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Fractionalized conductivity and emergent self-
duality near topological phase transitions
Yan-Cheng Wang 1, Meng Cheng2, William Witczak-Krempa 3,4 & Zi Yang Meng 5✉

The experimental discovery of the fractional Hall conductivity in two-dimensional electron

gases revealed new types of quantum particles, called anyons, which are beyond bosons and

fermions as they possess fractionalized exchange statistics. These anyons are usually studied

deep inside an insulating topological phase. It is natural to ask whether such fractionalization

can be detected more broadly, say near a phase transition from a conventional to a topo-

logical phase. To answer this question, we study a strongly correlated quantum phase

transition between a topological state, called a Z2 quantum spin liquid, and a conventional

superfluid using large-scale quantum Monte Carlo simulations. Our results show that the

universal conductivity at the quantum critical point becomes a simple fraction of its value at

the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical

conductivity emerges at low temperatures above the transition point, indicating the presence

of the elusive vison particles. Our study opens the door for the experimental detection of

anyons in a broader regime, and has ramifications in the study of quantum materials, pro-

grammable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss

the feasibility of measurements in optical lattices using current techniques.
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Correlated topological phases exhibit phenomena that
extend beyond the conventional paradigms of condensed
matter physics, namely Landau’s Fermi liquid theory for

metals and the Landau–Ginzburg–Wilson symmetry-breaking
scheme for phases and transitions. These topological
phases are the embodiment of intrinsic topological order1, and
call for a deeper understanding of states of matter. Topologically
ordered systems exhibit new types of particles called anyons
that are neither fermions nor bosons. Some of these anyons
can be used to robustly encode and manipulate quantum
information, thus offering a viable platform for quantum
computation2.

Topological order was experimentally discovered in two-
dimensional electron gases (2DEGs) under strong magnetic
fields by measuring a well-known observable: the Hall con-
ductivity. In the simplest integer quantum Hall state, the Hall
conductivity is universally quantized as σxy= e2/h, where e is the
electron charge and h Planck’s constant. In contrast, in fractional
quantum Hall states3,4, σxy remains universal but becomes a
fraction of e2/h as a consequence of the fractionalization of the
electron. One prominent example is the fractional Hall state with
σxy ¼ 1

3
e2
h where the electrons fractionalize into anyons of charge

e/3. Subsequent experiments, such as shot noise analysis of the
edge modes5,6, and thermal Hall conductance7 have confirmed
the fractionalized nature of the excitations. Unfortunately, many
other equally interesting topologically ordered systems do neither
possess a universal Hall response nor robust edge states. A
representative example is the Z2 quantum spin-liquid (QSL), or
in the bosonic language, a topologically ordered insulator8, which
could arise in frustrated magnets, bosonic Mott insulators or
Rydberg atom-based programmable quantum simulators9–15.
Unlike a regular paramagnet that would host bosonic spin waves,
this spin liquid has emergent bosonic and fermionic excitations,
which carry 1/2 of the spin quanta of the spin waves, as well
as visons, which are fluxes of an emergent gauge field. As the
fluxes can only take two inequivalent values, the gauge field is said
to be of Z2 type. A continuous transition between such a state
and a conventional one is bound to be beyond the usual
Landau–Ginzburg–Wilson paradigm. Direct experimental detec-
tion of fractionalization in these systems has remained an out-
standing challenge16–20.

