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In fracture mechanics, established methods exist to model the stability of a crack tip or the kinetics
of crack growth on both the atomic and the macroscopic scale. However, approaches to bridge the
two scales still face the challenge in terms of directly converting the atomic forces at which bonds
break into meaningful continuum mechanical failure stresses. Here we use two atomistic methods to
investigate cleavage fracture of brittle materials: (i) we analyze the forces in front of a sharp crack
and (ii) we study the bond breaking process during rigid body separation of half crystals without
elastic relaxation. The comparison demonstrates the ability of the latter scheme, which is often used
in ab initio density functional theory calculations, to model the bonding situation at a crack tip.
Furthermore, we confirm the applicability of linear elastic fracture mechanics in the nanometer
range close to crack tips in brittle materials. Based on these observations, a fracture mechanics
model is developed to scale the critical atomic forces for bond breaking into relevant continuum
mechanical quantities in the form of an atomistically informed scale-sensitive traction separation
law. Such failure criteria can then be applied to describe fracture processes on larger length scales,
e.g., in cohesive zone models or extended finite element models.

I. INTRODUCTION

Resistance to crack propagation is undoubtedly one of
the most important properties of structural materials.
However, our current mechanistic understanding of the
energy-dissipation processes involved on the various scales
and of their interplay is not sufficiently advanced to predict
the fracture behavior of materials ab initio.1,2 As fracture is
ultimately caused by the breaking of atomic bonds,3 there is
a high demand for atomistically informed fracture criteria.
An overview of ongoing attempts to realize them in
hierarchical and concurrent schemes can be found, e.g., in
Refs. 4 and 5. Here we propose a hierarchical scheme that
meets two common challenges: to extract information on
the atomic scale in an efficient manner and to coarse-grain
this information to obtain practical and meaningful failure
criteria for a finite element (FE) implementation on the
mesoscale. Our approach is demonstrated by making use of
cohesive zones (CZs), but is not limited to this model.

A so-called cohesive zone model is a seemingly natural
way to incorporate atomistic information in a continuum
model of fracture. In a traditional CZ model, the fracture
process zone (i.e., the region in which nonlinear processes
occur) ahead of the crack tip is represented by cohesive
surfaces (respectively a narrow band of vanishing thickness)
which experience cohesive tractions described by a consti-
tutive law, the so-called traction-separation (TS) law. Crack
growth occurs when the separation at the tail of the CZ, i.e.,
at the physical crack tip, reaches a critical value at which the
cohesive traction vanishes. The strip yield model of
Dugdale,6 which was originally proposed for estimating
the size of the plastic zone around a crack tip, is regarded as
one of the first CZ-type models. Barenblatt7 also proposed
a cohesive fracture concept with the aim to eliminate the
crack tip stress singularity in classical linear elastic fracture
mechanics (LEFM). For fracture of perfectly brittle materi-
als, the descriptions by LEFM and the CZ model approach
are equivalent if the material behavior in the zone around
the crack tip is determined by the stress-intensity (K) field
and if the cohesive energy density is identical to the critical
energy release rate.8 The first condition is met when the
fracture process zone is smaller than the K-dominated zone
(the region with a significant gradient in the stress), which is
the case in brittle materials.9,10

a)Address all correspondence to this author.
e-mail: rebecca.janisch@rub.de

b)Current address: Materials Modeling, Fraunhofer Institute for
Mechanics of Materials, Wöhlerstr. 11, 79108 Freiburg, Germany.

This paper has been selected as an Invited Feature Paper.
DOI: 10.1557/jmr.2018.384

3750 J. Mater. Res., Vol. 33, No. 22, Nov 28, 2018 � Materials Research Society 2018. This is an Open Access article, distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted re-use, distribution, and reproduction in anymedium, provided the original work is properly cited.



A crucial point to consider in practical applications
within a finite element method (FEM) implementation is
that CZ-based numerical techniques require cracks to
propagate along the element boundaries. Therefore, an
inherent nonvanishing amount of mesh dependency arises,
which can become dominant for three-dimensional simu-
lations in a homogeneous material.11 For instance, no
converged solutions from the simulation of progressive
delamination were obtained above a critical mesh size.12

As a general rule, Hillerborg et al.13 suggested a maximum
characteristic length lcoh � Gc=r2

c for the CZ under mode
I loading, based on the cohesive energy Gc and the critical
stress to initiate crack advance rc. This characteristic
length is always smaller than the radius of the K-
dominated zone at critical loading, but also larger than
the fracture process zone. In our approach, we couple the
mesh size to the critical stress, which is the object of
a scaling procedure explained in Sec. III. Furthermore, we
do not only treat the fracture process zone as a CZ, but
sample the complete K-dominated region on the cleavage
plane with cohesive elements. This way, we obtain mesh-
independent results for the fracture toughness under mode
I loading.

