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1. INTRODUCTION
Recently, several methods for the fractionalization of the
different types of linear transform have been proposed.1–9

The fractional transforms are now actively used in signal
and image processing and optics, particularly in Fourier
optics.2 The advantage of various types of fractional
transform, such as the fractional Fourier, Hankel, and
Hilbert transforms,1–6 is that they can be optically imple-
mented, which enhances their usefulness in optical signal
processing and image techniques, in general. These
transforms are relatives of the well-known Fourier, Han-
kel, and Hilbert transforms widely used in optical sys-
tems for a great variety of optical operations, including
correlation and filtering.

Previously, one of the possible methods for modeling
the fractionalization of the cyclic transform with period
N, based on the assumption that the fractional
R-transform is a weighted combination of the integer or-
der of R, was proposed in Refs. 7 and 8. Nevertheless,
this definition is not unique. Thus there exist the frac-
tional Fourier transforms and the fractional Hankel
transforms that are defined through another procedure.1,6

The goal of this paper is to establish a general algo-
rithm for the fractionalization of the linear cyclic integral
transforms and to consider their main characteristics and
fundamental properties. As an example, the different
types of fractional Fourier and fractional Hartley trans-
form are studied and analyzed.

The paper is organized as follows. In Section 2 we in-
troduce the definition of the term linear cyclic integral
transform. Section 3 is dedicated to the fractionalization
procedure for cyclic transforms. The structure of the par-
ticular kernels is analyzed, and fundamental properties
are demonstrated. Some specific cases are discussed. In
Section 4 we apply the previous formalism (Section 3) to
represent the kernel as a linear superposition of a finite
number of harmonics, demonstrate the consistency of the
result, and give some useful examples related to a sam-
pling theorem. Section 5 introduces a generalization of
the previous procedure (Section 4), and several examples
are discussed. Section 6 is dedicated to the common ex-
isting properties of the various types of cyclic transforms;
Section 7, to the case of the fractional Hartley transform.
0740-3232/2000/122330-09$15.00 ©
We end the paper with a discussion and conclusions in
Section 8.

2. LINEAR CYCLIC INTEGRAL
TRANSFORMS
We start from the definition of the term cyclic transform.
For simplicity we will consider the one-dimensional case.

Let R be an operator of a linear integral transform:

R@ f~x !#~u ! 5 E K~x, u !f~x !dx. (1)

A linear integral transform is a cyclic one if its N-time
performance produces the identity transform

RN 5 I. (2)

There is a long list of well-known and widely used cyclic
transforms. The Fourier and Hilbert transforms are cy-
clic with the period N 5 4. The Hankel and Hartley
transforms have the period N 5 2. The cyclic canonical
transforms of period N with kernel

K~x, u ! 5
1

AiB
exp@ip~Ax2 1 Du2 2 2xu !/B#, (3)

where A 1 D 5 2 cos(2pm/N) and m, N are integers,
were studied in Ref. 10.

All these transforms have some common properties.
Thus the eigenvalues of the cyclic transforms can be
represented as A 5 exp(i2pL/N), where L is an inte-
ger. Indeed, let C(x) be an eigenfunction of R with
eigenvalue A 5 a exp(iw), where a and w are real and
a . 0. From Eq. (2) one obtains AN 5 1, then a 5 1,
and w 5 2pL/N.

The eigenfunction C(x) of such transforms with eigen-
value A 5 exp(i2pL/N) can be constructed from the arbi-
trary generator function $we assume only that R@ g(x)#
exists% by the following procedure:

C~x ! 5
1

N (
n50

N21

exp~2i2pnL/N !Rn@ g~u !#~x !. (4)

Indeed,
2000 Optical Society of America
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R@C~x !#~u ! 5
1

N (
n50

N21

exp~2i2pnL/N !Rn11@ g~x !#~u !

5 exp~i2pL/N !
1

N (
n50

N21

exp@2i2p~n

1 1 !L/N#Rn11@ g~x !#~u !