Here, we propose a new experimental signature for fractiona-
lization in Z2 QSLs that can be obtained already at the transition
point from a conventional phase. As a concrete example, we
consider a system in proximity to a quantum critical transition
from a Z2 QSL to an ordinary superfluid, as shown in Fig. 1.
Despite being gapless, the system’s longitudinal conductivity
becomes a simple fraction, 1/4, of its value at the usual quantum
critical point between a trivial paramagnet and a superfluid. This
fraction is a direct consequence of the fractionalization of the
charge carriers at the quantum critical point (QCP), which carry
1/2 of the unit charge of the microscopic bosons. “Charge” here
refers to the boson number (or spin, in a Mott insulator of
electrons), so the bosons effectively split in two at the transition
and in the quantum spin liquid, which is illustrated schematically
in Fig. 1b. In addition, we uncover a crossover from a particle-like
dynamical conductivity at low temperature, to a vortex-like one at
higher temperatures. At an intermediate temperature denoted by
T*, the dynamical conductivity becomes nearly frequency-
independent signaling the emergence of a self-dual quantum
fluid. We argue that this striking behavior reveals the presence of
visons, which are otherwise challenging to observe as they do not
carry charge (spin). In the Discussion, we argue that these sig-
natures can be observed using existing techniques in ultracold
atomic gases loaded in an optical kagome lattice.

Results
Topological phase transition on the kagome lattice. We con-
sider the following Balents–Fisher–Girvin (BFG) model for
bosons on a kagome lattice9–14, depicted in Fig. 1a:

H ¼ �t∑
hiji

byi bj þ h:c:
� �

� μ∑
i
ni

þ V ∑
hiji

ninj þ ∑
hhijii

ninj þ ∑
hhhijiii

ninj

� � ð1Þ

where byi (bi) creates (annihilates) a hard-core boson at site i, and
ni ¼ byi bi measures the number of bosons therein. The t term
hops bosons between neighboring sites and the V terms are
repulsive interactions between any two bosons on a hexagon, see
Fig. 1a. By the mapping byi ðbiÞ ! Sþi ðS�i Þ and ni � 1=2 ! Szi , the
Hamiltonian can also be cast into an XXZ spin-1/2 model, with
the chemical potential μ corresponding to external magnetic field
h. We work primarily at the filling factor of 〈ni〉= 1/2, i.e., 1/2
bosons at every site on average. The 〈ni〉= 1/3 filling will be
discussed below, and in that case, another repulsion V 0 between
the same sublattice sites on the neighboring hexagons is added to
stabilize the QSL phase13. The Hamiltonian (1) conserves the
total number of bosons, which corresponds to a U(1) symmetry.
Accordingly, byi creates an excitation of charge 1, which is the
fundamental unit of charge in the system, in analogy with the
charge of an electron in a solid.

As shown in Fig. 1b, at large t/V, the bosons can hop freely and
will Bose–Einstein condense to form a superfluid at low
temperature. In contrast, when the repulsion dominates an
insulator will result, in which case the bosons become effectively
frozen. Large-scale quantum Monte Carlo (QMC) simulations
have shown that this quantum-phase transition occurs at
(t/V)c= 0.070756(20)10,12. So far, these properties seem conven-
tional. However, the striking feature is that the insulator is a
topological state of matter with fractionalized particles. Indeed,
the emergent excitations do not carry charge 1 as expected, but
rather 1/2: they are, heuristically speaking, half-bosons. The
charge 1 bosons becomes fractionalized into pairs of bosons
(called spinons) with half the fundamental charge. This is the
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Fig. 1 Kagome model for a topological phase transition. a Kagome lattice
with lattice vectors r1,2. The hopping t and the interaction V are given in the
Hamiltonian Eq. (1). b Phase diagram of the kagome model as a function of
t/V, and temprature T. The Z2 quantum spin liquid (QSL), superfluid (SF),
and the XY* quantum critical point characterizing the ground state are
shown. The charge fractionalization of spinons is schematically illustrated.
In the quantum critical fan, blue indicates a particle-like conductivity, while
an unconventional vortex-like response is in red. A nearly self-dual
dynamical conductivity emerges at intermediate temperatures (purple)
signaling the presence of visons. The same color scheme is used in
representing the conductivity data in Figs. 2 and 3. The SF long-range order
only exists at zero temperature; a Kosterlitz–Thouless (KT) transition,
denoted by the black dashed line, separates the paramagnetic phase from
the one with quasi-long-range order.
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analog of emergent charge e/3 particles in a fractional quantum
Hall state at filling 1/3. In fact, there are three types of
topologically nontrivial emergent quasiparticles in the Z2 QSL:
a bosonic spinon which carries half-integer charge, a bosonic
vison with integer charge (including zero) but carrying π flux of
the emergent Z2 gauge field, and their bound state—a fermionic
spinon.

