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Abstract 
The classical example of no-where differentiable but everywhere continuous function is Weier-
strass function. In this paper we have defined fractional order Weierstrass function in terms of 
Jumarie fractional trigonometric functions. The Hölder exponent and Box dimension of this new 
function have been evaluated here. It has been established that the values of Hölder exponent and 
Box dimension of this fractional order Weierstrass function are the same as in the original Weier-
strass function. This new development in generalizing the classical Weierstrass function by use of 
fractional trigonometric function analysis and fractional derivative of fractional Weierstrass func-
tion by Jumarie fractional derivative, establishes that roughness indices are invariant to this ge-
neralization. 
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1. Introduction 
The concepts of fractional geometry, fractional dimensions are important branches of science to study the irre-
gularity of a function, graph or signals [1]-[3]. On the other hand fractional calculus is another developing ma-
thematical tool to study the continuous but non-differentiable functions (signals) where the conventional calcu-
lus fails [4]-[11]. Many authors are trying to relate the fractional derivative and fractional dimension [1] 

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2015.512065
http://dx.doi.org/10.4236/apm.2015.512065
http://www.scirp.org
mailto:uttam_math@yahoo.co.in
mailto:susmita62@yahoo.co.in
mailto:shantanu@barc.gov.in
http://creativecommons.org/licenses/by/4.0/


U. Ghosh et al. 
 

 
718 

[12]-[15]. The functions which are continuous but non-differentiable in integer order calculus can be characte-
rized in terms of fractional calculus and especially through Holder exponent [10] [16]. To study the no-where 
differentiable functions authors in [12]-[16] used different types of fractional derivatives. Jumarie [17] defined 
the fractional trigonometric functions in terms of Mittag-Leffler function and established different useful frac-
tional trigonometric formulas. The fractional order derivatives of those functions were established in-terms of 
the Jumarie [17] [18] modified fractional order derivatives. In this paper we have defined the fractional order 
Weierstrass functions in terms of the fractional order sine function. The Hölder exponent and box-dimension 
(fractional dimension) of graph of this function have been obtained here. The fractional order derivative of this 
function has also established here. This is a new development in generalizing the classical Weierstrass function 
by usage of fractional trigonometric functions including the study of its character. The paper is organized as: 
Section 2 deals with description of Jumarie fractional derivative, Mittag-Leffler function of one and two para-
meter types; fractional trigonometric function of one and two parameter types and derivation of Jumarie frac-
tional derivatives of those functions. In this section we also have derived some useful relations of fractional tri-
gonometric functions which shall be used for our further calculations—in characterizing fractional Weierstrass 
function. We have continued this section by introducing Lipschitz Hölder exponent (LHE)—its definition, its 
relation to Hurst exponent and fractional dimension and also definition of Hölder continuity. The classical 
Weierstrass function has also been defined here. These Lipschitz Hölder exponent, Hurst exponent, and frac-
tional dimension are basic parameters to indicate roughness index of a function or a graph. In Section 3 we have 
described the fractional Weierstrass function by generalizing the classical Weierstrass function by use of frac-
tional sine trigonometric function. Subsequently we apply derived identities of fractional trigonometric functions 
to evaluate the properties of this new fractional Weierstrass function. In Section 4 we have done derivation of 
properties of fractional derivatives of fractional Weierstrass function, and concluded the paper with conclusion 
and references. 