5 exp~i2pL/N !C~u !. (5)

3. FRACTIONALIZATION OF THE CYCLIC
TRANSFORM
The desirable properties of the fractional R-transform Ra

(where a is a parameter of the fractionalization) are as
follows:

• Ra is continuous for all real values a;
• Additivity with respect to parameter a: Ra1b

5 RaRb;
• Reproducibility of ordinary transforms for integer

a; in particular, R1 5 R and R0 5 RN 5 I.

Let us analyze the structure of the kernel of the frac-
tional R-transform with period N. Owing to its periodic-
ity with respect to parameter a, one can represent
K(a, x, u) in the form

K~a, x, u ! 5 (
n52`

`

kn~x, u !expS i2p
an

N D , (6)

where the coefficients $kn% have to satisfy the following
system of relations:

K~0, x, u ! 5 (
n52`

`

kn~x, u !,

K~1, x, u ! 5 (
n52`

`

kn~x, u !expS i2p
n

N D ,

¯ ¯

K~N 2 1, x, u ! 5 (
n52`

`

kn~x, u !expF i2p
~N 2 1 !n

N G . (7)

Moreover, the coefficients have to be orthonormal to
one another:

E kn~x, u !km~u, y !du 5 dn,mkn~x, y !, (8)
where dn,m denotes the Kronecker delta symbol. Indeed,
as follows from the property of the additivity,

E K~a, x, u !K~b, u, y !du 5 K~a 1 b, x, y !, (9)

and then

(
n52`

`

(
m52`

`

3 expF i2p
~an 1 bm !

N G E kn~x, u !km~u, y !du

5 (
l52`

`

kl~x, y !expF i2p
~a 1 b!l

N G , (10)

which yields the orthogonality condition (8). The coeffi-
cients kn could not be equal unless kn(x, u) 5 km(x, u)
5 0.

Note that all the coefficients kn1mN for fixed n and an
arbitrary integer m have the same exponential factor in
the system of equations (7). Therefore we can rewrite
Eqs. (7) as

K~0, x, u ! 5 (
n52`

`

kn~x, u ! 5 (
n50

N21

(
m52`

`

kn1mN~x, u !,

K~1, x, u ! 5 (
n50

N21

expS i2p
n

N D (
m52`

`

kn1mN~x, u !,

¯ ¯

K~N 2 1, x, u ! 5 (
n50

N21

expF i2p
~N 2 1 !n

N G
3 (

m52`

`

kn1mN~x, u !.
(11)

Introducing new variables

Cn~x, u ! 5 (
m52`

`

kn1mN~x, u !, (12)

we obtain the system of N linear equations with N vari-
ables,

B 3 C 5 K, (13)

where
B 5 3
1 1 1 1

1 expS i2p

N D expS i4p

N D ¯ expF i2p~N 2 1 !

N G
¯ ¯ ¯ ¯

1 expF i2p~N 2 1 !

N G expF i4p~N 2 1 !

N G ¯ expF i2p~N 2 1 !2

N G 4 , (14)

C 5 F C0~x, u !

C1~k, u !

¯

CN21~x, u !

G , K 5 F K~0, x, u !

K~1, x, u !

¯

K~N 2 1, x, u !

G . (15)
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This system has a unique solution because the determinant of matrix B is not 0. The inverse matrix B21 has the fol-
lowing form:

B21 5
1

N 3
1 1 1 1 1

1 expF i2p~N 2 1 !

N G expF i2p~N 2 2 !

N G ¯ expS i2p

N D
¯ ¯ ¯ ¯

1 expF i2p~N 2 1 !2

N G expF i2p~N 2 1 !~N 2 2 !

N G ¯ expF i2p~N 2 1 !

N G 4 , (16)
and we derive the expression for the partial sum of the
coefficients in the Fourier expansion (6):

Cn~x, u ! 5
1

N (
l50

N21

expS 2i2p
ln

N DK~l, x, u !. (17)

It is easy to see that Cn satisfy a condition similar to Eq.
(8):

E Cn~x, u !Cm~u, y !du 5 dn,mCn~x, y !. (18)

In particular, for N 5 2 we obtain

C0~x, u ! 5
1
2 @K~0, x, u ! 1 K~1, x, u !#,

C1~x, u ! 5
1
2 @K~0, x, u! 2 K~1, x, u !#, (19)

and for N 5 4 we obtain

C0~x, u ! 5
1
4 @K~0, x, u ! 1 K~1, x, u ! 1 K~2, x, u !

