
Fractional wavelet transform
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The wavelet transform, which has had a growing importance in signal and image processing, has been
generalized by association with both the wavelet transform and the fractional Fourier transform. Pos-
sible implementations of the new transformation are in image compression, image transmission, tran-
sient signal processing, etc. Computer simulations demonstrate the abilities of the novel transform.
Optical implementation of this transform is briefly discussed. © 1997 Optical Society of America
1. Introduction

The wavelet transform has been shown to be a suc-
cessful tool for dealing with transient signals, data
compression, bandwidth reduction, and time-
dependent frequency analysis of short transient sig-
nals,1 optical correlators,2,3 sound analysis,4
representation of the human retina, and representa-
tion of fractal aggregates.5 The different wavelet
components are scaled and shifted versions of a
mother wavelet. Mathematically, the wavelet oper-
ation is equivalent to performing a Fourier transform
of the input function, multiplying it by a differently
scaled Fourier transforms of the wavelet mother
function, and eventually performing an inverse Fou-
rier transform.2

Commonly, the mother wavelet function h~x! is a
typical window function multiplied by a modulation
term. The scaled and shifted function set generated
is coined daughter wavelets hab~x!:

hab~x! 5
1

Îa
hSx 2 b

a D, (1)

where b is the shift amount, a is the scale parameter,
and =a is the normalization factor. A typical wave-
let mother function is the Morlet wavelet function.4
The definition of this function is

h~x! 5 2 cos~2pf0x!expS2
x2

2D, (2)
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and it’s Fourier transform is

H~u! 5 2p$exp@22p2~u 2 f0!
2# 1 exp@22p2~u 1 f0!

2#%.

(3)

One can see that this function is a real nonnegative
and has a Gaussian ring shape.

A one-dimensional wavelet transform of a signal
f ~x! is defined as6

W~a, b! 5 *
2`

`

f ~x!hab*~x!dx. (4)

Note that Eq. 4 has a type of correlation between the
input signal f ~x! and the scaled and shifted mother
wavelet function hab~x!. This fact is the basis for the
optical implementation of this transform. Since
each wavelet component is actually a differently
scaled bandpass filter, the wavelet transform is a
localized transformation and thus is efficient for pro-
cessing transient signals. If the input is decom-
posed into several wavelet components and
reconstructed back, the mean-square error between
the original and reconstructed images is shown to be
not too high, even when a restricted number of wave-
let components is used. This property was success-
fully implemented for digital image compression and
transmission.

The reconstruction of an image from its wavelet
decomposition is achieved with

f ~x! 5
1
C *

2`

`

*
2`

` 1
a3 W~a, b!hSx 2 b

a Ddadb, (5)

where C is a constant equal to

C 5 *
2`

`

*
2`

` uH~u!u2

uuu
du. (6)
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This property was successfully implemented for dig-
ital image compression and transmission. Although
a high number of calculations is needed for perform-
ing those operations, acceleration of the computation
may be achieved by use of optics.

In optical implementation with Fourier optics, it is
quite easy to obtain a continuous b parameter.
However, the scaling parameter a can be obtained
only discretely. The wavelet transform having the
continuous b and discrete a variables is termed the
hybrid wavelet transform. Using the hybrid trans-
form allows a complete reconstruction of the signal to
be obtained. The reconstruction formula for the hy-
brid case is

f ~x! 5
1
C (

n52`

n5`

*
2`

` 1
22n W~22n, b!h22n,b~x!db. (7)

Note that the scaling factor a was chosen to be powers
of 2 to obtain fast computing algorithms.

In the one-dimensional hybrid wavelet transform a
strip-structured filter is used, in which each strip
corresponds to a different scaling parameter of the
mother wavelet.2,7,8 When a two-dimensional trans-
form is to be obtained a problem arises regarding
where to obtain the result that corresponds to each
scaling factor. For solving this problem a multiref-
erence approach was used,9 i.e., the Fourier domain
was separated into rings corresponding to the differ-
ent scalings of the wavelet function, with each ring
containing a different grating that aimed the trans-
form’s result to different spatial positions in the out-
put plane. The problem was that the differently
scaled versions of the mother wavelets overlapped;
thus, the scaled mother wavelets are approximated to
rings to create the rings of the Fourier plane.

The above approximation is not too exact, and
therefore a different approach based on replication of
the input was suggested.10 Here, the spectrum of
the input function is replicated by use of a grating
and then filtered by the differently scaled mother
wavelets, which are located in different spatial posi-
tions according to the replications of the input’s spec-
tra. The disadvantage of this approach is that a
large spatial region is needed to obtain the wavelet
transform, even for several scales of the mother
wavelet. A different approach for implementing the
two-dimensional hybrid wavelet transform is to mul-
tiplex the different scales of the mother wavelet by
different wavelengths.11 Such an approach requires
spatially coherent illumination that contains several
wavelengths.