In principle, the TS law can capture the physics of
deformation and failure on the microscale, provided its
shape is chosen carefully and that it includes important
parameters such as maximum strength, work of separa-
tion, and critical displacement.14 Within the hierarchical
modeling approaches, there are basically two philoso-
phies about how to incorporate this information in TS
laws, which differ in the way in which dissipative
processes enter the modeling framework.

TS laws derived from atomistic simulations of homo-
geneous deformation of a single crystal, a bicrystal, or
even model sections of polycrystalline microstructures
can produce a stress–strain curve which reflects both
elastic and dissipative processes during fracture.15–21

However, dissipating the energy which is released during
crack initiation and growth can be severely constrained in
microstructures22 so that the fracture toughness becomes
dependent on length scale and geometry. This means that
the TS law would have to be adapted for each specific
microstructure. Instead, we want to promote an approach

in which the process of material separation by breaking of
atomic bonds is separated from energy dissipative pro-
cesses, such as plastic deformation accommodated by
generation and motion of dislocations. The description of
bond breaking within the CZ can be combined with
different levels of description of the plastic deformation
in the material adjacent to the CZ. On the smallest scale,
plasticity is described based on discrete dislocation
dynamics models in two23–25 or three dimensions.26

Further developments include the formulation of the
virtual internal bond model of cohesive fracture and its
application to nanomaterials.27,28

Following the failure criterion by Griffith, the TS law
for the bond-breaking process will have to capture the
work of separation of the material, but to predict reliably
the trends in cohesive behavior, the strength of the bonds
is required as well.29 The strength of interatomic bonds is
reflected in the theoretical strength of a material, which can
be determined via ab initio density functional theory
(DFT) calculations for single crystals30,31 as well as
interfaces with and without impurities.32–34 However, this
procedure assumes homogeneous expansion perpendicular
to, or cleavage along, an infinite crystallographic plane.
During such a process, all bonds across the anticipated
cleavage plane are elongated by the same amount and
rupture at the same time. By contrast, individual pairs of
atoms across the cleavage plane in the vicinity of the crack
tip experience different environments, due to the gradient
of the elastic displacement ahead of a crack tip, as shown
in Fig. 1. Thus, the equivalence of the stresses obtained
from such a rigid body separation (RBS)-type calculation
with the critical stress needed to advance a crack tip still
has to be demonstrated. This is one of the aims of the
present paper (see Sec. II).

Embedding an atomistics-based TS law into a fracture
model via CZs in a FE scheme has also practical issues
because the theoretical strength is of the order of GPa and
the critical separation is of the order of Å.35 The stresses
on the order of the theoretical strength occur very locally
in the extreme stress gradient in front of the crack tip, i.e.,
usually within the first few layers of atoms. In contrast to
this, any continuum modeling is based on describing
average stresses in some finite volume such that typical

FIG. 1. Simulation setups for rigid-body separations (a) and crack-tip configurations (b). Note that not all interacting nearest-neighbor (NN) pairs
(green; color online) are shown here due to the two-dimensional visualization. In fact the number of interacting NN pairs is twice the number of
interacting 2nd NN pairs.
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stresses occurring in FE models are much smaller.
Therefore, Serebrinsky et al. first used a scaling relation
for TS laws36 derived from the results of ab initio
calculations based on the concepts introduced in Refs.
37 and 38. It assumes that the critical stress needed to
separate two half crystals depends on the amount of elastic
energy that is stored and released from the material next to
the cleavage plane, which in turn scales with the system
size. This can easily be observed in atomistic supercell
calculations in which two half crystals are shifted and the
atomic positions are relaxed afterwards. If the theoretical
strength is simply identified with the maximum of the
derivative of the energy–displacement curve, it decreases
with an increasing number of planes parallel to the
cleavage plane.37 However, the amount of energy that
localizes and is subsequently released during the fracture
process is in fact finite,39 and the seemingly size-
dependent fracture stress can be normalized to obtain the
unique strength of the material.40 Thus, a scaling approach
via the elastic energy is practical, but not well justified, and
a physically meaningful coarse-graining scheme providing
an unambiguous connection between the macroscopic and
microscopic stresses is still needed.

With the work at hand, we want to promote tensile tests
carried out by RBSs and translations in combination with
a scaling approach based on pairwise forces. RBS schemes
can be used to characterize single crystals and grain
boundaries on the same footing,41 provide a three-
dimensional description of single crystal42 and grain bound-
ary separation,43 and can be extended to include impurity
effects.35 Most importantly, the derived critical stresses are
size independent without any normalization. Our scaling
approach based on interatomic forces will allow us to relate
this fundamental atomistic quantity to the required mesh-
sensitive model parameters in a rigorous way.