1 K~3, x, u !#,

C1~x, u ! 5
1
4 @K~0, x, u ! 2 iK~1, x, u ! 2 K~2, x, u !

1 iK~3, x, u !#,

C2~x, u ! 5
1
4 @K~0, x, u! 2 K~1, x, u! 1 K~2, x, u !

2 K~3, x, u !#,

C3~x, u ! 5
1
4 @K~0, x, u! 1 iK~1, x, u! 2 K~2, x, u !

2 iK~3, x, u !#. (20)

Note that some partial sums for certain transforms could
be equal to zero. This is the case for the Hilbert trans-
form.

Thus, if we find the coefficients kn that satisfy condi-
tion (8) and whose partial sums are given by Eq. (17), we
can construct the fractional transform. In general, there
are several numbers of sets $kn% that generate the frac-
tional transforms of a given R-transform.

4. FRACTIONAL TRANSFORM KERNELS
WITH N HARMONICS
As we have shown above, the kernel of the fractional cy-
clic transform can be represented as a superposition of
harmonics with complex amplitudes kn . In this section
we assume that the number of harmonics is limited by N,
where N is a period of the cyclic transform. Then every
sum Cn(x, u) (nP@0, N 2 1#) contains only one element
kn1wn

(x, u) 5 Cn(x, u) from decomposition (6), where wn

5 mN and m is an arbitrary integer. Therefore, in the
general case, the kernel of the fractional R-transform
with N harmonics can be written as

K~a, x, u ! 5 (
n50

N21

kn1wn
~x, u !expF i2p

a~n 1 wn!

N G
5

1

N (
l50

N21

K~l, x, u ! (
n50

N21

expS 2i2p
ln

N D
3 expF i2p

a~n 1 wn!

N G . (21)

This equation provides a formula for recovering the con-
tinuous periodic function K(a, x, u) from its N samples
K(l, x, u), under the assumption that the spectrum of
K(a, x, u) contains only N harmonics at the frequencies
$w0, 1 1 w1 ,..., n 1 wn ,..., N 2 1 1 wN21%.

If we use wn 5 0 (n 5 0, 1,..., N 2 1), we obtain the
fractional transform with the kernel

K~a, x, u ! 5
1

N (
l50

N 2 1

expF ip
~N 2 1 !~a 2 l !

N G
3

sin@p~a 2 l !#

sin@p~a 2 l !/N#
K~l, x, u !, (22)

which was proposed by Shih in Ref. 8. In particular, this
formula was used as a definition of a kind of fractional
Fourier transform (for continuous and discrete cases).7,8

Choosing N nonzero coefficients in decomposition (6)
with indices j 5 2(N 2 1)/2,..., 0,..., (N 2 1)/2, which
corresponds to m 5 0, for n 5 0, 1,..., (N 2 1)/2, and m
5 21, for n 5 (N 2 1)/2 1 1,..., N 2 1, where N is odd,
we obtain the kernel

K~a, x, u ! 5
1

N (
l50

N 2 1 sin@p~a 2 l !#

sin@p~a 2 l !/N#
K~l, x, u !. (23)

This equation corresponds to the recovery procedure of
the band-limited periodic function from the equidistant
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sampling.11 In particular, if K(l, x, u) is real for integer
l 5 0, 1,..., N 2 1, then the kernel of the fractional trans-
form determined by Eq. (23) is real too. This also means
that the Fourier spectrum of K(a, x, u) with respect to
parameter a is symmetric: ukju 5 uk2ju.

As an example, let us consider the general expression
(21) for the kernel of the fractional R-transform with the
period 4 (which is the case for the Fourier and the Hilbert
transforms):

K~a, x, u ! 5
1

4 (
l50

3

K~l, x, u !(
n50

3

expS 2ip
ln

2 D
3 expF ip

a~n 1 wn!

