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Fracture in mode I using a conserved phase-field model
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We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional
to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic
crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics
simulations, our model avoids numerical front tracking. The added phase-field smooths the sharp interface,
enabling us to use equations of motion for the material~grounded in basic physical principles! rather than for
the interface~which often are deduced from complicated theories or empirical observations!. The interface
dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode I fracture,
and also discuss numerical issues. We find that the Griffith’s threshold underestimates the critical value at
which our system fractures due to long wavelength modes excited by the fracture process.
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I. INTRODUCTION

The study of fracture is usually approached using ma
ematical descriptions and numerical simulations based
empirical observations. Finite element methods are co
monly used to investigate the behavior of fractured mater
on a large scale, where the crack growth laws@1,2# ~that is,
velocity and direction of the crack for a given stress fie
near the tip! are introduced empirically.

We present a continuum description starting from ba
theoretical assumptions. We introduce a phase-field mo
originally used to describe thermodynamic phase transiti
and widely used to model solidification@3#, and combine it
with a displacement field. In contrast to other phase-fi
models of fracture@4,5# and interfacial motion in the pres
ence of strain@6,7#, our phase-field is conserved, represe
ing the density of the material. Bhateet al. @8# study a con-
served order-parameter phase-field model in the contex
stress voiding in electromigration; their dynamics is rath
different from ours, since their elastic deformations are q
sistatically relaxed~the limit in our theory ofh→0, see be-
low!.

The phase-field serves two main purposes. First, it sm
out any sharp interfaces, facilitating numerical convergen
Second, the model gives equations of motion for the mate
rather than the boundaries, thus we avoid dealing wit
moving boundary value problem which would require n
merical front tracking. One of our main goals is to find ma
roscopic fracture laws. In our model, these laws eme
naturally from the dynamics of the fields. See Fig. 1 fo
three dimensional representation of the phase-field in a f
turing sample.

One incentive to use a conserved-order parameter is
ply that density is conserved microscopically~apart from ap-
plications where etching or sublimation is important!. In gen-
eral, a nonconserved phase-field will give a nonzero velo
even for a straight material interface@4#. This could be rem-
edied by tuning the free energy so that the material
vacuum have the same energy density, but then the stra
1063-651X/2002/65~3!/036117~10!/$20.00 65 0361
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region around the crack tip would evaporate. Conserving
phase-field also gave us insight into how to properly imp
ment the conservation laws~see Sec. II!. Another option
would have been to add a nonconserved field, such as d
age or dislocation density, in addition to our conserved ma
This would add complexity without ameliorating the nume
cal challenges presented by the conservation law. In fu
work we intend to introduce such nonconserved state v
ables to model plastic flow.

Section II gives an outline of the theoretical model, pr
senting the main equations. We then investigate some of
stationary solutions analytically, and discuss their con
quences. This is followed by a brief presentation of the n
merical implementation. We then measure the crack gro
velocity as a function of external stress and explore the fr
ture threshold of our model. We conclude with suggestio
for future work.

II. THE FRACTURE MODEL

The model consists of a phase-fieldf and a displacemen
field u. The former field is interpreted as the normaliz

FIG. 1. A three-dimensional representation of the phase-field
a fracturing sample. The vertical axis shows the value of the ph
field f(x,y), where f51 is unstrained material andf50 is
vacuum. This example corresponds to the fourth contour in Fig
The values ofx andy are given in units ofw/h ~see Appendix A!.
©2002 The American Physical Society17-1
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mass density, and typically has values between zero and
The latter field, through its derivatives, represents strain
the material. The model is based on a free energyF. The
equations of motion locally conserve the densityf, moves it
under the flow fieldu, and evolves bothf and u in the
direction of the net force from the free energy: in particu
they are constructed so thatdF/dt,0. The free energy is
given by the integral

F5E S w2

2
u“fu21g@f,e# DdV, ~1!

where

g@f,e#5
h2

4
f2~fs@e#2f!21f2E @e#. ~2!