In the following, the results of atomistic simulations of
RBS are compared with those of simulations of K-
dominated cracks to demonstrate the equivalence of the
interatomic forces in both situations; see Sec. II. This is
the starting point for our novel approach to scale the
atomic-level properties into parameters for continuum
models in a physically motivated way, which is presented
in Sec. III. This novel approach is tested in the framework
of CZ modeling of cleavage fracture in an FE model,
which demonstrates its advantages and shortcomings.
Our findings are summarized in Sec. IV.

II. COMPARISON OF INTERATOMIC FORCES AT
CRACK TIPS AND DURING RIGID-BODY
SEPARATION

A. Interatomic potentials and simulation setups

We chose tungsten as a brittle, elastically isotropic
model material to study cleavage fracture under static

loading conditions. The atomic interactions were de-
scribed either in the framework of ab initio DFT
calculations using the local density approximation
(LDA) or by using different potentials of the embedded
atom method (EAM) type. DFT calculations were carried
out using the ABINIT electronic structure code,44–46

employing the ultra-soft pseudopotential of Hartwigsen,
Goedecker and Hutter.47 For the RBSs described below,
a k-point mesh of 8 � 8 � 2 k-points was used, which,
after Fourier transformation, corresponds to a maximum
k-point spacing of 47.45 a.u. (25 Å). The energy cut-off
for the plane-wave basis set was 16 Ha (435 eV).

The EAM potentials used are the classical Ackland–
Thetford–Finnis–Sinclair (ATFS) potential from the
1980s48,49 and the more recent potential by Wang.50

Their fracture-relevant properties and cutoff radii rcut are
presented in Table I. All atomistic simulations were
performed with the molecular dynamics software package
IMD51,52 using the MIK53 and FIRE54 relaxators.

The simulation setups for the corresponding atomistic
simulations are shown in Fig. 1. Figure 1(a) shows the
case of rigid-body separations, which is often used to
determine the theoretical strength via ab initio tensile
tests. In this setup, two crystal halves are iteratively
separated without allowing the atoms to relax their
positions. As mentioned in the introduction, this strategy
prevents size effects, which would occur if the crystallo-
graphic layers were allowed to relax, and furthermore
enables a unified description of single crystals and grain
boundaries.41 Note, however, that the strength values
determined from methods that include atomic relaxations
and lateral contraction of the sample can differ signifi-
cantly, particularly in the presence of defects, such as
grain boundaries.55 The implications will be discussed
below. Periodic boundary conditions (PBC) are used in
all directions. In the case of a grain boundary calculation,
this actually requires the inclusion of two cleavage planes
as there would be two grain boundaries in the simulation
cell. This is not necessary in the single crystal, but to be
able to use the same setup, we did so for consistency.

TABLE I. Summary of fracture-relevant potential properties of the
EAM potentials used for tungsten (ATFS48,49 and Wang50): the lattice
parameter a0 at 0 K, the bulk equilibrium energy E0, and the elastic
constants Cij, the (100) surface energy, and the cut-off radius.

Property ATFS Wang

a0 (Å) 3.1652 3.1652
E0 (eV/atom) �8.90 �8.90
C11 (GPa) 522.4 522.4
C12 (GPa) 204.4 204.4
C44 (GPa) 160.6 160.6
cs(100) (J/m

2) 2.930 2.990
rcut (Å) 4.40 4.45
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The size of the simulation box in the present study was
Lx � Ly � Lz � 10 � 60 � 10 Å3. The separation
distance Dy was varied from �0.5 Å to 2.5 Å in
incremental steps of dDy 5 0.025 Å. The normal stress
rat acting between the atoms of the two crystal halves at
a certain separation distance Dy was then calculated from
the average potential energy per atom, Epot, as

rat ¼ Natoms

2Axz

dEpot

dDy
; ð1Þ

where Natoms is the number of atoms in the configuration
and Axz is the cross-sectional area of the created surface.
The factor of 2 results from the PBC.

Figure 1(b) shows the setup used to determine the
fracture toughness and structure of an atomistically sharp
crack. Although this setup can also be used to study cracks
with DFT,56 it is usually used in classical atomistic
simulations with interatomic potentials. In this setup, the
linear-elastic solution of the crack-tip displacement field
under plane-strain conditions, ux,y(r, h) is directly applied
to a cylindrical atomistic configuration with PBC.57,58

The displacements are determined for a given stress
intensity factor KI and depend on the distance from the
central crack tip, r, and the inclination angle h of the
direction of r and the crack plane. The critical stress
intensity factor for the onset of crack propagation, KIc, was
determined by iteratively increasing KI, the corresponding
Dux,y, and the subsequent relaxation of the atoms in the
interior of the configuration (with a minimum distance of
2rcut from the outer surface). The value of KI at which the
crack propagates by brittle bond breaking was then defined
as KIc (we will denote this quantity as Kat