2 G
5

1

4 (
l50

3

K~l, x, u !S~l !, (24)

where

S~0 ! 5 expS ip
aw0

2 D 1 expF ip
a~1 1 w1!

2 G
1 expF ip

a~2 1 w2!

2 G 1 expF ip
a~3 1 w3!

2 G ,

S~1 ! 5 expS ip
aw0

2 D 2 i expF ip
a~1 1 w1!

2 G
2 expF ip

a~2 1 w2!

2 G 1 i expF ip
a~3 1 w3!

2 G ,

S~2 ! 5 expS ip
aw0

2 D 2 expF ip
a~1 1 w1!

2 G
1 expF ip

a~2 1 w2!

2 G 2 expF ip
a~3 1 w3!

2 G ,

S~3 ! 5 expS ip
aw0

2 D 1 i expF ip
a~1 1 w1!

2 G
2 expF ip

a~2 1 w2!

2 G 2 i expF ip
a~3 1 w3!

2 G .

(25)

Note that, for the Hilbert transform, the number of har-
monics reduces to two because C0(x, u) 5 C2(x, u) 5 0,
since K(0, x, u) 5 2K(2, x, u) and K(1, x, u)
5 2K(3, x, u). Then the fractional Hilbert transform
kernel can be written as
K~a, x, u ! 5
1

2
K~0, x, u !H expF ip

a~3 1 w3!

2 G
1 expF ip

a~1 1 w1!

2 G J 2
i

2
K~1, x, u !

3 H expF ip
a~3 1 w3!

2 G
2 expF ip

a~1 1 w1!

2 G J
5 exp@ipa~1 1 m1 1 m3!#

3 H K~0, x, u !cosFpaS 1

2
1 m3 2 m1D G

2 K~1, x, u !sinFpaS 1

2
1 m3 2 m1D G J ,

(26)
where m1 and m3 are integers. In particular, for m1
5 m3 5 0 (kn 5 0 if n Þ 1, 3), one obtains

K~a, x, u !

5 exp~ipa!FK~0, x, u !cosS pa

2 D2K~1, x, u !sinS pa

2 D G ,
(27)

whereas, for the case in which m1 5 0 and m3 5 21
(kn 5 0 if n Þ 21, 1), the common form for the fractional
Hilbert transform4 with a real kernel is obtained:

K~a, x, u ! 5 K~0, x, u !cosS pa

2 D 1 K~1, x, u !sinS pa

2 D .

(28)
Therefore, even for the same number of harmonics, there
are several ways to perform the fractionalization of the
cyclic transforms.

5. FRACTIONAL TRANSFORM KERNELS
AND EIGENFUNCTIONS OF THE
CYCLIC TRANSFORM
In this section we consider the fractional transform ker-
nel representation through the set of the eigenfunctions
of the cyclic transform. This allows us to construct the
fractional kernels with a number of harmonics M . N.

Assume that there is a complete set of orthonormal
eigenfunctions $Fn% of the operator R with eigenvalues
$An 5 exp(i2pLn /N)%, n 5 0,1,... (see Section 2):

E Fn~x !Fm* ~x !dx 5 dn,m . (29)

This is the case for the Fourier and the Hartley trans-
forms, where Fn(x) are the Hermite–Gauss modes,

Fn~x ! 5 ~Ap2nn! !21/2 exp~2
1
2 x2!Hn~x !, (30)

and Hn(u) are the Hermite polynomials. It is also the
case for the Hankel transform of a different order, where
Fn(x) are the normalized Laguerre–Gauss functions, and
for many other, but not all, cyclic transforms. Thus, for



2334 J. Opt. Soc. Am. A/Vol. 17, No. 12 /December 2000 T. Alieva and M. L. Calvo
example, the Hilbert operator H does not satisfy this as-
sumption. Indeed, because of the orthogonal property of
the Hilbert transform,

E
2`

`

f~x !H @ f~u !#~x !dx 5 0, (31)

its eigenfunctions are self-orthogonal:

E
2`

`

C2~x !dx 5 0. (32)

At this point one may recall that certain finite Hilbert
transforms, not considered in the present case, for obvi-
ous reasons, could impose particular orthogonality
conditions.12

If the set of orthonormal eigenfunctions exists, we can
represent a kernel of the R-transform of the integer power
p as

K~ p, x, u ! 5 (
n50

`

Fn~x !~An!pFn* ~u !

