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SUMMARY 

The paper presents a simple approximate analytical solution of the remote stresses that cause the collapse of 
a borehole or other circular cylindrical cavity in an infinite elastic space. Regions of parallel equidistant 
splitting cracks are assumed to form on the sides of the cavity. Their boundary is assumed to be an eIlipse of 
a growing horizontal axis, the other axis remaining equal to the borehole diameter. The slabs of rock 
between the splitting cracks are assumed to buckle as slender columns, and their post-critical stress is 
considered as the residual stress in the cracked rock. The buckling of these slab columns is assumed to be 
resisted not only by their elastic bending stiffness but also shear stresses produced on rough crack faces by 
relative shear displacements. The energy release from the infinite medium'-caused by the growth of the 
eIliptical cracking region is evaluated according to Eschelby's theorem. This release is set equal to the energy 
dissipated by the formation of alI the splitting cracks, which is calculated under the assumption of constant 
fracture energy. This yields the collapse stress as a function of the elastic moduli, fracture energy, ratio of the 
remote principal stresses, crack shear resistance characteristic and borehole diameter. The collapse stress as 
a function of crack spacing is found to have a minimum, and the correct crack spacing is determined from 
this minimum. For small enough diameters, the crack spacing increases as the (4/5)-power of the borehole 
diameter, while for large enough diameters a constant spacing is approached. In contrast to plastic solutions, 
the breakout stress exhibits a size effect, such that for small enough diameters the breakout stress decreases 
as the ( - 2/5)-power of the borehole diameter, while for large enough diameters a constant limiting value is 
approached. Finally, some numerical estimates are given and the validity of various simplifying assumptions 
made is discussed. 

1. INTRODUCTION 

The sudden catastrophic collapse of boreholes in rock, called the breakout, as well as the collapse 

(such as rock burst) of various other types of cavities due to high compressive stresses in the rock 

mass, has been studied extensively and various important results have been obtained.1 
:-22 

However, most studies have been based on the theory of plasticity, which does not give 

a sufficiently realistic description of the inelastic behaviour of rock, except at very high confining 
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pressures. Such pI:essures, however, never exist near the sides of cavities. Cavities usually appear 
to fail due to fracture of rock, and the failure process is described by fracture mechanics better 
than plasticity. A fully realistic description would no doubt require a combination of both 
theories, but the analysis would then become rather complicated. 

The most important practical consequence of fracture mechanics is that it predicts size effect, 
that is, the remote compressive stress that causes· a borehole to fail must decrease as the borehole 
size increases. On the other hand, according to plasticity (or any other failure theory expressed in 
terms of stress and strain), there is no size effect. But the existence of the size effect has been 
detected experimentally (e.g. References 19, 23, 24). 

Fracture mechanics has so far been well developed only for tensile fractures, and to some extent 
shear fractures; their microscopic mechanism, however, still usually consists of tensile cracks. 
Compressive fractures are not very well understood at present, although it is clear that their 
mechanism involves, in one way or another, some form of tensile cracking depending on the 
structure geometry. The purpose of this study is to formulate appropriate simplifying assump
tions and use fracture mechanics concepts to obtain an analytical solution of borehole collapse 
that reveals the size effect and is sufficiently simple to be clearly understood-one benefit that 
numerical solutions cannot provide. The plasticity aspects of failure will have to be neglected to 
make an analytical solution feasible. The reality may be expected to be somewhere between the 
solutions of plasticity and fracture mechanics, but probably in most situations much closer to the 
latter . 

.... 
2. ENERGY RELEASE DUE TO GROWTH OF ELLIPTICAL CAVITY 

Consider a circular cylindrical borehole of radius R and horizontal axis z in an infinite elastic 
space that is in a state of plane strain (Figure 1a) and is subjected at infinities to uniform 
compressive stresses Gxoo and Gyoo in the directions of Cartesian co-ordinates x and y. We will 
assume that failure tends to enlarge the circular cavity into an ellipse of horizontal axis a ~ R, 

with the vertical axis remaining equal to R. 