Ic hereafter to
emphasize that it was obtained by atomistic simulations).
For more details on the setup and simulation methodology,
see Refs. 59 and 60. In the present study, a cylinder of
radius 150 Å and length Lz � 10 Å was used to study
a crack on the (100) crack plane along the crack-front
direction [011], which is the natural crack system in
tungsten.61

B. Results

1. Simulations of rigid-body separation

The dependence of the binding energy per unit area,
i.e., the energy difference of a configuration with respect
to the fully separated crystal halves, on the separation
distance is shown in Fig. 2 for the two interatomic
potentials in comparison to DFT results. From this, the
cleavage energy Gc is obtained as the difference between
the energy at infinite and that at zero separation. The
values are summarized in Table II. By comparing with
Table I, it can be seen that the cleavage energy approx-
imately equals 2cs(100), which would be the (relaxed)
work of separation. The work of separation (WoS)

obtained from the DFT calculations (not shown in
Table I) equals 8.58 J/m2, which is in good agreement
with other DFT values.62,63 The values for the cleavage
energies obtained with the EAM potentials are signifi-
cantly different from the DFT data. Such deviations are
not uncommon: see, e.g., Ref. 64 for a review of the
applicability of various classes of potentials for bcc
transition metals to fracture-like situations. However,
for the aim of the present study, it is sufficient to show
that the atomistically determined fracture toughness can
be reproduced independently of the mesh size of our CZ
model. In addition, we will show how the DFT results
from the simpler RBS calculations can be used in the

FIG. 2. (a) Binding energy versus separation of crystal halves for two
different tungsten potentials and as obtained by DFT. (b) Derivatives
of the binding curves, i.e., traction versus separation of crystal halves.

TABLE II. Summary of the characteristic values for rigid-body
separations (cleavage energy Gc, threshold stress rth, critical separa-
tion dcrit, final separation df) and crack-tip configurations Kat

Ic

� �
obtained with the ATFS48,49 and Wang50 potentials as well as by
DFT calculations.

Property ATFS Wang DFT

Gc (J/m
2) 5.85 5.97 9.12

rth (GPa) 51.53 49.00 50.44
dcrit (Å) 0.80 0.98 0.66
df (Å) 2.27 2.43 3.60
Kat
Ic (MPa m1/2) 1.71 1.68 . . .
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same approach, opening up the possibility of a more
accurate determination of KIc without performing the
actual DFT crack-tip simulations.

The TS relationships for the different potentials were
readily obtained by applying Eq. (1), i.e., by derivation of
the binding-energy versus separation-distance data. The
corresponding TS plots are shown in Fig. 2(b). Three
characteristic values can be obtained from these plots: the
threshold stress, rth, the critical separation distance dcrit
(where rth is reached), and the ‘final’ distance df (where
the traction across the surface is zero). All characteristic
values are summarized in Table II and compared to
values obtained by DFT calculations.

Based on the experience with previous studies on
RBS,35,41 the shape of the TS relationships of the Wang
potentials appears to be somewhat unexpected as it shows
two local maxima and a local minimum at around Dy �
0.65 Å. The origin lies in the not-completely-smooth
energy–displacement curves [see Fig. 2(a)]. Both poten-
tials were optimized to reproduce several material prop-
erties, but an interplanar separation along the [001] axis
was not included. However, as we will see in Sec. III, it is
sufficient if the TS law includes the peak stress, and this
is reasonably well reproduced by both potentials.

2. Crack-tip simulations

The fracture toughness Kat
Ic

� �
values determined by

atomistic simulations are summarized in Table II.
According to the Griffith criterion65

KG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cs 100ð Þ � Ep

(with E being the appropriate
orientation-dependent elastic constant), critical values in
the range of 1.61–1.64 MPa m1/2 are expected for both
potentials. These theoretically expected values using the
potential parameters are markedly smaller than the
atomistically determined ones; see Sec. II. This well-
known behavior66 is generally attributed to the lattice-
trapping effect.67 The atomistic crack-tip configurations
showing crack propagation by cleavage on the original
(100) plane are provided in Fig. 3.

3. Comparison of interatomic forces

There are different ways to calculate the force acting
across the cleavage plane from the present simulation
results: Fat

ct is the y-component of the individual atomic
(superscript ‘at’) force vectors calculated during the
simulation of crack-containing configurations (subscript
‘ct’). To compare the evolution of the crack-tip forces
with the forces during rigid-body separations, the crack-
tip distance rij has to be related to the corresponding
separation in the [100] direction, Dy, as follows:

Dy ¼ �a0=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij � a20=2

q
; ð2Þ

where a0 denotes the bulk lattice parameter. Strictly, this
correction is only valid under the assumption that the
distance between next-nearest (NN) neighbors (and for
cracks on the (100) plane NN neighbor bonds are the
critical bonds) changes with Dy, as follows:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a0=2ð Þ2 þ a0=2ð Þ2 þ Dy

	 
2r
; ð3Þ

i.e., when applying a homogeneous uniaxial strain
without allowing Poisson contraction, as is the case in
the present study.