5 (
n50

`

Fn~x !expS i2p
pLn

N DFn* ~u !. (33)

Then one of the possible series of the kernels for the frac-
tional R-transform can be written in the form

K~a, x, u ! 5 (
n50

`

Fn~x !expF i2p
~Ln 1 lnN !

N
aGFn* ~u !,

(34)

where ln is an integer. This kernel satisfies the additiv-
ity condition because of the orthonormality of the eigen-
functions Fn(x).

In particular, the fractional Fourier and Hankel trans-
forms, based on this definition of fractionalization for Ln
5 2n and ln 5 0, describe the propagation of the optical
beams through a medium with a quadratic refractive in-
dex. We will call these transforms the optical fractional
transforms. Each of their kernels contains an infinite
number of harmonics. Thus the optical fractional Fou-
rier transform has the following kernel:

KF~a, x, u ! 5 (
n50

`

Fn~x !expS 2i
pna

2 DFn* ~u !

5 exp~ipa/4!@i2p sin~pa/2!#21/2

3 expF i
~x2 1 u2!cos~pa/2! 2 2xu

2 sin~pa/2!
G .

(35)

For ln 5 l 5 const., the kernel for the fractional Fourier
transform is related to KF(a, x, u) as

K~a, x, u ! 5 KF~a, x, u !exp~i2pla!. (36)

If we use Ln 5 2n, l0 5 1, and ln 5 0 for n . 0 in Eq.
(34), we obtain the following fractional Fourier transform
kernel:

K~a, x, u ! 5 KF~a, x, u ! 1 @exp~i2pa! 2 1#. (37)
In general, there are an infinite number of fractional ker-
nels, which can be constructed by use of procedure (34).
The schemes of the Fourier spectra with respect to pa-
rameter a of the different fractional Fourier transform
kernels, which indicate the nonzero coefficients kn in Eq.
(6), are given in Fig. 1. Cases (a), (b), and (c) correspond
to the kernel of the optical fractional Fourier transform
(35); the kernel of the fractional Shih Fourier transform
(22); and the kernel (21) for N 5 4 and w0 5 0, w1
5 4, w2 5 0, w3 5 24, respectively.

Let us rewrite Eq. (34) in the following form:

K~a, x, u ! 5 (
n52`

`

zn~x, u !expS i2p
n

N
a D . (38)

Here zn(x, u) is a sum of the elements F j(x)F j* (u) over j,
where F j(x) is the eigenfunction of the R-transform with
the eigenvalue exp(i2pn/N). Thus, for the case of the op-
tical fractional Fourier transform

K~a, x, u ! 5 (
n50

`

expS 2ip
n

2
a DFn~x !Fn* ~u !

5 (
n52`

0

zn~x, u !expS ip
n

2
a D , (39)

the coefficients zn(x, u) 5 0 for positive n and zn(x, u)
5 Fn(x)Fn* (u) for n < 0. As we will show below, the
fractional Hartley transform can be represented in the
form

K~a, x, u ! 5 (
n50

`

exp~2ipan !z2n~x, u !,

z2n~x, u ! 5 F2n~x !F2n~u ! 1 F2n11~x !F2n11~u !. (40)

It is easy to see from Eq. (38) that we can generate an-
other kernel series with M harmonics,

Fig. 1. Harmonic content for the different types of fractional
Fourier transform, which correspond to the kernels defined by
the following equations: (a) the optical fractional Fourier trans-
form [Eq. (35)]; (b) Eq. (22) and Eq. (44) for N 5 4; (c) Eq. (21),
where N 5 4 and w0 5 0, w1 5 4, w2 5 0, w3 5 24; (d) Eq. (45)
for N 5 4; (e) Eq. (47).
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K~a, x, u ! 5 (
n50

M21

expS i2p
an

M D (
m52`

`

zn1Mm~x, u !.