Based on Eshelby's solution of the stress field and using the superposition method, explained in 
detail for example by Mura,25 one can calculate the loss of the potential energy (per unit 

thickness in the z-direction) of an infinite, initially uniformly stressed elastic space caused by 
cutting out an elliptical hole 

n 2 2 
An l = - 2£' [(a + 2R)R(1xoo + (2a + R)a(1yoo - 2aRuxoo uyoo J (1) 

where £' = E/(1 - v2
), E = Young's elastic modulus of the rock, v = Poisson's ratio, and 

v' = v/(1 - v). AIIl represents the sum of the work ofthe stresses on the strain changes outside the 
ellipse, which are non-uniformly distributed and decay with the distance from the ellipse, and the 

work of the stresses on the strain changes inside the removed elliptical cutout, which are, 
according to the famous Eshelby's theorem, uniformly distributed within the ellipse. 

Equation (1) gives the potential energy change when the stresses within the elliptical region are 

reduced to zero. Later we will need also the potential energy change An' when the initial vertical 
stress uyoo is reduced to a certain finite critical stress Ger rather than to zero. In that case the 
calculations according to Eshelby's theorem yield 

Ani = - 2~,[(a + 2R)RG;oo + (2a + R)aG;oo - 2aRuxoo Gyoo - 2a2 u:r J (2) 

Equation (1) may be checked by considering the limiting case R - 0, for which the elliptical hole 
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Figure 1. (a) Growth of an elliptical cracking region from a circular borehole, and (b) limit case of a crack 

becomes a horizontal crack (Figure 1 b). In that case Equation (1) reduces to: 

(3) 

This coincides with the expression for the energy loss of an infinite space due to creating a crack of 

length 2a. Indeed, as is well-known (e.g. References 26 and 27), the energy release rate per crack tip 

is Kl!E' where K. = uy",J(1ta) = stress intensity factor, and by integrating one has, for both 
crack tips combined, An = 2J(KfjE')da, which is the same result as equation (3). 

Proof of equation (2). Consider an infinite elastic body subjected at infinity to a uniform 

applied stresses CJ"" let a uniform eigenstrain t* be applied to an ellipsoidal domain n contained 

in this infinite body. The values of the eigenstrain t* are such that the stress is zero everywhere in 
the ellipsoid after t* is applied. This means that (if the infinite body is free from any external force) 

the stress in the ellipsoid induced by t* will be - CJ",. Because the stress is zero everywhere in the 

ellipsoid, the ellipsoid can be cut out from the infinite body without affecting its stresses and 

deformation. Thus, the change of potential energy of the infinite body caused by the applied 
eigenstrain is the same as the loss of potential energy caused by cutting out the ellipsoid from the 
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infinite body. This potential energy loss can be calculated as follows (e.g. Reference 25): 

An If T *dV i T * d V T * T * u = -- a E - aoE V= --a E - VaoE 
2 0 0 2 

(4) 

where V is the volume of the ellipsoid; ao and a are the stress vectors in the ellipsoid when the 

infinite body is subjected to external forces alone or eigenstrain E* alone, respectively. 

If plane-strain cases are considered, the ellipsoid becomes an elliptic cylinder and the relation

ship between eigenstrain E* and the stress induced in the elliptic cylinder is:2s 

_/1_[ _ 2 + R2 + 2aR + _R_Je* + _/1_[ R2 _ _ R-Je* 
1 - v (a + R)2 a + R x 1 - v (a + R)2 a + R ' 

2/1v a ... 
--- ---e =(1 

I-va+R% x 
(5) 

f-{ 2 a2 + 2aR a ] * /1 [a
2 

a J * - + +-- e +-- --- e 
1 - v (a + R)2 a + R ' 1 - v (a + R)2 a + R x 

2/1v R 
- -----e* = (1 

I-va+Rz , 
(6) 

- 2/1v a * 2/1v R * 2/1 * -- --e ------8 ---e =(1 
I-va+R% I-va+R' 1-v% % 

(7) 

where Jl and v are the Lame constants; a and R are the axes ofthe ellipse in the x- and y-directions. 