Fat
rb is the y-component of the individual atomic force

vectors calculated during the simulation of rigid-body
separations (subscript ‘rb’). Since there are Nsurface

interacting NN pairs and Nsurface

2 2nd NN pairs for each
(100) surface [Fig. 1(a)], the total force Fat

rb per surface
atom is obtained from the individual forces between NN
and 2nd NN neighbors, Fat

NN and Fat
2NN, by

Fat
rb ¼ Fat

rb;NN þ 1=2Fat
rb;2NN ; ð4Þ

Favg
rb is calculated from the change of the average

potential energy per atom in rigid-body separations:

Favg
rb ¼ Natoms

2Nsurface

dEpot

dD
; ð5Þ

which corresponds to the calculation of the tractions in
Eq. (1) but normalized to the number of surface atoms
rather than the surface area.

Feff is the derivative of the effective pair potential.68 In
this case, the same correction regarding rij and Dy has to
be made as for the crack-tip forces; see Eq. (2).

The evolution of these forces as a function of lateral
separation Dy is shown in Figs. 4(a) and 4(b) for the two
potentials. The truly remarkable result of this comparison
is how well the force laws from the by-far-simpler model
systems (rigid-body separations and effective pair poten-
tial) agree with the actual forces at the crack tips,
considering that the environments in which the forces

FIG. 3. Atomistic crack-tip configurations in the (100)[011] crack
system for the ATFS (a) and Wang (b) potentials at the critical stress
intensity factors Kat

Ic ; see Table II. The original crack-tip atoms are
colored black.
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have been determined (or calculated as in the case of Feff)
are completely different.

Second, it should be noted that the unexpected camel-
hump shape of the T(Dy) curve for the Wang potential
shown in Fig. 2(b), which is essentially the per-area
instead of per-atom versions of Favg

rb Dy

� �
and thereby

Fat
rb Dy

� �
, can now be understood by the separation of the

total acting force into contributions from NN and 2nd NN
neighbors.

Third, the individual force–separation relationships
(Fat

rb;NN and Fat
rb;2NN) are very similar to each other, and

their shape can be qualitatively understood by comparing
it to the shape of the derivative of the effective pair
potential, Feff. This implicitly shows that the correction
made in Eq. (2) is applicable even if it does not account
for changes in the electron density due to uniaxial
straining, which might, however, be the reason for the
minor differences in the magnitudes of Fat

rb;NN and Feff.
An important conclusion which can be drawn from

these results is that the forces necessary to break the bond
between the crack-tip atoms show only a small—if any at
all – dependence on the local atomic surrounding at the
crack tip. Even if our observations cannot prove that all
EAM potentials will show the same behavior or that

crack-tip bonds in metals in general do not show a strong
dependence on their local bonding environment, this is to
our knowledge the first time that it has been shown that
the forces to separate crack-tip atoms can indeed be
estimated from simulations of rigid-body displacements.
In particular, the comparison between Fat

ct and Favg
rb in

Fig. 4 shows that the characteristics of TS laws derived
from simple rigid-body separations, i.e., the maximum
force and the critical separation distance dcrit, are in very
good agreement with the actual crack-tip forces. This has
important consequences for multiscale modeling, as it
validates the long-standing use of DFT calculations to
determine traction separation laws. Whether the corre-
spondence of forces from rigid-body separation and
fracture simulations still holds for systems with complex
chemical compositions or grain- and interphase bound-
aries would still need to be shown. However, an
averaging of forces over one structural or chemical unit
would be a possible way to extend our approach.

III. ATOMISTICALLY INFORMED TRACTION
SEPARATION (TS) LAW

A. Derivation of a scalable TS law

In this section, a method is derived to convert the
atomic forces at the crack tip into meaningful continuum
quantities, i.e., TS laws describing the cohesive behavior
of the material in front of the crack tip. To accomplish
this, we consider a chain of N pairs of atoms in front of
the crack tip on the crack plane (see Fig. 5). The atom
pairs under consideration are those that are affected by
the stress concentration of the crack tip and that lie in the
crack plane.

Formally, the atomic forces F(i), defined in Sec. II.B.2,
can be converted into atomic stresses by normalization
with the atomic area Aat as

rat x ið Þ
	 


¼ F ið Þ

Aat

; ð6Þ

where x(i) 5 iacd is the distance of the atom pair i 5 1, 2,
. . ., N to the crack tip and Aat 5 acfacd is the projected
atomic area on the crack plane, given by the interplanar
distance acf along the crack front and the interplanar
distance acd in crack direction, respectively. The crack
itself is defined by the pairs of atoms that are separated by
a distance of more than the critical displacement df, such
that the position of the crack tip is located at the last pair
of atoms with a larger separation than df. It is noted here
that the elastic distortion of the atomic distances along the
crack front and in the crack direction is neglected to
obtain a closed-form solution for the scaling relation.

