
Bone is one of the few organs that retains the

potential for regeneration in adult life, as it

possesses considerable capacities of repair. Unlike

other tissues that heal by the formation of a

connective tissue scar of poor quality, bone is

regenerated and the pre-fracture properties are

mostly restored. The expression of this unique

characteristic applies either to the periodical

remodelling of the human skeleton or to the

healing cascade of bone fractures.
27

The contemporary consensus and understanding

of fracture healing implicates a large numbers of

factors at the molecular level in conjunction with

physiological and biomechanical principles.
1, 6, 31

The coordinated interaction of these different

elements creates the complex pathways of bone

healing. Any deficit expressed at any point of the

healing cycle alters the physiological sequence of

fracture healing and predisposes to complications.

Well-timed and well-aimed interventions are

needed to reverse these conditions in order to allow

the physiological process of fracture healing to

progress to union and thus increase the efficacy of

orthopaedic trauma therapies. To achieve this goal

the scientific effort has been focused in eliciting the

molecular, patho-physiological and biomechanical

aspects of bone fracture repair.
7, 10, 34, 41

The stages of fracture healing reiterate the

sequential stages of embryonic endochondral bone

formation. Two basic histological types of bone

healing are described. Primary healing is rare and

refers to a direct attempt of the cells in cortical

bone to re-establish the disrupted continuity. It

requires absolute contact of the fragments and

almost complete stability and minimisation of the

inter-fragmentary strains.
29

Secondary bone

healing occurs in the vast majority of bony injuries,
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involves both intramembranous and endochondral

ossification and leads to callus formation. Com-

mitted osteoprogenitor cells of the periosteum

and undifferentiated multipotent mesenchymal

stem cells (MSCs) are activated. Callus is a

physiological reaction to inter-fragmentary

movement and requires the existence of residual

cell vitality and adequate blood flow.
12, 29

In this cascade of events certain biologic

prerequisites have been identified. Many local and

systemic regulatory factors, cytokines and

hormones, as well as extracellular osteo-

conductive matrix are seen to interact with

several cell types. A vibrant cell population is a

mandatory first element for an unimpeded bone

repair process. Multipotent mesenchymal cells are

recruited at the fracture injury site or transferred

to it with the blood circulation. Bone marrow

response to a fracture includes an early

reorganization of the cellular population of the

bone marrow to areas of high and low cellular

density. The areas of high cellular density are

where the MSCs transformation to cells with an

osteoblastic phenotype occurs.
5, 9, 18

Following the

identification and quantification of the osteogenic

role of bone marrow cells, genetically engineered

MSCs and differentiated osteoblasts have been

utilized to enhance fracture healing in a number

of in vitro and in vivo studies.
8, 26, 35

The fracture hematoma has been proven to be

a source of signalling molecules (interleukins /

IL-1, IL-6, tumor necrosis factor-a / TNF-a,

fibroblast growth factor / FGF, insulin-like growth

factor / IGF, platelet-derived growth factor /

PDGF, vascular endothelial growth factor / VEGF,

and the transforming growth factor β / TGFβ
superfamily members) that may induce a cascade

of cellular events that initiate healing .
4, 14

These

factors are secreted by endothelial cells, platelets,

macrophages, monocytes, but also by the mesen-

chymal stem cells, the chondrocytes, the osteo-

cytes and the osteoblasts themselves.
39, 40

The

investigation of the clinical use of these factors

has increased dramatically in the last decade. The

bone morphogenetic proteins (BMP-2 and BMP-7)

represent members of the TGFβ superfamily that

have been studied extensively. They have already

passed from the experimental level of testing to

the clinical practice and are established methods

of biological healing enhancement at areas of

delayed fracture healing or nonunions.
13, 15, 16, 19, 21, 43

A third element of fracture healing is the extra-

cellular matrix that provides the natural scaffold

for all the cellular events and interactions. Various

osteoconductive materials alone or usually

enriched with osteogenic and osteoinductive

factors have been used in the clinical practice.