(41)

The kernels satisfy the requirements for the fractional
transforms. Here the sums of the elements zj(x, u),

kn~M, x, u ! 5 (
m52`

`

zn1Mm~x, u !, (42)

are used as the coefficients kn(x, u) in Eq. (6). Note that
Eq. (8) holds for the coefficients kn(M, x, u) and
km(M, x, u) because they are constructed from the dis-
joint series of the orthonormal elements. The number of
harmonics M has to be defined by M 5 Nl, where l is an
integer, to satisfy to conditions (11).

One can prove that the kernel (41) for a 5 1 reduces to
Eq. (33). In particular, if $Fn% is the set of Hermite–
Gauss modes and z2n(x, u) 5 Fn(x)Fn* (u) for n 5 0,1,...
and z2n(x, u) 5 0 for negative n, then Eq. (41) corre-
sponds to the series of the M-harmonic fractional Fourier
transforms proposed in Ref. 9:

K~a, x, u ! 5 (
n50

M21

expF2i2p
an~1 2 M !

M G
3 (

m50

`

Fn1Mm~x !Fn1Mm* ~u !

5
1

M (
n50

M21

expF ip
~M 2 1 !~al 2 n !

M G
3

sin@p~al 2 n !#

sin@p~al 2 n !/M#
KF~n/l, x, u !, (43)

where KF(n/l, x, u) is the kernel of the optical fractional
Fourier transform. If M 5 N (l 5 1), we find that the
kernel of the Shih fractional transform defined by Eq. (22)
(see Fig. 1(b) for N 5 4) can also be represented as

K~a, x, u ! 5 (
n50

N21

expF2i2p
an~1 2 N !

N G
3 (

m50

`

Fn1Nm~x !Fn1Nm* ~u !. (44)

In the general case some of the elements zn1Mm(x, u)
can be combined into the series, while others can be used
as separate harmonic amplitudes, such as in this ex-
ample:

K~a, x, u ! 5 (
m50

`

z2Nm~x, u ! 1 (
n51

N21

(
m50

`

3 expF2i2paS n

N
1 m D Gz2n2Nm~x, u !,

(45)
where the spectrum of the fractional transform kernel
contains all negative harmonics except for Nm (m
5 21, 22,...). The scheme of this kernel for N 5 4 is
given in Fig. 1(d).

Another example is the fractional Fourier transform
kernel with five harmonics,

K~a, x, u ! 5 (
n50

4

expS 2ip
an

2 D k2n~x, u !, (46)

whose amplitudes are

k0~x, u ! 5 F0~x !F0* ~u !,

k2j~x, u ! 5 (
m50

`

F j14m~x !F j14m* ~u !, j 5 1, 2, 3,

k24~x, u ! 5 (
m51

`

F4m~x !F4m* ~u !. (47)

The scheme of the spectrum of this kernel is represented
in Fig. 1(e).

Finally, we can conclude that, if the complete orthonor-
mal set of eigenfunctions for a given cyclic transform ex-
ists, then an infinite number of fractional transform ker-
nels with an arbitrary number of harmonics can be
constructed.

6. PROPERTIES OF THE FRACTIONAL
TRANSFORMS
In spite of the variety of schemes available for the con-
struction of the fractional transforms, all of them have
some common properties.

If the coefficients kn(x, u) in decomposition (6) are real,
then the following relationship holds for the fractional
transforms of a real function f(x):

$RF
a@ f~x !#~u !%* 5 RF

2a@ f~x !#~u !.

This is the case for the optical fractional Fourier trans-
form, the related fractional Hartley transform, and the
optical fractional Hankel transform.

A. Eigenfunctions of Fractional Transforms
By analogy with Eq. (4), the eigenfunction C1/M(x) for the
fractional transform Ra for a 5 1/M with eigenvalue A
5 exp(i2pL/M) can be constructed from the arbitrary
generator function by the following procedure:

C1/M~x ! 5
1

M (
n50

M21

exp~2i2pnL/M !Rn/M@ g~u !#~x !.