From LEFM, it is known that the stress field in front of
a crack tip decays as 1=

ffiffiffiffiffiffi
x ið Þ

p
. Figure 6(a) shows that this

linear-elastic theory holds excellently at the atomic scale,

FIG. 4. Comparison of the relationship between per-atom forces on
crack-tip atoms Fat

ct

� �
, the NN and 2NN contributions to the forces on

atoms across the cleavage plane during rigid-body separations Fat
rb

� �
,

the derivative of the average potential energy during rigid-body
separations Favg

rb

� �
, and the derivative of the effective pair potential

(Feff) on the separation distance Dy (a) for the ATFS potential and (b)
for the Wang potential.
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even very close to the crack tip, in agreement with the
findings of Ref. 9. The deviation for the crack-tip atom is
partly due to the 20% increased Voronoi volume com-
pared to the atoms in front of the crack tip. In contrast to
the atomic stresses, the atomic forces are largest for the
crack-tip atom pair. The atomic stresses along the
cleavage plane in front of the crack tip can be reasonably
expected to follow

rat x ið Þ
	 


¼ rat x 1ð Þ
	 
 ffiffiffiffiffiffiffi

x 1ð Þ

x ið Þ

s
¼ F 1ð Þ

Aat

ffiffiffiffiffiffiffi
x 1ð Þ

x ið Þ

s
¼ KIffiffiffiffiffiffiffiffiffiffiffi

2px ið Þ
p ;

ð7Þ
with the stress intensity factor

KI ¼ F 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi
2pacd

p
Aat

; ð8Þ

fully defined by atomistic quantities.
The fundamental relation between the atomistic and

the continuum description is demonstrated by calculating
the fracture toughness KIc from Eq. (8), as

KIc ¼ Fc

ffiffiffiffiffiffiffiffiffiffiffi
2pacd

p
=Aat ¼ rat

c

ffiffiffiffiffiffiffiffiffiffiffi
2pacd

p
; ð9Þ

with the critical force Fc at which the bond between the
first pair of atoms breaks; i.e., this pair of atoms is
separated beyond the critical distance df, and conse-
quently the crack tip advanced by one atomic distance.
This force corresponds to the theoretical strength defined
in Sec. II.B.1 and can thus be conveniently calculated
with atomistic methods. With the values obtained from
atomistic calculations with the Wang potential (see
Table II), a fracture toughness of KIc 5 1.70 MPa m1/2

is calculated from the critical force, Favg
rb;max, and KIc 5

1.84 MPa m1/2 from the theoretical strength rth with
acd ¼ a0=

ffiffiffi
2

p
. The force-based value corresponds very

well to the KIc values obtained from direct atomistic

simulation (Kat
Ic ¼ 1:68 MPa m1/2) and from the Griffith

criterion (KG
Ic ¼ 1:64 MPa m1/2). The value from the

critical strength is roughly 8% higher as can be expected
from the difference in Fmax

eff and Favg
rb;max (see Fig. 4).

However, for most continuum fracture models, a frac-
ture energy or WoS is required in addition to the fracture
strength ~rc and a critical separation ~dc. These parameters
represent the main quantities defining the TS law de-
scribing the cohesive behavior of a material in front of
a crack tip [see Fig. 6(b)]. While the WoS is scale
independent, the fracture strength and the critical sepa-
ration both depend on the spatial resolution of the applied
method. The fundamental material constants are obtained

FIG. 6. (a) Atomic stresses (black diamonds) in front of the crack tip
in the atomistic simulation using the Wang potential at a load of KI 5
1.67 MPa m1/2 together with the corresponding analytic LEFM
solution, which results in a finite stress at the boundary of our
model. The blue points (color online) show the corresponding atom
positions (right ordinate axis). (b) Schematic drawing of the stress,
with step-wise functions, which indicate the average stress per
element in FEM simulations with two different mesh sizes, FE1
and FE2. The region with a significant gradient in the average stress
is called the K-dominated region. At the end of the K-dominated
zone, the stress gradient decays into a constant far-field stress r0,
which needs to be considered for finite crack sizes; see Eq. (15).

FIG. 5. Schematic drawing of the strained atom pairs in the CZ in
front of the crack tip.
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from atomistic methods, but a proper scaling must be
developed for the scale-dependent model parameters that
takes an appropriate length scale or mesh size into
account, as outlined in the introduction.

