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Abstract—Fractional solutions of a parallel plate waveguide originally
with impedance walls have been derived and fractional impedance of
the guiding walls have been investigated. Two distinct ranges of wall
impedance have been found in which fractional impedance behaves in
opposite ways. For 0 < α < 1, the fractional impedance is inductive in
range 1 and is capacitive in range 2, where α is fractional parameter.
For 1 < α < 2, the fractional impedance is capacitive in range 1
and is inductive in range 2. At the boundary of the two ranges, the
fractional impedance is independent of α and is resistive. This behavior
is periodic with period α = 2.

1. INTRODUCTION

Fractional derivative/integrals are mathematical operators involving
differentiation/integration to arbitrary non-integer orders. These
operators, possess interesting mathematical properties and have been
studied in the field of fractional calculus [1]. Engeta applied the
tools of fractional calculus in various problems of electromagnetic
fields and waves, and obtained interesting results. These results
highlight certain notable features and promising potential applications
of fractional operators in electromagnetic theory. Fractionalization
of such operators has led us to novel solutions, interpretable as
“fractional solutions”, for certain electromagnetic problems [2–5]. An
interesting and useful work done by Engheta is fractionalization of curl
operator [2]. Mathematical recipe to fractionalize a linear operator
is available in [2, 5]. Some interesting works are reported in [6, 7].
Problem of implementation of fractional order electric potential has
been addressed in [7]. Debnath deals with recent applications of
fractional calculus in science and engineering [8].
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Recently, many authors have been interested in exploring the
fractional dual solutions for various problems [9–24], while waveguides
with impedance walls have been analyzed in [25–30]. In this work we
have analyzed the fractional solutions of a parallel plate waveguide
with impedance walls. In Section 2, the waveguide with impedance
walls is studied and fractional solutions have been derived in Section 3.
In Section 4, transverse impedance of the fractional guide is studied
and the plots are discussed in Section 5. The paper is concluded in
Section 6.

2. IMPEDANCE WALLS PARALLEL PLATE
WAVEGUIDE

Consider a parallel plate waveguide consisting of two plates of finite
impedance Zw separated by a dielectric medium with constitutive
parameters ε and µ. The separation between the two parallel plates is
b. One plate is located at y = 0, while other plate is located at y = b.
The plates are assumed to be of infinite extent. As a general scheme,
we solve the Helmholtz equation only for the axial component and use
these solutions to write the transverse components [11, 12, 17]. Let
us suppose that a TM wave (Hz = 0) is propagating in z-direction.
Solution for the electric field can be obtained by vector Helmholtz
equation as

∇2E + k2E = 0

For exponential z-dependence e.g., exp(γz), above equation can be
simplified in terms of tangential part of ∇ as

∇t
2E + h2E = 0

where
h2 = k2 + γ2

For parallel plates structure of infinite dimension along x-axis, we can
ignore the x-dependence and hence electric field can be describe by
following differential equation

d

dy

2

E + h2E = 0

general solution of this equation for longitudinal component can be
written as

Ez(y) = A cos(hy) + B sin(hy) (1a)
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Applying the impedance boundary conditions

Ez|(y=0) = ZwHx|(y=0) (IBC-1)
Ez|(y=b) = −ZwHx|(y=b) (IBC-2)

Using these boundary conditions in Equation (1a) and making use of
the Maxwell equations, we can solve for the relation of the constants
A, B and as well as eigen value h as

A = FB

where F = (Zw
η )(−jk

h ).
h can be obtained from the solution of the following eigen value

equation

h =
1
b

tan−1

(
F

1 + F

)
.