(48)

In the limiting case M → ` one obtains the eigenfunction
for any value a with eigenvalue exp(i2paL):

Ca
L~x ! 5

1

N
E

0

N

exp~2i2paL !Ra@ g~u !#~x !da. (49)

In particular, for fractional transforms generated by Eq.
(34) (as was shown in the example for the fractional Fou-
rier transform13), the functions Ca

L(x) correspond to the
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elements of the orthogonal set $aLFL%, where the con-
stant factors depend on the generator function.

For the Shih definition of fractional transform (22) or
(44), there are only N different functions

Ca
L~x ! 5 aL (

m50

`

FL1mN~x !, (50)

which are self-reproducible under the fractional transfor-
mation for any a:

Ra@Ca
L~u !#~x ! 5 exp~i2paL !Ca

L~x !, (51)

where aL is a constant. The functions with different in-
dices L are orthogonal to one another.

B. Complex and Real Fractional Transform Kernels
As we have shown in Section 5, if there exists a complete
orthonormal set of eigenfunctions $Fn% for the
R-transform, then any coefficient in the harmonic decom-
position of the fractional kernel kn(x, u) (6) can be ex-
pressed as a linear composition of the elements
F j(x)F j* (u). For the kernel of the fractional transform
to be real, the Fourier spectrum of the fractional kernel
with respect to parameter a must be symmetric. This
means that uk2n(x, u)u 5 ukn(x, u)u. Because the coeffi-
cients kn(x, u) with different indices n contain the dis-
joint series of the orthogonal elements, their amplitudes
cannot be equal. Then the kernel of the Ra-transform
cannot be real (even if the R-transform kernel is a real
one) in the case in which there exists a complete ortho-
normal set of eigenfunctions $Fn% for the R-transform.

As we have shown above, the fractional Hilbert kernel
can be real, because there is no complete orthonormal set
of eigenfunctions for the Hilbert transform.

7. FRACTIONAL HARTLEY TRANSFORMS
As an example, let us consider the fractionalization of the
Hartley transform. The Hartley transform of a function
f(x) is defined as follows:

RH@ f~x !#~u ! 5 E f~x !cas~2pxu !dx, (52)

where cas(x) 5 cos x 1 sin x 5 A2 cos(x 2 p/4). The for-
ward and the inverse Hartley transforms are identical in
form. This means that each is a cyclic transform with
N 5 2. Moreover, the Hartley transform of a real f(x) is
real, too, which might be important for optical image pro-
cessing.

The Hartley transform is closely related to the Fourier
transform RF . Thus an alternative method of defining
RH is given by

RH@ f~x !#~u ! 5
1

A2
$exp~ip/4!RF@ f~x !#~u !

1 exp~2ip/4!RF
3 @ f~x !#~u !%. (53)

The Hartley and the Fourier transforms have the same
set of orthogonal eigenfunctions (Hermite–Gauss func-
tions), but with different eigenvalues. Thus
RH@Cn~x !#~u !

5 H Cn~u ! for n 5 4m, n 5 1 1 4m

2Cn~u ! for n 5 2 1 4m, n 5 3 1 4m
, (54)

where m is a nonnegative integer.
Because there exists a complete orthonormal set of

eigenfunctions $Fn% for the Hartley transform, the kernel
of the fractional Hartley transform H(a, x, u) cannot be
real, despite the fact that the kernel of the Hartley trans-
form is real.

One of the possible kernels of the fractional Hartley
transform, which we call the optical fractional Hartley
transform, can be written as

H~a, x, u ! 5 (
n50

`

exp~2ipan !@C2n~x !C2n~u !

1 C2n11~x !C2n11~u !#. (55)

Comparing Eqs. (39) and (55), we find that the relation-
ship between the optical fractional Hartley transform op-
erator RH

a and the optical fractional Fourier operator RF
a

is given by

RH
a 5 exp~ipa/4!@cos~pa/4!RF

a 2 i sin~pa/4!RF
a12#.