If the applied stress components at infinity are (1xoo and (1,00' the stress component in the 

z-direction is v «(1" 00 + (1'00)' Substituting - (1xoo, - (1,00 and - v«(1"<I) + (1'00) for (1x, (1, and (1% in 

the above three equations and solving them, we obtain the eigenstrain components 

* (v-1)(a+2R) ) I-v ) 
ex = 21Ul ( - (1U) + ~( - (1,00 (8) 

* 1 - v (v - 1){2a + R) 
e, =~(-(1"oo)+ 2/1

R 
(-(1,00) (9) 

with e: = O. The energy loss an per unit thickness in the z-direction can now be calculated from 

substituting the above expressions into Equation (AI). 

(10) 

where £ = 2(1 + v)/1 and £' = £/(1 - v2). 

Now consider the loss of potential energy when a uniformly stressed infinite body is cut by an 

elliptic cylinder whose surface tractions along the surface of the elliptic hole corresponding to the 

uniform stress state (1" = (1er' with other components being zero. The loss of potential energy for 

this case is expressed similarly to equation (4), except that one term must be added as follows: 

V V an = - -aTE* - Va~E* - -(a + aJ)e 
2 2 

(11) 
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Here the last term represents the elastic strain energy stored in the elliptic cylinder when both the 

external forces at infinity are applied and the eigenstrain £* occurs; e is the elastic strain vector in 

the elliptic cylinder. Substitution of the expressions for G, Go, £* and e into equation (11) finally 
yields 

Substitution of equations (8) and (9) then proves equation (2). QED 

Equation (1) gives the potential energy change from the case of no cavity to the case of an 

elliptical cavity. By setting in equation (1) a = R, we get the potential energy change from the case 

of no cavity to the case of circular cavity of radius R(Figure la): 

1I:R2 2 2 
~no = - 2E' (30'xoo + 30'y:x: - 20'xooO'yoo) (13) 

Subtracting equation (13) from equation (2), we obtain the potential energy change when the 

stress in the regions between the original circle and the circumscribed ellipse is reduced from 

0' yac to O'er 

11: 
~n = ~nl - ~no = - 2E' [(aR - R2)0';oo + (2a2 + Ra - 3R2)0';oo 

+ 2R(R - a)O'xooO'y"" - 2a2 0';rJ (14) 

3. RESIDUAL STRAIN ENERGY AFTER COMPRESSION FRACTURING 

If O'er = 0, the foregoing expression includes the release of all the strain energy originally stored in 
the zone between the ellipse and the original circle (Figure lc). However, it is a particular feature 

of compression fracturing that this zone cannot be assumed unloaded to zero stress. Compression 

fracture in quasi brittle microinhomogeneous materials such as most rocks initiates as a system of 

parallel, roughly equidistant, splitting cracks having the direction of the minimum principal stress 

(in our case 0' yex,). These vertical splitting cracks (which initially cause exfoliation at borehole 
surface and later extensive slabbing23

• 24. 28); may eventually get organized to form inclined 

bands, equivalent to shear bands (Bai.ant and Oi.bolt29
), which in our case may be imagined to 

form along the contour of the ellipse. This aspect, however, does not seem to be essential for 
calculating the residual strain energy. 

Now what is the mechanism that dictates the residual vertical stress O'er? If the spacing of the 
vertical cracks is relatively small, the stress that can be carried by the thin slabs of the material 

between the adjacent vertical splitting cracks must obviously be limited by elastic buckling30 (this 

is a discrete version of the idea proposed, for an elastic continuum weakened by smeared parallel 

cracks, in Reference 31; see also Section 11.7 in Reference 32). So we will consider that these slabs 

(Figure 1), of thickness h, buckle in the manner of fixed-end columns ofa certain length 2L, equal 
to the crack length. 

It is now useful to recall the initial post-critical behaviour of a perfect elastic column (e.g. 