2. Jumarie Fractional Order Derivative and Mittag-Leffler Function  
a) Fractional Order Derivative of Jumarie Type 
Jumarie [17] defined the fractional order derivative by modifying the Left Riemann-Liouvellie (RL) fractional 

derivative in the following form for the function ( )f x  in the interval a to x, with ( ) 0f x =  for x a< . 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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In the above definition, the first expression is just the Riemann-Liouvelli fractional integration; the second 
line is Riemann-Liouvelli fractional derivative of order 0 1α< <  of offset function that is ( ) ( )f x f a− . For

1α > , we use the third line; that is first we differentiate the offset function with order ( )0 1mα< − < , by the 
formula of second line, and then apply whole m order differentiation to it. Here we chose integer m, just less 
than the real number α ; that is 1m mα≤ < + . In this paper we use symbol 0

J
xDα  to denote Jumarie fractional 

derivative operator, as defined above. In case the start point value ( )f a  is un-defined, there we take finite part 
of the offset function as ( ) ( )f x f a+− ; for calculations. Note in the above Jumarie definition [ ]0 0xD Cα = , 
where C is constant function, otherwise in RL sense, the fractional derivative of a constant function is  

[ ] ( )0 1x
xD C C

α
α

α

−

=
Γ −

, that is a decaying power-law function. Also we purposely state that ( ) 0f x =  for  

0x <  in order to have initialization function in case of fractional differ-integration to be zero, else results are 
difficult [9].  

b) Mittag-Leffler Function and Its Jumarie Type Fractional Derivative: One and Two Parameter Type  
1) One Parameter Mittag-Leffler Function 
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The Mittag-Leffler function [19]-[22] of one parameter is denoted by ( )E xα  and defined by  

( ) ( )0 1

k

k

xE x
kα α

∞

=

=
Γ +∑                                    (2) 

This function plays a crucial role in classical calculus for 1α = , for 1α =  it becomes the exponential func-
tion, that is ( ) ( )1 expE x x=  

( )
0
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!

k

k

xx
k

∞

=

= ∑                                      (3) 

We now consider the Mittag-Leffler function in the following form in infinite series representation for 
( ) ( )f x E xαα=  for 0x ≥  and ( ) 0f x =  for 0x <  as;  

( ) ( ) ( ) ( )
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
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Then taking Jumarie fractional derivative of order 0 1α< <  term by term for the above series we obtain the 

following by using the formula ( )
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1
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Like the exponential function; ( )E xαα  play important role in fractional calculus. The function ( )E xαα  is 
a fundamental solution of the Jumarie type fractional differential equation [ ]0 yD y yα = , where 0 xDα  is Juma-
rie derivative operator as described above.   

Jumarie in [18] established ( )( ) ( ) ( )E i x y E ix E iyα α α
α α α+ = × . We reproduce the Proof of the above rela-

tion. Let us consider a function ( )f x  which satisfies the condition 

( ) ( ) ( )( ).f x f y f x y αα αλ λ λ= +  

Differentiating both side with respect to x and y of α -order respectively we get the following. 
First consider y a constant, and we fractionally differentiate w.r.t. x by Jumarie derivative 
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Now we consider x as constant and do the following steps 
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Here we put equivalence of [ ] [ ] [ ]0 0 0
J J J

y y uD x y D x y D u Cα α α+ ≡ + ≡ + , with C as constant; that is when x or y 

are taken as constant the function form of these two quantities gets equivalent that is equivalent to [ ]0
J

uD uα  as  
Jumarie fractional derivative of constant is zero. Therefore the RHS of above two expressions are equal, from 
that we get the following 

( ) ( ) ( ) ( )f x f y f x f yα α α α α αλ λ λ λ=  

( )
( )

( )
( )

f x f y

f x f y

α α α α

α α

λ λ

λ λ
=  

The above two may be equated to a constant say λ . Then we have ( ) ( )f x f xα α αλ λ λ= , or we write 

( ) ( )0
J

xD f x f xα α αλ λ λ  =  . From the property of Mittag-Leffler function and Jumarie derivative of the Mittag- 

Leffler function we know that ( ) ( )0
J

xD E ax aE axα α α
α α

  =  ; we imply that the solution of  

( ) ( )f x f xα α αλ λ λ=  is ( ) ( )f x E xα α
αλ λ= . Therefore ( )E xαα λ  satisfies the condition  