In this paper a novel approach for processing tran-
sient signals and compressing images is suggested.
The new approach generalizes the conventional
wavelet transform, with the generalization based on
the fractional Fourier transform ~FRT!. The FRT is
a new transformation that has been proven to have
various important properties in the optical data-
processing field.12

The Fourier transform of the fractional order p is
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defined in such a way that the conventional Fourier
transform is a special case of this transform that has
a fractional order of p 5 1. An optical implementa-
tion of the FRT is provided ~i! in terms of quadratic
graded-index media13,14 or ~ii! in a setup that involves
free-space propagation lens propagation plus free-
space propagation, or lens propagation plus free-
space propagation plus a second lens propagation.15

Both definitions ~i! and ~ii! were proven to be equiv-
alent in Ref. 16. Mathematically,

$^ p@u~x!#%~x! 5 *
2`

`

Bp~x, x9!u~x9!dx9, (8)

where Bp~x, x9! is the kernel of the transformation
and equals, according to the graded-index media def-
inition,13,14

Bp~x, x9! 5 Î2 exp@2p~x2 1 x92!#

3 (
n50

` i2pn

2nn!
Hn~Î2px!Hn~Î2px9!, (9)

where Hn is a Hermite polynomial of order n, or,
according to the bulk optics definition,15

Bp~x, x9! 5

expF2iSp sgn~sinf!

4
2

f

2DG
usin fu1y2 expFipx2 1 x92

tan f
2 2ip

xx9

sin fG, (10)

where f 5 ppy2.
Observation of Eqs. ~8! and ~10! reveals that the

FRT is a localized transformation similar to the
wavelet transform. In this paper, we define a new
transformation, coined the fractional wavelet trans-
form ~FWT!. The FWT adapts the localization of the
signal, by use of the FRT, to the localization needed
by the wavelet transformation. In this way, by con-
trol of the amount of localization in the FWT, the
reconstruction ~FWT followed by inverse FWT!
mean-square error may be reduced. Thus, fewer
wavelet components need to be stored to achieve the
same reconstruction error. Note that, if the frac-
tionalization parameter of the FWT is chosen to be 1,
the FWT converges to be the conventional wavelet
transformation.

2. Localization Condition of the Fractional Fourier
Transform

Localization of the FRT may be estimated by use of
Eqs. ~8! and ~10!. For instance, for a given fractional
order p, one may ask what is the x9 coordinate in
which the change of the kernel Bp~0, x9! is twice the
maximal frequency of u~x9!? Above this coordinate
the contributions of the input u~x9! are negligible
since, while calculating the integral of Eq. ~8!, one has
a case of undersampling. Thus, if fm denotes the
maximal frequency of u~x9!, one obtains

2fm 5
x9

tan f
. (11)



Note that x9ytan f is the spatial frequency of the
kernel Bp~0, x9! at the spatial location of x9. Thus,
the width of the localization window is approximately

Dx 5 2x9 5 4fm tan f. (12)

3. Fractional Wavelet Transform: Mathematical
Definition

To adapt the localization existing in the FRT to the
localization existing in the wavelet components, we
suggest the following definition for the FWT: per-
forming a FRT with the optimal fractional order p
over the entire input signal and then performing the
conventional wavelet decomposition. For recon-
struction, one should use the conventional inverse
wavelet transform and then carry out a FRT with the
fractional order of 2p to return back to the plane of
the input function. A flowchart of the FWT is illus-
trated in Fig. 1. The fractional order p of the FWT is
determined in such a way that the mean-square error
between the original input and the reconstructed in-
put is minimal. Indeed, this optimization step may
be long and be followed by many calculations. How-
ever, this stage should be done only once.

Mathematically, the FWT may be formulated as
follows:

W ~ p!~a, b! 5 *
2`

`

*
2`

`

Bp~x, x9! f ~x9!hab*~x!dx9dx, (13)

Fig. 1. Flowchart of the FWT.
where W ~p!~a, b! is the FWT and Bp is defined by Eqs.
~9! and ~10!. Note that, for p 5 1, the FWT becomes
the conventional wavelet transform.

The formula for backreconstructing the input is

f ~x! 5
1
C *

2`

`

*
2`

`

*
2`

` 1
a3 W ~ p!~a, b!B2p~x, x9!

3 hSx9 2 b
a D dadbdx9. (14)

And the hybrid FWT will then be

f ~x! 5
1
C (

n52`

n5`

*
2`

`

*
2`

` 1
22nW

~ p!~22n, b!