Furthermore, the quantum-phase transition itself is highly
unconventional. While it can be intuitively understood as the
Bose–Einstein condensation transition of bosonic spinons, the
symmetry-breaking paradigm of Landau–Ginzburg cannot
explain the emergent fractionalization. Interestingly, the transi-
tion is continuous meaning that quantum critical fluctuations
proliferate to large scales, and can thus amplify signatures of
fractionalization.

Using large-scale quantum Monte Carlo (QMC) simulations
we search for such signatures using a key observable, the
conductivity. This is in part motivated by the fundamental role
that conductivity has played in the discovery of fractional
quantum Hall states. Since time-reversal is not broken here, the
Hall conductivity vanishes and we are left with the longitudinal
conductivity, denoted by σ. One couples the system to an external
potential that causes a flow of charge (bosons), and the
conductivity is given by the linear response expression
σðωÞ ¼ � i

ω hJxðωÞJxð�ωÞi, where we have allowed for a drive
oscillating with frequency ω. In the Discussion, we explain how
this is possible using current techniques in ultracold atomic gases.
Jx(ω) is the usual boson current along the x direction (denoted by
the lattice vector r1 in Fig. 1a) at frequency ω. In the QMC
simulations, one has directly access to imaginary frequencies
ω→ iωn= i2πTn, where n is an integer and T the temperature.
An important challenge is the continuation from imaginary to
real frequencies. Reliable numerical techniques for this purpose,
such as stochastic analytic continuation21,22 which we will use in
this work, are under active development and have been
successfully employed in various quantum many-body
systems14,23–25.

In Fig. 2, we show the conductivity of the system at the
quantum critical coupling (t/V)c= 0.070756(20) and filling
〈ni〉= 1/2. We compute σ(ωn) with system sizes
L= 12, 24, 36, 48, 60, 72, 96 and inverse temperature βV= 300,
350, 390, 400, 450, 500, 600 (with statistical errors obtained from
QMC simulations and standard data fitting; this also applies to
the data shown in Fig. 3). QMC simulations and conductivity
measurements are described in “Methods”, and additional details,
especially the two-step extrapolation of σ(L→∞, β→∞) to the
thermodynamic limit, are given in Supplementary Note 2. We
plot the finite-temperature conductivity and extrapolate it to
L→∞ and then to β→∞(T→ 0), as shown by the black solid
dots, and σ is then expected to become a universal scaling
function f(ω/T), or in imaginary frequencies, f(iωn/T)26,27. In the
low-temperature regime ωn≫ T, the conductivity should saturate
to its ground-state constant value σ(∞). This plateau is clearly
observed in Fig. 2, and the resulting conductivity obeys a striking
relation:

σXY� ð1Þ ¼ 1
4
σXYð1Þ; ð2Þ

where XY denotes the conventional superfluid-to-insulator transi-
tion which is of the XY universality, and since the transition in our
model involves fractionalization, it is denoted as XY*9,28,29. The XY
transition arises in non-frustrated lattices, the canonical example
being the Bose–Hubbard model on the square lattice at unit filling,
which has been experimentally realized with ultracold atoms30.
Comparing our numerical value σXY� ð1Þ ¼ 0:098ð9Þ with the best
estimate for that of the XY transition σXY= 0.355431–36 gives a ratio

σXY� ð1Þ=σXYð1Þ ¼ 0:27ð3Þ, which is 1/4 within error bars. The
suppression of the conductivity at the fractionalized XY* critical
point compared to its XY counterpart is given by a simple rational
number, 1/4, which is reminiscent of the fractional Hall conductivity
observed in 2DEGs—also a rational fraction of the conductivity at
unit filling.