( ) ( ) ( )( )f x f y f x y αα αλ λ λ= + , or ( ) ( ) ( )( )E x E y E x y αα α
α α αλ λ λ= + . Considering iλ = , we therefore 

can write the following identity 

( )( )( ) ( )( ) ( )( ).E i x y E i x E i yα α α
α α α+ =  

Using definition ( ) ( ) ( )cos sinE ix x i xα α α
α α= +  we expand the above as depicted below 
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Comparing real and imaginary part in above derived relation we get the following  
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This is very useful relation as in conjugation with classical trigonometric functions, and we will be using 
these relations in our analysis of fractional Weierstrass function and its fractional derivative. 

2) Two Parameter Mittag-Leffler Function 
The other important function is the two parameter Mittag-Leffler function denoted by ( ),E xα β  and defined 

by,  

( ) ( ),
0

k

k

xE x
kα β β α

∞

=

=
Γ +∑                                 (6) 

The functions (2) and (6) play important role in fractional calculus, also we note that ( ) ( ),1E x E xα α= . 

Again from Jumarie definition of fractional derivative we have [ ]0 1 0J
xDα =  and ( )

( )0

1
1

J
xD x xα β β αβ

β α
−Γ +

  =  Γ + −
. 

Again we derive Jumarie derivative of order β  for one parameter Mittag-Leffler function ( )E xαα  and 
thereby get two parameter Mittag-Leffler function. For finding term by term Jumarie derivative we use 

( )
( )0

1
1

J
xD x xα υ υ αυ

υ α
−Γ +

  =  Γ + −
 and [ ]0 1 0J

xDα = . 
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where ( ), 1E xαα α β− +  is two parameter Mittag-Leffler function. 

c) Jumarie Definition of Fractional Sine and Cosine Function and Their Fractional Derivative: Both 
One Parameter and Two Parameter Type 

1) One Parameter Sine and Cosine Function 
Jumarie [18] defined the one parameter fractional sine and cosine function in the following form,  

( ) ( ) ( )
def
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α α α= +                              (8a) 
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From Figure 1 and Figure 2 it is observed that for 1α <  both the fractional trigonometric functions 
( )sin xαα  and ( )cos xαα  is decaying functions like damped oscillatory motion. For 1α =  it is like simple 

harmonic motion with sustained oscillations; and for 1α >  it grows while it oscillates infinitely; like unstable 
oscillator. 

The series representation of ( ) ( )cosf t tαα=  for 0t ≥  and ( ) 0f t =  for 0t <  is following 
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Taking term by term Jumarie derivative we get, 
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The series presentation of ( ) ( )sinf t tαα= , for 0t ≥  with ( ) 0f t =  for 0t <  is 
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(d) 

 
(e) 

 
(f) 

Figure 1. Graph of ( )sin xα
α . (a) For 0.4α = ; (b) For 0.6α = ; (c) For 0.8α = ; (d) For 

1.0α = ; (f) For 1.2α = ; (g) For 1.4α = .                                                
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(d) 

 
(e) 

 
(f) 

Figure 2. Graph of ( )cos xα
α . (a) For 0.4α = ; (b) For 0.6α = ; (c) For 0.8α = ; 

(d) For 1.0α = ; (e) For 1.2α = ; (f) For 1.4α = .                                         
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Thus we get  

( ) ( )0 cos sinJ
xD ax a xα α α

α α
  = −   and ( ) ( )0 sin cos .J

xD ax a xα α α
α α

  =   

2) Two Parameter Sine and Cosine Function 
Let us define the two parameter sine and cosine functions ( ),cos xαα β  and ( ),sin xαα β  as depicted below: 
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Now with this and with definition of two parameter Mittag-Leffler function (3) with imaginary argument we 
get the following useful identity 
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= − + − + − + +      Γ Γ + Γ + Γ + Γ + Γ +   

= +

∑ 

   

Now for β α> , we do the Jumarie derivative of order α  on the function ( ) ( )1
,cosf x x xβ α