Using this relation we can write the electric and magnetic field
components as

Ez(y) = B[F cos(hy) + sin(hy)] (1b)

Ey(y) = B
(γ

h

)
[F sin(hy) − cos(hy)] (1c)

ηHx(y) = B

(−jk

h

)
[F sin(hy) − cos(hy)] (1d)

Ex(y) = Hy(y) = Hz(y) = 0

Re-introducing the z-dependance exp(−γz), Equations (1b)–(1d) can
be arranged for total electric and magnetic fields as a combination of
two TEM plane waves bouncing back and fourth obliquely between the
two plates as

E = E1 + E2 (2a)
ηH = ηH1 + ηH2 (2b)

where (E1,H1) are the electric and magnetic fields associated with one
plane wave and are given below

E1 =
B

2
(F − j)

{
ẑ − jγ

h
ŷ

}
exp(jhy − γz) (3a)

ηH1 = x̂

(−k

h

)
B

2
(F − j) exp(jhy − γz) (3b)
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while electric and magnetic fields (E2,H2) associated with second plane
wave and are given below

E2 =
B

2
(F + j)

{
ẑ +

jγ

h
ŷ

}
exp(−jhy − γz) (4a)

ηH2 = x̂

(
k

h

)
B

2
(F + j) exp(−jhy − γz) (4b)

3. FRACTIONAL PARALLEL PLATE WAVEGUIDE
HAVING IMPEDANCE WALLS

Fields E1 and H1 given by Equation (3) are related through the
Maxwell equations as

∇× E1 = −jωµH1

(jhŷ − γẑ) × E1 = −jωµH1

1
(jk)

(−jhŷ + γẑ) × E1 = ηH1

k1 × E1 = ηH1 (5a)

Similarly

1
(jk)

(−jhŷ + γẑ) × ηH1 = −E1

k1 × ηH1 = −E1 (5b)

where k1 = 1
(jk)(−jhŷ + γẑ).

Fields E2 and H2 in Equations (4) are also related through
Maxwell equation as given below

∇× E2 = −jωµH2

− (jhŷ + γẑ) × E2 = −jωµH2

1
(jk)

(jhŷ + γẑ) × E2 = ηH2

k2 × E2 = ηH2 (6a)

Similarly

1
(jk)

(jhŷ + γẑ) × ηH2 = −E2

k2 × ηH2 = −E2 (6b)
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where k2 = 1
(jk)(jhŷ+γẑ). It may be noted that |k1| = |k2| = 1. It may

also be deduced from above expressions that for set of fields (E1,H1),
the operator

(
1
jk∇×

)
is equivalent to cross product operator (k1×)

while for set of fields (E2,H2), the operator
(

1
jk∇×

)
is equivalent

to cross product operator given by (k2×). It is also obvious that if
(E1, ηH1) is one set of solutions to Maxwell’s equation then other
set of solutions to Maxwell’s equations is (ηH1,−E1). Similarly if
(E2, ηH2) is one set of solutions to Maxwell’s equation then other set
of solutions to Maxwell’s equations is (ηH2,−E2). Our interest is to
determine the fields which may be regarded as intermediate step of the
field (E, ηH) and (ηH,−E), that is, new set of solutions (Efd, ηHfd).
For this purpose solutions sets (Eifd, ηHifd) with i = 1, 2 are required.
(Eifd, ηHifd) may be obtained by using the following relations

Eifd =
1

(jk)α
[(∇×)αEi] (7a)

ηHifd =
1

(jk)α
[(∇×)αηHi] , i = 1, 2 (7b)

Solutions (Efd, ηHfd) may be obtained by linear combination of
(E1fd, ηH1fd) and (E2fd, ηH2fd), that is

Efd = E1fd + E2fd (8a)
ηHfd = ηH1fd + ηH2fd (8b)

In order to determine the fractional dual solutions (Eifd, ηHifd),
the eigenvalues and eigenvectors of the two cross product operators
(k1×,k2×) are required. Eigenvectors and eigenvalues of the operator
(k1×) are

A1 =
1√
2

[
x̂ − γ

k
ŷ − j

h

k
ẑ

]
, a1 = j

A2 =
1√
2

[
x̂ +

γ

k
ŷ + j

h

k
ẑ

]
, a2 = −j

A3 = −j
h

k
ŷ +

γ

k
ẑ, a3 = 0

Fields (E1,H1) may be expressed in terms of the eigenvectors of the
operator, that is

E1 = [PA1 + QA2 + RA3] exp(jhy − γz) (9)
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where the coefficients are given below

P =
B

2
√

2

(
jk

h

)
(F − j)

Q = − B

2
√

2

(
jk

h

)
(F − j)