Porous biomaterials such as allograft or xenograft

trabecular bone, demineralised bone matrix

(DBM)
11

, collagen, hydroxyapatite, polylactic or

polyglycolic acid, bioactive glasses and calcium-

based ceramics have been used alone as bone void

fillers. They have also been combined with bone-

active growth factors in an attempt to acheive a

maximal osteogenic effect.
3, 28, 36, 38

These three biological prerequisites for fracture

healing enhancement have gained most of the

scientific attention. A triangular-shaped complex

of interactions between the potent osteogenic cell

populations, the osteoinductive stimulus and the

osteoconductive matrix scaffolds are often

analysed and extensively studied in the quest for

the optimal grafting material.

However, a fourth element, which is also man-

datory for optimisation of bone fracture repair,

should also be taken under consideration and be

given the same recognition in terms of signifi-

cance. Mechanical stability is a crucial factor for

bone healing, and is essential for the formation of

a callus that bridges the fracture site allowing

loads to be transmitted across the fracture line.

The progressive maturation of the fracture callus

from woven to lamellar bone depends on this

stability. Surgical interventions such as the

application of systems of internal or external

stabilisation are designed to improve stability of

fixation and therby enhance healing. Fracture

fixation methods have evolved from the era of

ORIF (open reduction and internal fixation) as

originally popularised by the AO
30

, to the contem-

porary concept of biologic fixation.
25, 32, 37

Wolff’s

law
44

describes the interaction of bone to the

applied stresses and its unique characteristic of

altering it’s mechanical properties according to

them. The application of this law to the clinical

setting of fracture healing together with the

interplay between parameters as implant rigidity,

relative or absolute fracture stability, fracture gap

size, and interfragmentary strain are all efforts to

express and compute the complex phenomena of

bone fracture repair.
33

Relative stability and

maximal respect of the soft tissue envelope and

the vascularity around the fracture site are

considered essential. Scientific research has

quantified the essence of relative stability.

Splints, casts, intramedullary nails, external

fixators and locking plates, after open or mostly

closed reduction stabilise the fracture site by

minimizing the interfragmentary gap size, and

keeping the interfragmentary strain below 10%.
2, 23

In the clinical setting of fracture fixation in

conjunction with bone grafting the mechanical
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stability necessary for optimal healing has not

been adequately studied. The general consensus is

that a certain load-shielding period has to be

achieved to protect the graft in its initial phase of

incorporation.
20, 24

The role of mechanical stability in the

microenvironment of implanted grafts, scaffolds

or graft carriers is also essential and sometimes

overlooked. These properties vary greatly among

the various biomaterials and depend on their macro

and micro architecture, as well as porosity.
22, 42

Significant parameters that differentiate the

indications of the different scaffolds and

biomaterials are the quality and density of the

host bone bed and the local biomechanical

demands of the fracture site (weight bearing limb

or not). Moreover, bone graft biomechanics evolve

parallel to the progress of its incorporation and to

callus remodelling. All these issues have formed

the bases for intense research efforts to improve

initial the mechanical properties of the available

biomaterials as well as to guarantee the presence

of a mechanically reliable construct throughout all

the remodelling phase of fracture healing. Recently,

3D porous polymer scaffolds with pore sizes ranging

from 150-500µm have shown optimal results related

to their biomechanical properties.
17, 42

The operative or non-operative techniques of

fracture stabilisation, the utilised implants and

fixation devices, as well as the mechanical

properties of any grafting material all interact and

affect the fracture repair process. The mechanical

environment where any graft material is expected

to act has equal significance to the biologic

properties of the graft itself whether it is the gold

standard of autograft or synthetic grafting

material. An additional apex to the triangular-

shaped model of bone healing elements has to be

added to include the mechanical environment of

the fracture site. The result is a diamond shaped

concept of interaction (Figure 1).
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