We now turn to the case of 〈ni〉= 1/3 filling. It was shown
in ref. 13 that a XY* QCP also occurs between Z2 QSL and
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Fig. 2 Conductivity fractionalization and dynamical self-duality at half-
filling. Longitudinal conductivity data, including a two-step extrapolation from
finite sizes and temperatures to the low-T thermodynamic limit, of our kagome
model at boson filling 〈ni〉= 1/2 as a function of n=ωn/2πT at the XY*

critical point (t/V)c=0.070756(20) with L= 12, 24, 36, 48, 60, 72, 96 and
βV= 300, 350, 390, 400, 450, 500, 600. In the thermodynamic limit, L→∞

and then β→∞, the universal constant σXY� ð1Þ appears, and we obtain a
plateau value of σXY� ð1Þ ¼ 0:098ð9Þ which is 1

4 σXYð1Þ. At finite
temperatures, we see a crossover from a particle-like conductivity (blue) to a
vortex-like one (red). In the vicinity of β*≈400 (c.f. the green triangles), we
observe a nearly constant dynamical conductivity indicating a self-dual-
quantum fluid with visons.
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Fig. 3 Topological signatures at 1/3 filling. The conductivity data of our
kagome lattice model at boson filling 〈ni〉= 1/3 as a function of n=ωn/
2πT at the XY* critical point (t/V)c= 0.07773(5), with V0=V ¼ 0:005,
L= 12, 24, 36, 48, 60, 72 and βV= 400, 450, 500, 520, 550, 600. In the
thermodynamic limit L→∞ and then β→∞, the universal constant
σXY� ð1Þ appears, and we obtain σXY� ð1Þ ¼ 1

4 σXYð1Þ as discussed in the
text. As in Fig. 2, we see a thermal crossover from a particle-like
conductivity (blue) to a vortex-like one (red). The self-dual regime occurs
around β*≈ 500 (c.f. the green triangles).
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superfluid phases, when the aforementioned V 0 term is added to
the Hamiltonian to stabilize the QSL. The Z2 QSL in this case has
identical topological order as the one at 1/2 filling, and spinons
still carry half U(1) charge12,14,20. Although the emergent Z2
gauge field sees a different background charge density for 1/2 and
1/3 fillings, we expect this subtle difference do not affect the
critical properties at the XY* transition. The QMC results are
shown in Fig. 3, with system sizes L= 12, 24, 36, 48, 60, 72, and
βV= 400, 450, 500, 520, 550, 600 at the critical point
(t/V)c= 0.07773(5). The plateau in the conductivity, after the
two-step extrapolation to the thermodynamic limit (as denoted
by the black solid dots), also yields σXY� ð1Þ ¼ 0:100ð13Þ and
σXY� ð1Þ=σXY ¼ 0:28ð4Þ, which is again 1

4 within error bars.
As we shall now explain, the fractionalized conductivity

observed here and the fractional Hall conductivity observed in
2DEGs share a common origin: charge fractionalization.

From fractionalized charge to fractional conductivity. To
understand the aforementioned results at the XY* QCP, we can
resort to a coarse-grained description in terms of a quantum field
theory (see Supplementary Note 1 for a detailed review of this
theory). A complex field ϕ is introduced to represent the emer-
gent bosonic spinons. Since a conventional charge 1 boson is
associated with a pair of spinons, we assign a unit charge to ϕ2. As
such, the spinon field must carry charge Q= 1/2 under the U(1)
particle conservation symmetry. The form of the Hamiltonian is
then constrained by the fact that the critical theory has an
emergent Lorentz invariance and takes the same form as for the
regular XY transition: H= ∫d2x(∣∂0ϕ∣2+ ∣ ∇ ϕ∣2+ r∣ϕ∣2+ λ∣ϕ∣4),
where r tunes the system to criticality. It is important to note that
physical observables must be composed of an even number of
spinons. For instance, the superfluid corresponds to a
Bose–Einstein condensate of conventional bosons, namely ϕ2.
Since we are interested in conductivity, we need to first specify the
form of the physical current:

J ¼ 1
2
iðϕ∇ϕ� � ϕ�∇ϕÞ ð3Þ

which is 1/2 of the usual current one would get at the XY tran-
sition. The 1/2 ensures that the field describing the original
bosons has a unit U(1) charge. It then follows from the linear
response expression σ ¼ � i

ω hJxðωÞJxð�ωÞi that the conductivity
at the XY* transition is 1/4 that of its XY value, in perfect
agreement with our numerical results, i.e., both at the XY* QCPs
of 〈ni〉= 1/2 in Fig. 2 and 〈ni〉= 1/3 in Fig. 3. We note that
the above argument is nonpertubative in the interaction strength
since the Z2 gauge field, and the associated gapped visons,
become nondynamical at asymptotically low temperatures.

Visons and dynamical self-duality. Besides probing the ground
state at the quantum-phase transition, our results for the con-
ductivity shown in Figs. 2 and 3 extend well into the quantum
critical fan of Fig. 1b at finite temperature. This experimentally
accessible regime offers an opportunity to probe strongly inter-
acting quantum fluids in thermal equilibrium. Due to the emer-
gent scale invariance at quantum criticality, the rate for
excitations to relax is given by the absolute temperature kBT/ℏ37,
where we have temporarily reinstated Boltzmann’s and Planck’s
constants. As such, the finite frequency conductivity will be a
scaling function of the frequency divided by this universal rate,
σ(ω, T)= f(ω/T), which holds at sufficiently low T but for fixed
ω/T. We have obtained this universal scaling function at ima-
ginary frequencies f(iωn/T), see the fit of the thermodynamic
values in Figs. 2 and 3 (the fitting procedure is described in
Supplementary Note 2). At large values of the argument, f(iωn/T)

reduces to the ground-state conductivity, which is 1/4 the value of
the ordinary XY QCP.

At smaller frequencies, the scaling function shows the same
upturn previously obtained using QMC simulations for the
regular XY QCP31–35. A response with such an upturn is referred
to as particle-like20,38,39 since it shares the same form as that of
regular bosons in the XY universality class. In Figs. 2 and 3, we
observe that as the quantum system is heated up, there is a
gradual reduction of the upturn of the low-frequency conductiv-
ity. At sufficiently high temperatures, the conductivity acquires a
downturn near the DC limit. We say that such a conductivity is
the “dual” of the particle-like conductivity since under the usual
particle–vortex duality, the dual vortices have a conductivity
given by the inverse of that of the original bosons, 1/σ(ω)40. The
duality thus converts an upturn into a downturn, yielding a
vortex-like conductivity38,39. At an intermediate temperature that
we call T*, the dynamical conductivity becomes nearly frequency-
independent as is shown in purple in Figs. 2 and 3. We refer to
this type of conductivity as dynamically self-dual owing to the
fact that under usual particle–vortex duality, a frequency-
independent response remains flat41. This crossover from
particle-like to vortex-like response within the quantum critical
fan results from the geometrical frustration of the kagome
Hamiltonian, and is absent at the conventional XY transition31. It
is thus a striking new feature of the topological-phase transition.

In order to understand the origin of this striking phenomenon,
we need to go back to the full cast of topological particles. Beyond
the spinons described by the XY* field theory discussed above, the
QSL also hosts charge-neutral visons20. As these are gapped, they
decouple at asymptotically low temperatures. However, as we heat
the system, the temperature approaches the gap scale of the
visons, which we shall independently quantify below. The visons
then become thermally excited and begin to interact and scatter
the charge-carrying spinons. This new scattering channel leads to
the observed reduction of the conductivity at low frequencies. As
the visons are π-fluxes of the emergent gauge field, the spinons
effectively move in a random background emergent magnetic
field, which results in lower mobility. Remarkably, the dynamical
conductivity in the self-dual regime is σðωÞ � 1

4 σXYð1Þ for all
frequencies, extending the topological fractionalization to the
dynamical regime. It is important to emphasize that we have
written the conductivity in real frequencies since the analytic
continuation can be trivially performed for a constant function,
which is an advantage of the self-dual regime compared to
temperatures away from T*.