α β
−=  as de-

picted in following steps, with formula ( )
( )0

1
1

J
xD x xα υ υ αυ

υ α
−Γ +

  =  Γ + −
 and [ ]0 1 0J

xDα = . 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

2 4
1 1

0 , 0

1 1 3 1

2 3 1
1

1
,

1cos
2 4

( ) 3

1
2 4

cos

J J
x x

x xD x x D x

x x x

x xx

x x

α α
α β α α β

α β

β α β α β α

α β α
β α

β α α
α β α

β α β α β

β α β α β α

β α β α α β α α

− −

− − + − + −

+ −
− −

− −
−

  
  = × − + −     Γ Γ + Γ +   

= − + −
Γ − Γ + Γ +

 
= × − + − 

Γ − Γ − + Γ − +  

=







 

Thus we get a very useful relation 

( ) ( )1 1
0 , ,cos cos .J

xD x x x xα β α β α α
α β α β α

− − −
−

  =   

Similarly it can be shown that  

( ) ( )1 1
0 , ,sin sin .J

xD x x x xα β α β α α
α β α β α

− − −
−

  =   

Now we calculate the Jumarie type fractional order derivative of ( ) ( )1exp x E x=  like we did for ( )E xαα  

by using the formula ( )
( )0

1
1

J
xD x xα υ υ αυ

υ α
−Γ +

  =  Γ + −
 and [ ]0 1 0J

xDα = . 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 3 3

0 0 1 0

1 2 2 3 3

1,2

exp 1
2 3 4

0
2 3 4

J J J
x x x

ax a x a xD ax D E ax D

ax a x a x aE ax

α α α

α α α

αα α α

− − −

−

 
= = + + + +          Γ Γ Γ 

= + + + + =
Γ − Γ − Γ −




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On the other hand the Jumarie type fractional order derivative of ( )cos ax  is following, as we did for 

( )cos xαα  by using the formula ( )
( )0

1
1

J
xD x xα υ υ αυ

υ α
−Γ +

  =  Γ + −
 and [ ]0 1 0J

xDα = . 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

2 2 4 4 6 6

0 0

2 2 4 4 6 6

1
1,2

cos 1
3 5 7

0
3 5 7

sin

J J
x x

a x a x a xD ax D

a x a x a x

ax ax

α α

α α α

α
α

α α α

− − −

−
−

 
= − + + +     Γ Γ Γ  

= − + − +
Γ − Γ − Γ −

= −



  

We obtain 

( ) ( )1
0 1,2 cos sin .J

xD ax ax axα α
α

−
−= −    

Similarly the Jumarie type fractional order derivative of ( )sin x  is  

( ) ( )1
0 1,2sin cos .J

xD ax ax axα α
α

−
−=    

2.1. Definition of Some Useful Roughness Indices 
a) Lipschitz Hölder Exponent (LHE)  
A function is said to have LHE [1] α  it satisfies the following condition   

( ) ( ) 0f x f y x y x yα ε− ∼ − < − <  

where ε  is a small positive number. The property LHE defined above corresponds to local property. The glob-
al LHE in interval [ ],a b  is denoted by λ  and is defined by  

[ ],
inf

x a b
λ α

∈
=  

unless ( )f x  is a constant function, 1λ ≤ . The Lipschitz Holder exponent is sometimes named as Holder ex-
ponent. For the continuous function :f R R→ , ( )f x  satisfies the Lipschitz condition on its domain of defi-
nition if ( ) ( )f x f y C x y− < −  when 0 x y ε< − < , where ε  is small positive number, and 0C >  is 
real constant. This function ( )f x  has Holder exponent as unity. 