Section 1.9 in the textbook of Bai.ant and Cedolin32
). The diagram of the axial load P of such 

a column versus the axial load-point displacement u becomes nearly horizontal upon reaching the 

critical load, i.e. the Euler bifurcation load (the post-critical slope is still positive, equal to Per /2L, 

but this is negligible compared to the pre-critical slope); see Figure 2. According to this idea, the 
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Figure 2. (a) Diagram of axial Joad VS. axialload-point displacement (or column buckling, (b) simultaneous buckling o( 
rock slabs between parallel cracks, and tc) crack shear stresses 

vertical comprc:ssive stress in the parallel slab-columns of thickness h will not be zero but 

tt2 E'] ,,2 E'h 2 

(1.,= - L2 T = - L2 12 (15) 

where I:::: h3 /12 = centroidal moment of inertia of the cross-section of the slab (per unit 

thickness in the z-direction), h = spacing of the equidistant splitting cracks, and L = average 

(effective) half-length of the vertical cracks at the moment of failure. 

We will now assume the deformation fields at the moment of failure of small and large 

boreholes (i.e. the modes of failure) to be geometrically similar, proportional to the borehole 

radius R. This means we assume that 

L= kR (16) 

where k = empirical positive constant < 1. (Ths assumption is supported by the following 

argument: if L were not proportional to R, then we would have L = kR", where n = constant 

#- 1; but then, for increasing R, the ratio L/R would tend either to infinity or to zero, that is. the 

mechanism of collapse would change, which seems irrational.) 
In contrast to tensile cracks, the compression splitting cracks have one particular prop.

erty-their opening displacement is, according to the present model of simultaneously buckling 

parallel slab-columns (Figure 2b), zero. At the same time, the cracks in rock are rough and 

transmit shear stresses t when the opposite faces are subjected to shear. Now, to accomodate the 

buckling deflections of the adjacent slabs, relative shear displacements ~ between the contacting 
crack faces must inevitably arise (Figure 2c); ~ = w'(y)h, where w(y) == deflection curve or each 
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Figure 3. Calculated dependence of remote effective stress causing borehole collapse on the borehole radius 

slab-column. The shear stress transmitted across the crack due to surface roughness (Figure 3) 

may be approximately assumed to be proportional to~; thus, r = GYer, where Yef = ~/). = w' hi ).; 
G = elastic shear modulus of rock and ). = empirical length = material property representing the 

thickness of an intact rock layer whose elastic shear relative displacement due to unit shear stress 

is the same at that between the crack faces. The shear stresses acting from both sheared cracks 

exert on the slab-column a distributed moment m = rh(Figure 2c). The moment differential 

equation of equilibrium of the slab-column is M' + Pw' + m' = - V, where M = bending mo

ment, V = shear force and P = - CTyh = axial compression force. Therefore, the differential 

equation for the deflection curve is E'l w"" + (P - Gh2 I ).)w" = 0, where I = h2/12. The lowest 

critical stress for fixed-end boundary conditions is then easily found to be 

1t
2 E' h2 h 

CTcr = - 12L2 -;:G (17) 

The work of shear stress r is not included in the strain energy since crack shear is inelastic, 
irreversible (this work might be included in the dissipated energy expression, but it is negligible at 

the start of buckling. 

The residual strain energy (per unit thickness in the z-direction) contained between the ellipse 

and the initial circle is given by the bending energy of all the slab-columns, which may now be 
approximately expressed as 

(18) 

4. ENERGY DISSIPATED BY FRACTURING AND ENERGY BALANCE 

The energy dissipated by fracturing of the rock is the sum of the energies dissipated by all the 

vertical splitting cracks, i.e. 