Since all values used in continuum methods represent
average values over a finite volume or a FE, we start by
defining the critical fracture strength as average stress
over the KI-dominated region

~rc ¼
PN
i¼1

F ið Þ

A
; ð10Þ

as the sum over all atomic forces in this region normal-
ized by the corresponding area. From relation Eq. (7), we
also conclude that the atomic forces decay as

F ið Þ ¼ F 1ð Þ

ffiffiffiffiffiffiffi
x 1ð Þ

x ið Þ

s
¼ F 1ð Þffiffi

i
p : ð11Þ

With Eq. (11), the relation A 5 NAat and the condition
that F(1) 5 Fc, because the onset of crack advance is
considered, we obtain

~rc ¼
Fc

PN
i¼1

1ffi
i

p

NAat

¼ rat
c

1
N

XN
i¼1

1ffiffi
i

p : ð12Þ

The sum on the right hand side of this equation can be
approximated by

~S Nð Þ ¼ 1
N

XN
i¼1

1ffiffi
i

p � 2ffiffiffiffi
N

p � 1:4
N

: ð13Þ

Numerical evaluation of the approximation shows that
the relative error is less than 10�4 for values of N
between 105 and 106; for the latter value, the sum
amounts to ~S Nð Þ ¼ 0:002. The precision of the approx-
imation gets better for larger values of N, which is the
usual case for applications. Since the sum is finite,
a precise numerical evaluation is always possible, al-
though the simple approximation function is still easier to
handle.

To calculate a properly scaled final separation of atoms
~df , we consider a simple bilinear TS law [see Fig. 7(b)]
such that C ¼ 1=2rat

c d
at
f ¼ 1=2~rc

~df . It follows

~df ¼ 2C
~rc

¼ datf
~S Nð Þ : ð14Þ

In the final step, a reasonable estimate for the length of
the K-dominated region and thus the number N of atom

pairs to consider is developed. The criterion for the length
of this region is the decay of the stress to a value of r0,
which can be either the yield strength of a plastic material
or the far-field stress r0 ¼ KI=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pacrack

p
considered in

linear-elastic fracture mechanics, where acrack is the crack
length. Hence, N is defined by the requirement that

F Nð Þ

Aat

¼ F 1ð Þ

Aat

ffiffiffiffi
N

p ¼ r0 : ð15Þ

For the critical condition, when the crack starts to
propagate (F(1) 5 Fc), we obtain

Nc ¼ Fc

r0Aat

� �2

¼ rat
c

r0

� �2

: ð16Þ

Noting that the critical atomic stresses are typically
a 1000 times larger than the yield strength or far-field
stress, a reasonable estimate for the number of atom pairs
in the K-dominated region is Nc � 106. This yields a size
of K-dominated zone rcoh 5 Ncacd � 200 lm.

FIG. 7. (a) Schematic drawing of the region around a crack-opening
sampled by elements of different sizes rFE. At each node, the crack
opening is characterized by a d. (b) Bilinear TS law in which critical
stress and final displacement depend on the mesh size.
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In summary, a scaling relation for the atomistic
strengths and separations has been derived, in the form

~rc ¼ jrat
c ; ð17Þ

~df ¼ datf
j

; ð18Þ

with the scaling factor

j ¼ ~S Nð Þ ¼ 2ffiffiffiffi
N

p � 1:4
N

¼ 2
r0

rat
c

� 1:4
r0

rat
c

� �2

: ð19Þ

For practical applications, N is replaced by the ratio of
the size of each element to the lattice parameter in crack
propagation direction, and Eq. (19) becomes

jFE ¼ 2

ffiffiffiffiffiffi
acd
rFE

r
� 1:4

acd
rFE

: ð20Þ

This results in a critical stress and a final displacement,
which are both adjusted to the element size, as shown in
Fig. 7(b).

It is noted that the directional dependence of the model
parameters in Eq. (20) is artificially introduced by the
scaling of the FE size with the atomic interplanar distance
in the crack propagation direction. A proper directional
dependence could be introduced by using a direction-
sensitive energy release rate as WoS.

B. Application and validation

As an application of the novel scaling relation, we
conducted FE fracture simulations for a linear elastic
material representing tungsten to calculate the fracture
toughness KIc. The numerical simulations have been
performed using the commercial FE software ABAQUS.
All simulations have been performed using an implicit
time integration scheme. The surface-based CZ method is
used to simulate fracture. The geometry of the model is
the same as in the atomistic simulation [see Fig. 1(b)],
whereas the ratio between the radius of the sample and
the mesh at the crack tip is kept constant at 10,000. This
is done to avoid the variation of results due to mesh-size
variation in comparison to the sample size. This mesh
size is applied to the area around crack tip up to 1% of the
total size of the model and then increased gradually
toward the outer boundary of the specimen to avoid too
much computational cost. The geometry has been meshed
with fully integrated 4-node quadratic elements with
linear shape functions (CPE4) for the plane strain case.
The mechanical boundary conditions have been applied
as KI-displacement field in a similar way as in the
atomistic simulations. This is achieved by selecting the
outermost nodes of the FE model and applying the

boundary conditions to those nodes. Isotropic elastic
constants, Young’s modulus E and Poisson ratio m, were
determined according to the elastic constants for the
Wang potential in Table I, which yields E5 410 GPa and
m 5 0.281.