Consider the function:  
:f →   such that ( ) ( ) sinf x x=  then ( ) ( ) ( ) ( )sin sinf x f y x y C x y− = − < −  when 0 x y ε< − <  

is a function with Holder exponent 1. In a way it states that the continuous function in consideration is 

one-whole differentiable and the value of differentiation is bounded, that is 
( ) ( )f x f y

C
x y
−

<
−

 for 

0 x y ε< − < . 
b) Holder Continuity 
A continuous function ( )f x  which is non-differentiable in classical sense is said to holder continuous with 

exponent α  if 

( ) ( ) 0f x f y C x y x yα ε− < − < − <  

where 0C >  is a real constant and 0ε > . 
c) Fractional Dimension  
Fractional dimension (d) or box dimension [1] of a function or graph is local property, denotes the degree of 

roughness of a function or graph. Let the graph of a function is ( )f x  for [ ],x a b∈  can be covered by 
N-squares of size r then with ( )lim 0r →  the fractional dimension of the graph is defined as,  

( )
( )0

log
lim

log 1r

N
d

r→
=  
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Again if H be the Hurst exponent then the relation between the above Holder exponents are Hα λ= =  
2 2d H α= − = −  [1] [9]. The Holder and Hurst exponents are equivalent for uni-fractal graphs that has a con-

stant fractional dimension in defined interval [1] [9]. 

3. The Fractional Weierstrass Function  
In 1872 K. Weierstrass [23]-[25] proposed his famous example of an everywhere continuous but no-where dif-
ferentiable function ( )W x  on the real line   with two parameters 1b a≥ >  in the following form    

( ) ( )
1

sink k

k
W x a b x x

∞
−

=

= ∈∑   

where b is odd-integer. He proved that this function is continuous for all x R∈  and is non-differentiable for all 

real values of x provided 3π1
2

ab > + . Considering b a constant say b λ=  a constant and assuming, and 

log2
log

as
b

= −  another presentation of the Weierstrass function [13] can be obtained which is  

( ) ( ) ( )2

1
sin 1 1 2s k k

k
W x x sλ λ λ

∞
−

=

= > < <∑                    (11) 

In reference [13] Falconer established the fractional dimension of Weierstrass function defined in (11) is s and 
the corresponding Holder exponent is 2 s− . 

We define the fractional Weierstrass Function in terms of Jumarie [2008] fractional sine function, that is 
( )sin xαα  in the following form for 0x ≥   

( ) ( ) ( )2

1
sin 1 1 2s k k

k
W x x sα α α

α αλ λ λ
∞

−

=

= > < <∑                (12) 

where, 0 1α< < , and for 1α =  it reduces the original Weierstrass Function, and a condition that ( ) 0W xαα =  
for 0x < . 

We only are stating some lemmas which will be used to characterize the fractional Weierstrass function and 
its fractional derivative.  

Lemma 1: 
Let f be function continuous in interval [ ]0,1  and 0 1s≤ ≤  [12]-[14]. 
Suppose  
1) ( ) ( ) 0 1sf x f y C x y x y− ≤ − < <  

then the dimension [12]-[14] of the graph f is 2d s≤ − . 
2) Suppose 0 0δ > . For every [ ]0,1x∈ , and 00 δ δ< <  there exists [ ]0,1y∈  such that x y δ− <  and 

( ) ( ) sf x f y Cδ− ≥  then the dimension [12]-[14] of the graph f is 2d s≥ − . 

Theorem 1: The Holder exponent of fractional Weierstrass function ( )W xαα  with 0 1α< <  is 2 s−  and 
consequently the Hausdorff dimension or fractional dimension is s over any finite interval suppose it is [ ]0,1 .  