Gr 
~WJ = (1taR - 1tR2)h (19) 

(per unit thickness in the z-direction), in which Grlh is the energy dissipated per unit volume of the 

rock and Gr is the fracture energy of the rock (Gr = KI~I E', where K1c = fracture toughness of the 

rock). 
The net energy loss due to passing from a circular borehole in intact rock to an elliptical 

damage zone with vertical splitting cracks now is, instead of equation (14), 

MI = ~IT~ - ~ITo + ITcr (20) 
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The energy balance (principle of conservation of energy) requires that -..1n = ..1 Wr . Assuming 

the parallel cracks to form progressively, one after another, we need to differentiate equation (14) 

with respect to a. Thus, we get the incremental energy balance condition: 

(21) 

(22) 

We are interested in the start of borehole breakout, which occurs when a = R. Substituting this 

value of a into the last equation, we obtain 

(
1[2 E' h2 h)2 2E'G 

0';00 + 50';00 - 2ax ""G yoo - 4a:r = 12k2 R2 +;:G + T (23) 

Now, introducing the following definition of the effective applied stress: 

( 
20' xoo 0';00 )1/2 

a.r = a yoo 1 - -5- + -5 2 
ayoo ayoo 

(24) 

and denoting 

(
1[2 E' h2 h)2 2E' Gr 

F(R,h)= 12PR2+;:G +5'h (25) 

Equation (13) may now be written simply in the form 

a;r = F(R, h) (26) 

where F is a function of Rand h. 

The question now is how to estimate the spacing h of the vertical splitting cracks. In this regard, 

it is interesting to note that F(R, h) as a function of h possesses a minimum. From this, a new, 

simple concept comes to mind. 30 The spacing h that will occur is that which minimizes the 

applied effective stress a.r. In other words, the splitting cracks will occur at the lowest compres

sive stress they can (this concept could be proven on the basis of the Gibbs' statement of the 

second law of thermodynamics in the manner shown in Chapter 10 of the textbook of Bafant and 

Cedolin).32 The necessary condition of minimum is that 

of(R, h) = 0 

oh 

After substituting equation (25) for F(R, h) and differentiating, we obtain 

51[4 E' 2 h5 Ih2 E' G h4 5G
2 

h3 _ E' G = 0 
72k4 R4 + 12P R2 A, + A,2 r 

(27) 

(28) 

This is an algebraic equation of fifth degree for h. Although a numerical solution would be easy, 

a closed-form solution of h is not possible. However, it will suffice to examine the asymptotic 

cases. 

For sufficiently small R, the terms with h4 and h3 become negligible compared to the term with 

hS
, and the solution then is 

(
72k4G )1/5 

C. = 51[4 E,r (small R) (29) 
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From this result30 we see that the spacing of the splitting cracks should increase with the borehole 

diameter. This property has been observed by Cook 33 and co-workers. 

On the other hand, for sufficiently large R, the first two terms of equation (28) may be neglected, 

and the solution is 

(
E'G f ).2)1/3 

h = --sG2 = constant (large R) (30) 

If we substitute equation (29) into equation (26) and take the asymptotic approximation of 

equation (26) for small R, we obtain 

(

tt25112 )1/5 
C I = 48k 2 E'3 Gl (small R) (31) 

while, if we substitute equation (30) into equation (26) and take the asymptotic approximation of 

equation (26) for large R, we obtain 

cref = 3(G~~Gfy/3 = Co = constant strength (large R) (32) 

For the intermediate values of R we cannot get a closed-form expression. However, the 
following combination of equations (31) and (32) has the right asymptotic properties for both 

small and large R and is probably a good approximation that should suffice for practical 
purposes: 

(33) 

5. DISCUSSION OF SIZE EFFECT AND NUMERICAL ESTIMATES 

Equation (19) indicates that there is a size effect, which is understood as the dependence of the 

nominal stress at failure (nominal strength, in our case coincident with cref) on the size-in our 
case the borehole radius R, provided that geometrically similar situations are compared. A basic 

property of plasticity, as well as all other theories with failure criteria expressed in terms of stress 

and strain tensors, is that there is no size effect (see e.g. Reference 32, Chapters 12 and 13; and 

References 34-36). Linear elastic fracture mechanics (LEFM) exhibits in general the strongest 
possible (deterministic) size effect-the nominal strength decreases as size -1/2. 