(56)

This is the generalization of Eq. (53) for an arbitrary pa-
rameter a. Equation (56) shows the procedure for
achieving the optical realization of this type of fractional
Hartley transform, inasmuch as the fractional Fourier
transform optical setup is well known.2 One of the pos-
sible schemes is given in Fig. 2.

Let us comment briefly about the optical setup used in
performing the fractional Hartley transform for param-
eter a. This is a Mach–Zender interferometer that has
particular optical elements in the two arms.

Let f(x) be an input complex field amplitude. First, we
have to perform a fractional Fourier transform, Ra@ f(x)#,
by using a lens with focal length f at a distance d
5 2f sin2(pa/4) from partial (or intermediate) input and
output planes.2 Second, this optical signal interacts with
a phase plate f 5 pa/4. A beam splitter separates the
two arms of the interferometer. The reflected beam
(beam 1) interacts with an absorbing plate: cos(pa/4).
The direct transmitted beam (beam 2) interacts with an
optical system, producing the fractional Fourier trans-
form for a 5 2, which corresponds to the inverse transfor-
mation: R2@ g(x)#(u) 5 g(2u). Then, after reflection
from mirror M1, beam 2 interacts with an absorbing
plate: sin(pa/4), producing a phase shift equal to 2p/2.
This beam is reflected from mirror M2 to recombine with
beam 1. We notice that this operation is a modification of
that used for optical implementation of the Hartley
transform.14 One peculiarity is the use of the two ab-
sorbing plates. So we can conclude that this could be an
interesting procedure to perform with the use of particu-
lar filtering devices in the fractional Hartley domain.

Another kernel for the fractional Hartley transform
that contains only two harmonics n1 and n2 , where n1
2 n2 is an odd integer, is obtained from Eq. (21):
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Fig. 2. Setup for the optical realization of the fractional Hartley transform defined by Eq. (56) (see text for details). PP, phase plate;
BS, beam splitter; AP, absorbing plate; M’s, mirrors.
H~a, x, u ! 5 expF i

2
pa~n1 1 n2!G

3 H d ~x 2 u !cosFpa

2
~n1 2 n2!G

2 i cas~2pxu !sinFpa

2
~n1 2 n2!G J . (57)

In particular, for n1 5 0 and n2 5 1, Eq. (58) is

H~a, x, u ! 5 expS i

2
pa D Fd ~x 2 u !cosS pa

2 D
2 i cas~2pxu !sinS pa

2 D G . (58)

This gives another procedure for optical implementation
of a particular fractional Hartley transform. In this case
we should require two interferometers, one to obtain the
ordinary Hartley transform RH

1 , as has been already done
by Bracewell et al. in Ref. 14, and a second Mach–Zender-
type interferometer to obtain RH

a .
In general, there are an infinite number of continuous

fractional Hartley transforms.

8. CONCLUSIONS
In this paper we have established a general method for
the generation of the different types of fractional trans-
forms for a given cyclic transform. The usefulness of a
specific transform is related to its feasibility in hybrid, op-
tical, or numerical operations as well as to its applications
in signal or image processing. We have proved that the
analysis of harmonic contents for various types of frac-
tional Fourier transform offers a procedure for their ex-
perimental realization. Also, we have proposed a par-
ticular experimental device based on optical correlation
for the optical implementation of the fractional Hartley
transform. This seems to be a new optical operation in-
asmuch as it is a modification of the optical Hartley trans-
form for performance of particular filtering procedures.

Furthermore, the fractional Fourier and Hankel trans-
forms generated through procedure (34) have attracted
the attention of the optical community because they de-
scribe in the paraxial approximation the beam propaga-
tion through a quadratic refractive-index medium.
Moreover, the fractional Fourier transform is used for the
development of new filtering devices.3

The fractional Hilbert transform generated by Eq. (28),
which also can be optically implemented, is used for edge
detection.5 The authors are currently developing further
results, not discussed here, for optical applications of par-
ticular fractional transforms.

Although in this paper we have considered the cyclic in-
tegral transforms, the main results are also valid for dis-
crete cyclic transforms.
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