A series of FE simulations has been performed for KI

loading using scaled parameters for the TS law according
to different mesh sizes, i.e., the scaled critical stress ~rc,
and the displacement at failure ~df according to Eq. (20).
The value for the initial slope of the TS law has been kept
constant at 1.634 � 105 GPa for all cases. The fracture
toughness KIc is defined as the loading at which the first
cohesive surface element breaks (d $ df).

In Fig. 8(a), it can be seen that the values of scaled
critical stresses decrease over several orders of magnitude
with the increasing mesh size. The values of final
displacements (not shown) increases correspondingly to
keep the cleavage energy (WoS) constant.

Figure 8(b) shows the obtained values of KIc for
different mesh sizes. The value KIc varies between 1.35
and 1.49 MPa m1/2 over variation of mesh size by 5
orders of magnitude. The average of the KIc values over
the range of mesh sizes is 1.45 MPa m1/2, which is close
to the atomistic value Kat

Ic ¼ 1:68 MPa m1/2. This is
remarkable because there is no fitting of parameters, but
rather a consistent scaling of the atomistic quantities

FIG. 8. (a) Scaling of the model parameter of the TS law with the
mesh size. (b) Fracture toughness resulting from a FE simulation for
a linear elastic material law with the properly scaled TS law (left
ordinate axis) and with constant TS law (right ordinate axis) for the
cohesive behavior.
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according to the mesh size over a range of five orders of
magnitude. It can be seen that there is no pronounced
scatter around the average value in the sense of a pro-
nounced mesh-size dependence. To emphasize the im-
portance of our scaling procedure, the calculation of KIc

with a constant TS law was also performed. In this case,
the scaling is done only for the 10�7 m mesh and the same
parameters for the TS law are used for the calculation of
KIc with the 10

�6 m mesh (4.59 MPa m1/2) and the 10�4 m
mesh (45.82 MPa m1/2). It can be seen in Fig. 8(b) that in
this case the critical stress intensity factor scales with the
square root of the mesh size (or in other words, the size of
the sample), in agreement with the observation of Bazant69

of KIc variation for self-similar geometries but different
sizes.

IV. CONCLUSIONS

In the strong stress gradient ahead of the crack tip, the
definition of mechanical stress is necessarily scale-
dependent. Thus, only fundamental atomistic methods
provide a rigorous way to define stress-related material
properties, e.g., the fracture strength.

In this work, it is shown that the widely used approach
to derive the critical bond separation stress from ab initio
calculations of RBSs is well justified. To accomplish this,
we have compared forces occurring in atomistic simu-
lations of RBS with those at crack tips under KI loading.
The results demonstrate that they are indeed equivalent,
which means that they are less environment-dependent
than commonly expected. As a consequence, we can
derive meaningful TS laws from much simpler model
systems than from actual fracture simulations. This
enables the use of computationally expensive, but quan-
titatively reliable methods such as ab initio DFT
calculations.

Since the mesh sizes commonly used in continuum
methods do not resolve the high atomistic stresses and the
strong stress gradient at crack tips, we have introduced
a physically meaningful approach to scale atomistic TS
laws with the mesh size. It is based on the insight that the
atomistically determined stresses ahead of the crack tip
agree well with the prediction of LEFM. The approach
defined in this work is based on properly averaging
atomic forces over cohesive surface elements to convert
them in mechanical stresses. This enables the use of
fundamental atomistic material constants, such as theo-
retical strength, theoretical final separation, and work of
separation as parameters in continuum fracture models.

It has also been demonstrated that the fracture tough-
ness resulting from the thus-parameterized continuum
model is independent of the mesh size, although numer-
ical fluctuations occur. In this way, the atomistic data can
be used directly to calculate TS parameters for continuum
fracture models, such as CZ models or XFEM.

In our approach, the fracture model describes only the
bond-breaking processes during cleavage; any additional
(plastic) energy dissipation needs to be taken into account
in the constitutive model of the material surrounding the
crack. Therefore, the scaling method is ideally used in
conjunction with micromechanical plasticity models or
discrete dislocation dynamics simulations.

As ab initio tensile tests can be carried out using
complex chemical compositions and including grain or
interphase boundaries, the scheme enables the material-
specific atomistically informed continuum modeling of
fracture of engineering materials.
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