R = 0

The expression for Efd is obtained by applying fractional curl operator
on vector E. Fractionalization of curl operator means fractionalization
of the equivalent cross product operator. Fractionalization of
cross product operator means fractionalization of eigenvalues of the
operator. Fractionalizing the eigenvalues of the operator yields

E1fd = [(a1)αPA1 + (a2)αQA2 + (a3)αRA3] exp(jhy − γz) (10)

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E1, ηH1) and solutions
set (ηH1,−E1) are given by

E1fd = (k1×)α E1

=
B

2

(
jk

h

)
(F − j)

[
j sin

(απ

2

)
x̂ − γ

k
cos

(απ

2

)
ŷ

−j
h

k
cos

(απ

2

)
ẑ

]
exp(jhy − γz) (11a)

ηH1fd = (k1×)α ηH1

=
B

2

(
jk

h

)
(F − j)

[
j cos

(απ

2

)
x̂ +

γ

k
sin

(απ

2

)
ŷ

+j
h

k
sin

(απ

2

)
ẑ

]
exp(jhy − γz) (11b)

Eigenvectors and eigenvalues of the operator (k2×) are

A1 =
1√
2

[
x̂ − γ

k
ŷ + j

h

k
ẑ

]
, a1 = j

A2 =
1√
2

[
x̂ +

γ

k
ŷ − j

h

k
ẑ

]
, a2 = −j

A3 = j
h

k
ŷ +

γ

k
ẑ, a3 = 0

Fields may be expressed in terms of eigenvectors of the operator k2×
E2 = [PA1 + QA2 + RA3] exp(−jhy − γz) (12)
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where coefficients are

P =
B

2
√

2

(−jk

h

)
(F + j)

Q = − B

2
√

2

(−jk

h

)
(F + j)

R = 0

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E2, ηH2) and solutions
set (ηH2,−E2) are given by

E2fd = (k2×)α E2

=
B

2

(−jk

h

)
(F + j)(−1)α

[
−j sin

(απ

2

)
x̂ − γ

k
cos

(απ

2

)
ŷ

+j
h

k
cos

(απ

2

)
ẑ

]
exp(−jhy − γz) (13a)

ηH2fd = (k2×)α ηH2

=
B

2

(−jk

h

)
(F + j)(−1)α

[
j cos

(απ

2

)
x̂ − γ

k
sin

(απ

2

)
ŷ

+j
h

k
sin

(απ

2

)
ẑ

]
exp(−jhy − γz) (13b)

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E, ηH) and solutions set
(ηH,−E) may be obtained by substituting results by (11) and (13)
in (8) and are given below

Efd = B

(
jk

h

)
exp

(−jαπ

2

)
exp(−γz)

[
j sin

(απ

2

) {
F cos

(
hy +

απ

2

)
+ sin

(
hy +

απ

2

)}
x̂

−
(

jγ

k

)
cos

(απ

2

){
F sin

(
hy+

απ

2

)
− cos

(
hy+

απ

2

)}
ŷ

−
(

jh

k

)
cos

(απ

2

){
F cos

(
hy+

απ

2

)
+sin

(
hy+

απ

2

)}
ẑ

]
(14a)

ηHfd = B

(−k

h

)
exp

(−jαπ

2

)
exp(−γz)

[
j cos

(απ

2

) {
F sin

(
hy +

απ

2

)
− cos

(
hy +

απ

2

)}
x̂
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−
(

jγ

k

)
sin

(απ

2

){
F cos

(
hy +

απ

2

)
+sin

(
hy+

απ

2

)}
ŷ

+
(

jh

k

)
sin

(απ

2

){
F sin

(
hy+

απ

2

)
−cos

(
hy+

απ

2

)}
ẑ

]
(14b)

It may be noted that for α = 0

Efd = E
ηHfd = ηH

For α = 1

Efd = ηH
ηHfd = −E

Which shows that both the fractional fields satisfy the duality principle.