Proof: We calculate ( )W x h W xα α
α α
   + −     in following steps where we have used our derived expression 

( )( ) ( ) ( ) ( ) ( )sin sin cos cos sina x y ax ay ax ayα α α α α
α α α α α

 + = +   

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

2 2

1 1

2( 2)

1 1

2

1

sin sin

sin cos cos sin sin

sin cos 1 cos sin

s k s kk k

k k

s ks k k k k k k

k k

s k k k k k

k

W x h W x x h x

x h x h x

x h x h

α α αα α α
α α α α

αα α α α α α α α α
α α α α α

α α α α α α α α
α α α α

λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ λ λ

∞ ∞
− −

= =

∞ ∞
−−

= =

∞
−

=

   + − = + −  

 = + − 

 = − + 

∑ ∑

∑ ∑

∑
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From the series expansion of ( )sin k xα α
α λ  and ( )cos k xα α

α λ  and also from the Figure 1 and Figure 2, it 

is clear that for small x, ( )sin k kx xα α α α
α λ λ≈  and ( )cos 1k xα α

α λ ≈  also both ( )sin k xα α
α λ  and 

( )cos k xα α
α λ  is less than or equal to 1. Therefore, with above observation that is for small h, ( )sin k kh hα α α α

α λ λ≈ , 

( )cos 1 0k hα α
α λ − ≈  and for large h, ( )cos 0k hα α

α λ ≈  we write the following  

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

2

1

2

1

sin cos 1 cos sin

min ,1

s k k k k k

k

s k k

k

W x h W x

x h x h

h

α α
α α

α α α α α α α α
α α α α

α α

λ λ λ λ λ

λ λ

∞
−

=

∞
−

=

   + −   

 ≤ − + 

 ≤  

∑

∑

 

Choose 0 1h< <  then one can find positive integer m such that ( )1m mhλ λ− + −≤ ≤  then divide the summa- 
tion that is ( ) ( )2

1 min ,1s k k
k hα αλ λ∞ −
=

 
 ∑  into two parts. First part for 1k =  to m then ( )sin k kx xα α α α

α λ λ≈  

and for other values of k maximum value of the expression in third bracket is equal to 1. We use the geometric 

series formulas 1

1
1

m
m k
k

aa a
a=

 −
=  − 

∑  and 1 1
k

k

aa
a

∞

=
=

−∑ ,for 
1

1 1

m
k

k m

xx
x

+
∞

= +
=

−∑  in the following derivation. 

( ) ( ) ( ) ( )

( ) ( )

( )
( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

2 2

1 1

2 2

1 1

2 2 1
2

2 2

2 1 2 1

2 2

1

1
1 1

1 1

m
s k s kk

k k m
m

s k s k

k k m

s m s m
s

s s

s m s m

s s

W x h W x h

h

h

h

α α α α
α α

αα

α
αα

α

α
α

α

λ λ λ

λ λ

λ λλ
λ λ

λ λ
λ λ

∞
− −

= = +

∞
− + −

= = +

− + − +
− +

− + −

− + + − +

− + −

   + − ≤ +  

= +

   −
= +      − −   

≤ +
− −

∑ ∑

∑ ∑
 

With ( )1m mhλ λ− + −≤ ≤ , that is ( )1 1m mhλ λ+ −≥ ≥  we get the following 

( )
( )

( )

( )

( )

( ) ( )

2 2

2 2

2 2
12 2

1 1
1 1

1 1

s s

s s

s s
s s

h hW x h W x h

h C h

α
α α α

α α α

α

λ λ

λ λ

− − + − −

− + −

− −
− + −

   + − ≤ +   − −
 = + = − − 

 

where the constant ( ) ( )1 2 2

1 1
1 1s s

C
αλ λ− + −

= +
− −

. From definition of Holderian function and the above discus- 

sion it is clear that fractional Weierstrass function is also Holder continuous with Holder exponent ( )2 s− , a 
fractional number. This shows (by Lemma-1) that Hausdorff dimension of graph of fractional Weierstrass func-
tion is ( )2 2 s s− − =   . Thus the Hausdorff dimension of fractional Weierstrass function and original Weier-
strass function is same, is independent of fractional exponent (α ) as defined in (11). 

