrogradski's momenta,(t) are define as in the following

Py (t) = /ﬁ dz(“n%wp(z, ). (5)
From (5) the form ofP(z, t) is given by
P(z,t) = > Py (t)(—0x)"6r(x — ). (6)
n=0
By using (6) the expression fd,, (t) becomes
= OL[Q)(t
Py () = n;<—at>m-"wf+%. ™)

As a result, the fractional Euler-Lagrange equation bemﬁ@@ (t) = %ﬁ{g and the Hamilton’s equations are given
by

P(n)(t) + Py (t) = %7

Here L[Q](¢) is obtained fromL(¢(t), .Df ¢(t)) by taking into account tha®(x,t) = ¢(« + t). The action can be
constructed by using the above Hamiltonian, therefore weqeentize the theory. In this manner a physical interpietat
for the fractional action is obtained. The effect of frantdbderivative is given byv which appears in the decomposition of
the fractional derivative (2). We mention that this forrsali differs from the classical ones [5, 6, 8] based by reptattie
classical derivatives by the fractional ones and by usiedridictional integration by parts. This new formalism carapplied
for the fractional control problems and it is an alternativethod to the fractional variational principles developeb, 6, 8].

n e N. (8)

21 Example
For the an-harmonic oscillator of unit mass and frequenadye classical Lagrangian
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can be fractionalized as

(.Dfa(t)®  w?¢*(t) w?¢’(t)
L= — — . 1
f 5 5 5 (10)
According to the new formalism presented before we obtaarfrctional Euler-Lagrange equation as

—a)®

P(O) (t) = %GD?Q(L x) and the fractional Hamilton’s equations have the form

. a o _g)n—
Py (®) + Pa() = (07Q) (3 ) #2iyom e I
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