Since the foregoing analysis used LEFM, it is, thus, interesting to realize why the size exponent 

in equation (31) is - 2/5 rather than - 1/2. The reason is that, instead of localizing into a single 

dominant crack, fracture has been assumed to be distributed over a large zone with an area 

proportional to the diameter of the borehole. If we assumed a single splitting crack with a length 

proportional to the borehole diameter, the exponent in equation (31) would have come out as 

- 1/2. On the other hand, the exponent would have come out as 0 (i.e. we would have no size 
effect even for small R) if we assumed the crack spacing h to be the same for every borehole 

diameter, with the cracking zone area proportional to the diameter (in this case the energy 

dissipation due to fracture per unit volume would be constant, independent of the borehole 

diameter, same as in plasticity). It is because of the theory of elastic buckling (and because 
L increases with R) that we found the crack spacing to increase with the borehole diameter less 

than proportionally. It is for this reason that the size effect exponent in equation (31) has come out 

to be intermediate between - 1/2 and 0, that is, intermediate between the exponents for 

single-crack LEFM and for plasticity. 
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The fact that the compressive stress that causes borehole breakout exhibits a size effect has 
been observed experimentally6.23 and has been also predicted by finite element models of 

non-local type, for example models with couple stresses.9
•
37 

The foregoing analysis tacitly implied the assumption that the failure mode of the borehole is 

symmetric. Based on the experience with certain other fracture problems (Reference 32, Section 

12.5 and Reference 38), one may expect that the loading path might exhibit a bifurcation, after 

which the failure process proceeds along a non-symmetric secondary path, corresponding to 

a borehole collapsing non-symmetrically, only on one side of the cavity. Unfortunaltely, the 

non-symmetric collapse mode does not seem amenable to a simple analytical solution. The 

present symmetric solution should represent an upper bound on the actual critical stress for 

collapse. It may also be pointed out that the symmetric and non-symmetric response paths 

probably give the same type of size effect and dependence on other basic parameters. Thus, it may 

well be possible to use the present solution at least qualitatively, even if the actual collapse is 

non-symmetric. 

Another important simplification has been our use of LEFM. The fracture of rock, of course, 

shows significant departures from LEFM (e.g. References 35 and 39). This may be approximately 

described by assuming the energy release rate required for fracture growth to be variable (rather 

than being equal to constant Gd and to increase with the crack length a according to a given 

function R(a) called the R-curve (resistence curve). If an increasing R-curve were introduced into 

the present type of analysis, the resulting size effect would become weaker. However, measure

ments of the R-curve for the present type of situation are lacking. It is debatable whether any 
increase of R(a) is appropriate at all when many parallel closely spaced cracks propagate 

simultaneously, or when the cracks are much longer than the size of the inhomogeneities in rock. 
Related to possible R-curve behaviour, the splitting cracks in rock may be discontinuous, 

capable of transmitting some reduced transverse tensile stresses as well as shear stresses. 

Capability of shear stress transmission must further arise from the fact that these cracks are no 

doubt rather tortuous, permitting interlock of the asperities opposing relative slip of the crack 

surfaces which must take place during buckling. These properties, which have been neglected, 

would increase the value of (J cr' 

A further simplification has been the geometry of the cracking region. Experimental observa

tions of borehole breakout show that the cracking regions on the sides of the borehole tend to 

have a roughly triangular shape and generally a smaller height than the length of the vertical 

cross-sections of the ellipse (Figure 4). But for such geometry a simple analytical solution would 

probably be impossible. Moreover, implicit to our assumption of an elliptical cracking region has 

been the hypothesis that the cracking regions for boreholes of different diameters are geomet

rically similar and their size is proportional to the borehole diameter. If the ratio of the average 
length of the splitting cracks to the borehole diameter decreased with increasing borehole 

Figure 4. More realistic shape of cracking regions on the sides of a borehole 
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diameter (i.e. the cracking localized), then the size effect would be stronger than we have 
calculated. 