4. The Jumarie Fractional Derivative of Fractional Weierstrass Function 
Many authors found the fractional derivative of the continuous but nowhere differentiable function that is 
Weierstrass Function [10]-[17] using different type definitions of fractional derivatives. Here we consider Juma-
rie type fractional order derivative of ( )W xαα  is of order α  

( ) ( ) ( )( ) ( ) ( )2 2
0 0

1 1
sin cos .s k s kJ J k k k

x x
k k

D W x D x xα α α α α α α α
α α αλ λ λ λ λ

∞ ∞
− −

= =

   = =   ∑ ∑  
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We used in above derivation the identity ( ) ( )0 sin cosJ
xD ax a axα α α

α α
  =  . Therefore from above derivation 

we obtain the following, 

( ) ( ) ( )2
0

1
cos .s kJ k

x
k

D W x xαα α α α
α αλ λ

∞
− +

=

  =  ∑                        (5) 

Since if 0 1α< <  then ( )cos k xα α
α λ  is a bounded function and therefore ( )0

J
xD W xα α

α
 
   will be 

bounded function if ( )2
1

s k
k

αλ∞ − +
=∑  is convergent. Since ( )2

1
s k

k
αλ∞ − +

=∑  is a geometric series will be conver- 
gent if 2 0s α− + <  implying 2 sα < − . Hence the fractional derivative of order α  with 0 1α< <  of the 
Weierstrass Function will exists when 2 sα < − . 

Again if 1α >  then ( )cos k xα α
α λ  and ( )sin k xα α

α λ  for 1, 2,3,k =   are unbounded functions (Figure 
1 and Figure 2) and will grow by oscillating without bound to ±∞  for x →∞ . Since 1 2s< <  and 1α >  
implying 2 0s α+ − >  therefore ( )2

1
s k

k
αλ∞ − +

=∑  is a divergent series. Therefore 

( ) ( ) ( )2
0

1
coss kJ k

x
k

D W x xαα α α α
α αλ λ

∞
− +

=

  =  ∑  

is a divergent series for 1α > . We write following observation 

( )0

Bounded for 2
Unbounded for 2

J
x

s
D W x

s
α α

α

α
α
< −  =   ≥ −

 

This shows that α -order ( )0 1α< <  Jumarie fractional derivative of the fractional Weierstrass function 
exists when 2 sα < −  and for 2 sα ≥ −  it does not exist. Thus we can state a theorem in the following form  

Theorem 2: α -order ( )0 1α< <  Jumarie fractional derivative of the fractional Weierstrass function  

( ) ( ) ( )2

1
sin 1 1 2s k k

k
W x x sα α α

α αλ λ λ
∞

−

=

= > < <∑  

exists when 2 sα < −  and for 2 sα ≥ −  it does not exist. 
Theorem 3: The Holder exponent of α -order fractional derivative of fractional Weierstrass function 
( )W xαα , 0 1α< <  is 2 s α− −  and consequently the Hausdorff dimension or fractional dimension is s α+  

over any finite interval [ ]0,1 .  
Proof: Let  

( ) ( ) ( ) ( ) ( )2
0

1
coss kJ k

x
k

D W x W x xα αα α α α α
α α αλ λ

∞
− +

=

  = =  ∑  

denotes α -order fractional Jumarie derivative of fractional Weierstrass function. Then using the identity 

( )( ) ( ) ( ) ( ) ( )cos cos cos sin sina x y ax ay ax ayα α α α α
α α α α α

 + = −   we get the following 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

2 2

1 1

2 2

1 1

2

1

cos cos

cos cos sin sin cos

cos cos 1 sin sin

s k s kk k

k k

s k s kk k k k k

k k

s k k k k k

k

W x h W x x h x

x h x h x

xx h x h

α α αα α α αα α α
α α α α

αα αα α α α α α α α α
α α α α α

α α α α α α α α α
α α α α

λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ λ λ

∞ ∞
− + − +

= =

∞ ∞
− + − +

= =

∞
− +

=

   + − = + −  

 = − − 

 = − − 

∑ ∑

∑ ∑

∑

 