4. TRANSVERSE IMPEDANCE OF FRACTIONAL
WAVEGUIDE

Transverse impedance of the guide can be defined as

Zfdzx =
Efdz

Hfdx

= jη

(
h

k

) {
F cos

(
hy +

απ

2

)
+ sin

(
hy +

απ

2

)}
{

F sin
(
hy +

απ

2

)
− cos

(
hy +

απ

2

)} (15a)

Zfdxz = −Efdx

Hfdz

= jη

(
k

h

) {
F cos

(
hy +

απ

2

)
+ sin

(
hy +

απ

2

)}
{

F sin
(
hy +

απ

2

)
− cos

(
hy +

απ

2

)} (15b)

where F = (Zw
η )(−jk

h ).
Equation (15) can be analyzed for normalized impedance zw = Zw

η

of the fractional guiding surface e.g., y = 0 as

zfdzx = j

(
h

k

)
{

zw

(−jk

h

)
cos

(απ

2

)
+ sin

(απ

2

)}
{

zw

(−jk

h

)
sin

(απ

2

)
− cos

(απ

2

)} (16a)
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zfdxz = j

(
k

h

)
{

zw

(−jk

h

)
cos

(απ

2

)
+ sin

(απ

2

)}
{

zw

(−jk

h

)
sin

(απ

2

)
− cos

(απ

2

)} (16b)

For the limiting cases, Equations (16a) and (16b) can be analyzed as

α = 0 ⇒ zfdzx = −zw, zfdxz = −zw

(
k

h

)2

α = 1 ⇒ zfdzx = −
(

h

k

)2 1
zw

, zfdxz = − 1
zw

For PEC walls i.e., zw = 0

α = 0 ⇒ zfdzx = 0, zfdxz = 0

α = 1 ⇒ zfdzx = ∞, zfdxz = ∞

which is in agreement with our previous work. For intermediate values
of α, Equations (16a) and (16b) have been discussed in the next section.

5. RESULTS AND DISCUSSION

Fractional impedances given in Equations (16a) and (16b) have been
plotted for a mode having specific value of k/h (e.g., k

h = 2 in this
case) in the range of 0 ≤ α ≤ 4. The plots are given in Figures 1–4.
Fractional impedance have been found periodic with the period α = 2.
As given in the previous section, impedance value at α = 0 is converted
into the admittance at α = 1. After that it reverses and goes back to
the original value at α = 2.

Figure 1 shows the plot of real part of Zfdxz verses α. It can be
observed that it has zero value for all values of α. As the the value of
the normalized impedance, zw, of the wall increases from zero, a sharp
negative peak appears at α = 1, 3 which broadens and the magnitude
of peak value decreases with increasing zw in the range 0 < zw < h

k . At
zw = h

k it becomes independent of α and assumes a non zero constant
value. In the range zw > h

k , a negative peak starts appearing near
α = 0, 2, 4 and the width of the peak decreases while its magnitude
increases with increasing value of zw.

Plot of reactive part of Zfdxz has been shown in Figure 2. This
shows the oscillatory behavior of the imaginary part around zero value
of reactance such that it reverses the polarity at integer values of α. At
zw = 0, it has infinite value at α = 1, 3, and zero value at α = 0, 2, 4.
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Figure 1. Real of Zfdxz vs. α.

Figure 2. Imaginary of Zfdxz vs. α.
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Figure 3. Real of Zfdzx vs. α.

Figure 4. Imaginary of Zfdxz vs. α.
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In the range 0 < zw < h
k , the reactance is negative with decreasing

absolute value for increasing value of zw for 0 < α < 1 while behavior
is reverse for 1 < α < 2. At zw = h

k , reactance becomes zero for all
values of α. In the range, zw > h

k , the reactance becomes positive and
increases with increasing value of zw for 0 < α < 1 and reverses for
1 < α < 2.

Figures 3 and 4 are the plots of real and imaginary values of Zfdzx.
These figures show the behavior similar to Zfdxz with difference only
in magnitude.

6. CONCLUSION

For an impedance walls fractional parallel plate waveguide, two distinct
ranges of the ordinary impedance have been found in which fractional
impedance of the guiding walls behaves in different ways depending
upon the value of the fractional parameter α. The behavior is periodic
with period α = 2. For 0 < α < 1, the impedance of walls is inductive
for 0 ≤ zw < h

k and is capacitive for zw > h
k . For 1 < α < 2, the

impedance of walls is capacitive for 0 ≤ zw < h
k and is inductive for

zw > h
k . For zw = h

k , the impedance is independent of α and is resistive.
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