To further test the above conclusion regarding the vison
signatures in the conductivity, we analyze the QMC dynamical
density–density correlation function 〈ni(τ)nj(0)〉 (or hSzi ðτÞSzj ð0Þi
in the spin language), and stochastically analytically continue to
real frequencies14,22–24. We expect the number density correla-
tions to reveal properties about vison excitations, as deep inside
the spin-liquid phase (t/V≪ 1) it can be shown that the number
operator ni (or Szi ) creates a pair of visons9,14. The vison gap
should stay finite within the entire spin-liquid phase, including
the QCP, so it is reasonable to expect that ni creates vison pairs
near and at the transition. Figure 4a shows the spectrum for filling
1/2, while Fig. 4b is for filling 1/3. A fundamental feature of the
spectra is the absence of excitations at low energies, which leads
to the conclusion that the visons are gapped14. We have also
verified the vison gap by directly measuring the exponential decay
of the hSzi ðτÞSzj ð0Þi correlation in imaginary-time QMC data, and
the obtained gaps are consistent with those read from the spectra
in Fig. 4 (examples of the comparison are given in Supplementary
Note 3). The gap in the spectrum gives twice the vison gap Δv,
since visons are always created in pairs. We thus estimate

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25707-z

4 NATURE COMMUNICATIONS |         (2021) 12:5347 | https://doi.org/10.1038/s41467-021-25707-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Δv ~ 0.01 at filling 1/2, and ~0.005 at filling 1/3. We expect that
Δv sets the scale for the self-dual temperature T* obtained for the
conductivity. We indeed find that these two quantities are of the
same order of magnitude, with T* being roughly a third of the
vison gap. Furthermore, Δv is lower at 1/3 filling compared to
half-filling, consistent with the fact that T* is smaller at 1/3 filling.
It would be interesting to perform a more detailed theoretical
analysis that would relate T* to the vison gap. This would require
studying a field theory beyond the one for the pure XY* quantum
critical point, since finite mass visons would need to be included
at finite temperature.

Discussion
We obtained the finite frequency conductivity near the uncon-
ventional XY* quantum critical point, which is associated with
fractionalization, topological order, and an emergent Z2 gauge
field. The topological-phase transition separates a Z2 QSL
haboring fractionalized spinon and vison excitations from a
conventional superfluid phase. We have shown that the ground-
state conductivity reveals the existence of fractionalized charge,
i.e., σXY� ð1Þ ¼ 1

4 σXYð1Þ. This sharp signature in the con-
ductivity is to be contrasted with other types of “indirect” mea-
surements on QSLs such as inelastic neutron scattering that can
only observe the spinon-pair continua, which is easily confused
with the continua generated from disorder42,43. We have uncov-
ered another qualitatively new signature, namely the crossover
from a particle-like (DC upturn) to a vortex-like (DC downturn)
dynamical conductivity as the system is heated up. Strikingly, at
intermediate temperatures, we discovered a dynamically self-dual
conductivity that is nearly independent of the frequency
σðωÞ � 1

4 σXYð1Þ. This is in sharp contrast to the usual XY
transition, and results from the presence of thermally excited
topological particles, the visons. Therefore, the conductivity frac-
tionalization and emergent self-duality discovered in this work
open the door for the experimental detection of fractionalized
particles such as anyons in a variety of quantum materials, and
ultracold atomic gases for example the recently proposed Rydberg
atom-based programmable quantum simulators on the kagome
lattice15. Recent experiments44 in ultracold atomic gases have
yielded the frequency-dependent conductivity for atoms loaded in
a two-dimensional optical lattice, which is precisely what is needed
to measure the conductivity predicted in our work. In the
experiment, the alternating current is obtained by applying a