Let us now consider rock properties typical of limestone; Gr = 31 11m2, E' = 30 GPa and 

G = 11·25 GPa. To estimate A., we exploit the similarity of rock to concrete, for which extensive 
crack shear tests have been conducted. Taking the results of Paulay and Loeber's4o tests plotted 

in Figure 2 of Bazant and Gambarova,41 we have, for crack opening displacement 

<>n = 0·125 mm, til! ~ 40 N/mm 3
, which yields for A. the value of 0·25 m. No results seem to be 

available for <>n = 0, however, we may use Paulay and Loeber's tests for <>n = 0·25 and 0·50 mm to 

approximately extrapolate to 0; this leads to the crude estimate ). = 0·1 m, which we will use. 

Nevertheless, there is enormous uncertainty about the value of A., especially for the small initial 
displacements that matter for initial buckling. 

From equation (32), for very large R we have (fer = 82·7 MPa (12,000 psi). This means that 

a sufficiently large borehole would break out at the depth of about 3000 m below the earth 

surface. This is certainly a reasonable estimate, as an order of magnitude. However, the corres

ponding value obtained for the spacing of the splitting cracks, which is obtained from equation 

(30) as 0·25 mm, does not seem reasonable, since at such a small spacing LEFM ceases to be 

valid and the aforementioned Gr-value, obtained on laboratory samples, is probably inappli

cable. But the aforementioned differential equation for buckling degenerates to the form w" = 0, 
i.e. the slab-columns do not bend at all, which signifies that the idea of buckling makes no sense in 

the limit case R -+ 00. Probably, the constant Co in equation (32) should be interpreted merely as 

an empirical large-scale compression strength limit, rather than a theoretical value derived by 

slab buckling analysis. 

Next consider a borehole of radius R = 0·2 m and assume that k = 0·25. Equation (31) then 
yields (fer = 21·7 MPa (3140 psi), which is the stress at the depth of about 740 m. From this result 

we observe that, if the crack shear resiGtance were neglected, the predicted breakout stress would 

be, compared to experience, much too low, by an order of magnitude. This shows that some other 

mechanism, which we proposed to be the crack shear resistance, must serve to elevate the 

breakout stress by an order of magnitude. Together with the foregoing value associated with 

crack shear, equation (33) yields the estimate (fer = 104·4 MPa (15,140 psi), which corresponds to 
depth 3740 m. The thickness and length of the slab-columns are obtained as h = 2·6 rnrn and 

L = 50 mm. For such a close spacing, the cracks are more likely to be discontinuous rows of 

microcracks than continuous cracks, and the crack tortuosity due to heterogeneous microstruc

ture is likely to cause significant local weakening of the slab-columns. In that case, the formula for 

buckling of a perfect column of a uniform cross-section might be too far from reality and 

imperfections might have to be introduced into the buckling analysis. Nevertheless, the aspect 

ratio of the slab columns, Llh = 19,2, is certainly just right within the range where the carrying 
capacity is indeed governed by the theory of buckling of slender columns. 

In the preceding numerical estimation, the size-independent part due to crack shear resistance, 
Co, dwarfs the size-dependent part due to bending stiffness, C 1 h - 2/S. One must be aware, 

though, of the strong speCUlative nature of the foregoing estimates. Particularly, the value we used 
for A. is highly uncertain, and so is the value of k. Consequently, the values of Co and C 1 could be 

quite different, and the magnitude of the size-dependent term could be relatively much more 

significant than in the foregoing calculation. Experimental studies are needed. 

The preceding analysis of crack shear ignored the volume expansion which is always caused by 
the slip of rough cracks. This expansion is partially prevented by the surrounding rock, which 

causes hydrostatic compressive stress to develop in the cracking zone. When the volume 

expansion is not opposed, as in prismatic test specimens with lubricated ends (Appendix I), the 

crack shear stiffness may be very low, and when it is completely prevented, very high. In addition 
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to this, the energy of hydrostatic compression needs to be subtracted from the energy that is 
released from the surrounding rock, which means that less energy is available to create the 
splitting cracks. This may well be another reason why the collapse stress estimate from the 
slab-column buckling analysis seems much too low. 