3 B2p~x, x9!h22n,b~x9!dx9db. (15)

4. Computer Simulations

Several computer simulations were carried out to
demonstrate briefly the performance of the new
transformation. In Fig. 2~a! an input transient sig-
nal is illustrated. This signal contains a chirp struc-
ture that is inherently complicated to compress. We
used one daughter wavelet function for the decompo-
sition of the signal ~except with a scaling factor of a 5
1! and reconstructed it back. Figure 2~b! demon-
strates the wavelet daughter function used ~a Morlet
function!.

For reconstruction, the hybrid wavelet transform
was used. After reconstruction, the error was calcu-
lated according to Eq. ~16!, below. With the conven-
tional wavelet, when only one daughter function is
used, the reconstruction error is 0.92. For obtaining
the FWT, optimization of the selected FRT order was
done by use of a trial-and-error algorithm. This led
to a FRT of the order of 0.5, which finally provided a
FWT reconstruction error of 0.68. This means there
was an error reduction of approximately 27%. Note
that this fractional order was the optimal order, in
the sense of a minimal mean-square reconstruction
error, for this input signal. This error is defined as

e 5 *
2`

`

u f ~x! 2 f t~x!u2dx, (16)

where f ~x! is the input signal and f t~x! is the recon-
structed signal. Figure 2~c! illustrates the recon-
struction obtained with the FWT when only one
wavelet component was used ~one scaling factor!.
Figure 2~d! shows the reconstruction obtained with
the conventional wavelet when only one component is
used. In Fig. 2~e! one may see the reconstruction
obtained with the conventional wavelet transform
when five scaling factors were used ~five daughter
functions!. Note that even then the obtained recon-
struction error was 0.78 ~larger than the error ob-
tained with a single scaling factor of the FWT!.
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Fig. 2. ~a! Input signal for the computer simulations. ~b! Wavelet daughter function used in the simulations. ~c! Reconstruction by use
of the FWT with one daughter function. ~d! Reconstruction by use of the conventional wavelet function with one daughter function. ~e!
Reconstruction by use of the conventional wavelet function with five daughter functions.
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Fig. 3. Possible optical implementation of the FWT.
5. Optical Implementation

As indicated in Fig. 1, the amount of calculation re-
quired for performing the FWT with a reasonable
number of pixels is high. This is due mainly to the
optimization stage for finding the optimal fractional
order.

A significant acceleration of the FWT calculation
can be done if part or all of the stages are performed
by use of optics. A possibility for optical implemen-
tation is illustrated in Fig. 3. This figure contains
two parts. In the first part the temporal signal is fed
into an acousto-optical cell that converts the temporal
signal into a one-dimensional spatial signal. A one-
dimensional FRT of the input pattern is performed
according to the setup suggested in Ref. 15. Note
that the FRT is obtained by bulk optics implementa-
tion. However, a graded-index fiber may be used
instead.13 The second part of the setup optically
performs the wavelet transform of the one-
dimensional signal. One accomplishes this by
Fourier-transforming the spatial information, multi-
plying by a wavelet-matched filter for the one-
dimensional signal, and then performing an inverse
Fourier transform ~according to the configuration
suggested in Ref. 7!.

The Fourier transformation is carried out by use of
cylindrical lenses since the information is one dimen-
sional. Spherical lenses are used to achieve imaging
on the other ~spatial! axis. The wavelet-matched fil-
ter contains several strips. Each strip of the filter
represents a one-dimensional Fourier transform of
the scaled mother wavelets and corresponds to a dif-
ferent scaling of the mother wavelet. The scaling
parameter a varies along the vertical axis, as defined
by the bank of strip filters. In the output plane one
obtains a two-dimensional representation of a one-
dimensional wavelet, with the horizontal axis as the
continuous-shift parameter b and the vertical axis as
the discrete-scale parameter a ~Refs. 7 and 8!. Note
that, for two-dimensional input signals, the multi-
plexing approach may be applied to implement the
two-dimensional FWT. Multiplexing may be spatial
by means of Dammann gratings10 or spectral by
means of wavelength multiplexing.11 In a similar
manner, the inverse FWT may be optically imple-
mented. This time the optical setup will contain the
inverse wavelet transform first and then the FRT,
with the fractional order of 2p ~or 4 2 p! ~Ref. 13!.

6. Conclusions

In this paper a novel fractional transformation was
defined and coined the fractional wavelet transform
~FWT!. This transform takes advantage of the lo-
calization existing in the FRT to improve the recon-
struction performance of the wavelet transformation.

The FWT may be used for image compression.
Computer simulations demonstrate the ability of this
transform to provide a smaller reconstruction error
when compared with the conventional wavelet trans-
form. More work should be done to accelerate the
fractional-order optimization step. The optical im-
plementation of the proposed transformation is dis-
cussed, and it is indicated that most of the heavy
calculations can be performed in a fast fashion by use
of optics.
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