spatially uniform but temporally oscillating force via the dis-
placement of a harmonic trapping potential. Since we predict the
emergence of a dynamically self-dual regime, this should be easier
to observe since it will be apparent in a wide range of frequencies
and does not require that the system be cooled to the absolute
lowest temperatures. We reiterate that the self-dual response holds
at real frequencies, which is what is measured. We also note that
bosonic atoms have been successfully loaded in an optical kagome
lattice45, so that all the basic experimental ingredients are present.
It would be desirable to further modify the Hamiltonian in order
to increase the vison gap, thus increasing T*, and making the
crossover more readily observable. Finally, it will be of interest to
extend our findings to other QSL phases, as well as to certain non-
Fermi liquids and their unconventional transitions. As a concrete
example, it would be of interest to study the finite-temperature
dynamical conductivity near the topological QCP that is “dual” to
the one studied in this work: visons condense, while the spinons
maintain a small gap throughout. An inversion of the observed
crossover would be expected (vortex/particle-like at small/large T),
but a detailed study is needed owing to the strongly interacting
nature of the transition.

Methods
We simulate the Hamiltonian in Eq. (1) on the kagome lattice by using a
worm-type continuous-time QMC technique46,47. In the simulations, we take
system sizes L= 12, 24, 36, 48, 60, 72, 96, and the inverse temperature βV= 300,
350, 400, 450, 500, 520, 550, 600. The conductivity σ can be expressed as σðiωnÞ ¼
� i

ωn
hJxðωnÞJxð�ωnÞi with Jx(ωn) the current operator along the x direction (r1 in

Fig. 1a) of the kagome lattice. In the QMC simulations, the imaginary frequency
conductivity σ(iωn) is computed as

σðiωnÞ ¼
h�kxi � ΛxxðiωnÞ

ωn

¼ hj∑kP
x
ke

iωnτk j2i
βL2ωn

ð4Þ

where〈kx〉 is the kinetic energy associated with the x-oriented bond, and Λxx(iωn) is
the Fourier transform of imaginary-time current-current correlation function48, and
∑k runs through the volume of L × L × β of the QMC configurational space with Px

k
denoting the projection of the kth hopping along the x direction. A similar mea-
surement of conductivity has been performed at the XY QCP33.

In order to obtain real-frequency spectral functions, the stochastic analytic
continuation (SAC) scheme is employed to obtain the spectral function A(q, ω)
from the imaginary-time correlation function S(q, τ), Sðq; τÞ ¼ 1

π

R1
0 dωAðq;ωÞ

ðe�τω þ e�ðβ�τÞωÞ. It is known that the problem of inverting the Laplace transform
is equivalent to find the most probable spectra A(ω) out of its exponentially many
suggestions to match the QMC correlation function S(τ) with respect to its sto-
chastic errors, and such transformation has been converted to a Monte Carlo
sampling process21,22. This QMC-SAC approach has been successfully applied to
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Fig. 4 Probing the vison gap. Vison-pair spectra obtained from the QMC dynamical density–density 〈ni(τ)nj(0)〉 (or hSzi ðτÞSzj ð0Þi in the spin language)
correlation function and stochastic analytic continuation, plotted along the high symmetry path Γ--M--K--Γ in the Brillouin zone. The horizontal axis is
momentum, while the vertical one represents energy (frequency) (note the energy scale here is very low compared with, for example, the scale of the bare
interaction which is V= 1). a At the XY* critical point (t/V)c= 0.070756 at boson filling 〈ni〉= 1/2 with system size L= 18 and β= 500. b At the XY*
critical point (t/V)c= 0.07773 at filling 〈ni〉= 1/3 with system size L= 18 and β= 600. The vison-pair continua are clearly visible above (twice) the
vison gap.
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quantum magnets ranging from the simple square lattice Heisenberg
antiferromagnet23,25 to deconfined quantum critical point and quantum spin
liquids with their fractionalized excitations14,24.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All numerical codes in this paper are available upon reasonable request to the authors.
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