6. SUMMARY AND CONCLUSIONS 

The basic simplifying hypotheses of the present solution may be summarized as follows: 

1. The compression failure of rock on the side of the borehole is caused by densely distributed 
parallel splitting cracks in the direction of the minimum principal stress, rather than by 
plastic yielding. 

2. The zones of parallel splitting cracks for boreholes of various diameters are geometrically 
similar and the length of these cracks is proportional to the borehole diameter. 

3. For estimating the energy release, the inner boundary of the infinite elastic solid may be 
considered to expand during failure from a circle to an ellipse. 

4. After uniformly spaced splitting cracks parallel to the minimum principal stress develop, the 
region between the ellipse and the original circle retains a certain residual stress governed by 

post-critical buckling behaviour of the rock slabs between the cracks. 
5. The residual stress value is governed by buckling of rock slabs between the splitting cracks. 
6. The buckling stress can be approximately calculated from the average length of the splitting 

cracks, which is assumed to be proportional to the borehole diameter. 
7. Buckling of the slab-columns is resisted not only by their elastic bending stiffness but also by 

shear stresses produced at the rough crack faces by crack shear. 
8. The energy (per unit area) required for crack growth in rock is constant, i.e. independent of 

the crack length and spacing. 

The following basic observations and conclusions can be made: 

1. Considering the boundary of the cracking region in borehole breakout to be symmetric and 
elliptical, and assuming the energy that drives the parallel compression splitting cracks to be 
released due to buckling of the slabs of rock between the cracks, one can obtain a simple 
analytical solution for the collapse stress. 

2. The dependence of the collapse stress on the spacing of the splitting cracks exhibits 
a minimum, and the actual crack spacing may be considered to correspond to this 
minimum. 

3. Borehole breakout exhibits a size effect such that, for sufficiently small diameters, the 
effective breakout stress decreases as the ( - 2/5) power of the borehole diameter. For 
sufficiently large diameters, the size dependence disappears. 

4. For sufficiently small diameters, the spacing of splitting cracks increases as the (4/5)-power 

of the borehole diameter, while for sufficiently large diameters a constant spacing is 
approached. 

5. The energy release calculation for a growing ellipse according to Eschelby's theorem also 
predicts the effect of stress triaxiality, i.e. of the ratio of the remote principal stresses 
[equation (24)] (which is different from the result obtained by plastic analysis). 
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APPENDIX I: COMPRESSION STRENGTH OF A PRISMATIC SPECIMEN 

The present use of buckling analysis has been inspired by a similar previous analysis of 
a prismatic specimen of length L and width b;30 see Figure 2(b). We assume that compression 
failure is caused by the formation of a band of vertical splitting cracks of length a and spacing 
h and is accompanied by buckling of the slabs between the cracks which behave as fixed-end 
columns. The initial longitudinal stress ao in each slab is reduced by buckling to 
(Jcr = - (E'h 2 /3)n 2/a 2

• The total energy loss due to buckling is - ~n = Lb(a2 
- a~r)/2E'. The 

number of cracks is b/h and the energy dissipated by fracture is ~Wr = aGrb/h. Energy balance 
requires that - ~n = ~ Wr. From this, the stress required for the formation of the band of 
splitting cracks is 

2 _ 2E'Gr:: n
4

E'2 h4 

ao - h L + 9a4 
(34) 

We see that this expression has a minimum as a function of the crack spacing h. From the 
necessary condition of a minimum, iJ( a~)/ iJh = 0, we find that 

h =::( 9Gr )1/
5 

L 4/5 (35) 
L n4 E' 

Substituting this into equation (21), we conclude that the specimen fails at the stress 

ao = CIL -2/ S, with C I = (j27n 2 E'3Gl)1/S (36) 

This size effect is the same as found for a borehole. Note also that a 0 is independent of band width 
a, which means there is no tendency for the band width to localize. 