From the series expansion of ( )sin k xα α
α λ  and ( )cos k xα α

α λ  and also from the Figure 1 and Figure 2 it 

is clear that for small x, ( )sin k kx xα α α α
α λ λ≈  and ( )cos 1k xα α

α λ ≈  also both ( )sin k xα α
α λ  and 

( )cos k xα α
α λ  is less than or equal to 1. Therefore, with above observation that is for small h, 

( )sin k kh hα α α α
α λ λ≈ ,  
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( )cos 1 0k hα α
α λ − ≈  and for large h, ( )cos 0k hα α

α λ ≈  we write the following  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2

1

2

1

cos cos 1 sin sin

min ,1

s k k k k k

k

s k k

k

W x h W x x h x h

h

αα α αα α α α α α α α α
α α α α α α

α α α

λ λ λ λ λ

λ λ

∞
− +

=

∞
− +

=

    + − ≤ − +    

 ≤  

∑

∑
 

Choose 0 1h< <  then one can find positive integer m such that ( )1m mhλ λ− + −≤ ≤  then as per our earlier 
derivation for ( )W xαα  we do the following steps 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

2 2

1 1

2 2 2

1 1

2 2 2 1
2 2

2 2 2

2 2 1 2 1

2 2 2

1

1

1 1
1 1

1 1

m
s k s kk

k k m
m

s s k

k k m

s m s m
s

s s

s m s m

s s

W x h W x h

h

h

h

αα α α αα α α
α α

α αα

α α
αα

α α

α α
α

α α

λ λ λ

λ λ

λ λλ
λ λ

λ λ
λ λ

∞
− + − +

= = +

∞
− + − +

= = +

− + − + +
− +

− + − +

− + + − + +

− + − +

   + − ≤ +  

= +

   −
= +      − −   

≤ +
− −

∑ ∑

∑ ∑
 

With ( )1m mhλ λ− + −≤ ≤ , that is ( )1 1m mhλ λ+ −≥ ≥  we get the following 

( ) ( ) ( )
( )( )

( )

( )( )

( )

( )

( )

( )

( )

( ) ( )

2 2 1 2 1

2 2 2

2 2 2

2 2 2

2
2 2 2

2
2

 
1 1

1 1
1 1

1 1

s m s m

s s

s s

s s

s
s s

s

W x h W x h

h hh

h

C h

α α
αα α α α

α α α α

α α
α

α α

α
α α

α

λ λ
λ λ

λ λ

λ λ

− + + − + +

− + − +

− − + − − +

− + − +

− −
− + − +

− −

   + − ≤ +   − −

≤ +
− −

 ≤ + 
− − 

≤

 

where ( ) ( )2 2 2 2

1 1
1 1s s

C
α αλ λ− + − +

= +
− −

. From definition of Holderian function and above discussion it is clear 

that α -order ( )0 1α< <  fractional derivative of fractional Weierstrass function is also Holder continuous  
with Holder exponent 2 s α− − . This shows that Hausdorff dimension of graph of fractional Weierstrass func-
tion is ( )2 2 s sα α− − − = +    (by lemma-1). The graph dimension increased by fractional order for fractional 
derivative of Weierstrass function by amount of fractional derivative-the graph becomes rougher. 

5. Conclusion 
The fractional Weierstrass function is a continuous function for all real values of the arguments, and its box di-
mension and Holder exponent are independent of fractional order that incorporates to the fractional Weierstrass 
functions. Again the Box dimension of fractional derivative of the fractional Weierstrass increases with increase 
of order of fractional derivative. This invariant nature of the roughness index of fractional Weierstrass function 
when generalized with fractional trigonometric function is remarkable. The other embodiment in similar lines as 
in this paper to get different fractional Weierstrass function is under development.  
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