The first term in Eq.~1! is a gradient term, energeticall
penalizing spatial fluctuations in the phase-field. The fi
term in Eq.~2! is a Ginzburg-Landau double well potentia
favoring values off at zero andfs@e#[12emm ~using the
Einstein summing convention!, representing the two phase
vacuum and solid, respectively. If the material is complet
unstrained the solid value isfs@e#[1, otherwise this value
is either higher~for a compressed material! or lower ~for a
stretched material!, where emm is the density change fo
small strain. The factorfs@e#2f can be thought of as a
density of vacancies or interstitials. The parameterh controls
the height of the energy barrier between the vacuum
solid phases. The ratio ofw andh controls the width of the
solid-vacuum interface, that is the width of the transiti
from f5fs@e# to f50.

The next term is the elastic strain energy densityE @e#.
The elastic energy is calculated from the strain tensore, and
is given by

E @e#5 1
2 s i j e i j 5

1
2 Ci jkl ekle i j . ~3!

For a homogeneous, isotropic material, the tensorCi jkl can
be described by the two Lame´ constantsm andl through

Ci jkl 5m~d ikd j l 1d i l d jk!1ld i j dkl , ~4!

wherem is the shear modulus andl is proportional to the
bulk modulus. This gives

s i j 5lemmd i j 12me i j . ~5!

In two dimensions, we get

E @e#5
l

2
~exx1eyy!

21m~exx
2 1eyy

2 1exy
2 1eyx

2 !. ~6!

The strain fielde i j is related to the displacement field by

e i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~7!

Note that in this definition of the strain field, we are ignorin
geometric nonlinearities@9#, which are important for large
rotations. According to Eq.~7!, the divergence of the dis
03611
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placement field is just the trace of the strain,“•u5emm.
The displacement fieldu(x) is defined in the deformed o
Eulerian coordinate system, which means thatx describes a
location in space.~In the undeformed or Lagrangian descri
tion, x would describe the location of the material before t
displacement is taken into account; Lagrangian coordina
are usually used in finite element calculations.! The Lamé
constants are connected through the Poisson ration by l
52mn/(122n), see Appendix B. In the case of plane stra
the addition of the“•u term in the double well potentia
turns out to be crucial to preserve this relation. Since
elastic energyE @e# is only defined in the material~that is,
wherefÞ0), the elastic term is multiplied by a factor off2;
thus the strain energy will go to zero in the vacuum.

The equations of motion we have chosen for the pha
field f and displacement fieldu are overdamped and Eule
rian, moving the fields along the direction of net force. T
time derivative is thus proportional to the force on the fie
Physically, our model might describe fracture of a colloid
crystal, or ‘‘atoms in molasses.’’ We are therefore interme
ate between quasistatic fracture~where the crack evolution is
calculated from the static strain of the current configuratio!
and dynamic fracture~with inertial effects and wave reflec
tion at the boundaries!. Specifically, our equations of motio
are

]f

]t
52“•J J52D“

dF
df

1f
]u

]t
, ~8a!

]u

]t
52

1

h

DF
Du

52
1

h S dF
du

1f“

dF
df D , ~8b!

whereh andD are the viscosity and the diffusion constan
respectively. Note that Eq.~8a! is the continuity equation.
This means that totalf, or mass, is conserved. The first ter
in J is a diffusion term, while the second term makes su
that the mass follows the motion of the displacement fie
The total variational derivativeDF/Du in Eq. ~8b! can be
found by first noting that a small changeDu in u results in a
change inf. The new value off at a point changes due t
two effects:~i! a gradient inf dragged by a distanceDu
changes it by2(“f)•(Du), and ~ii ! a divergence inDu
causes a change in density2f“•(Du). Together these com
bine into the net changeDf@Du#52“•(fDu). This is the
continuity equation, wherefDu is the flux of f. The total
change in the free energy is then

DF@Du#5E S dF
du

•Du1
dF
df

Df@Du# DdV

5E FdF
du

•Du2“•~fDu!
dF
dfGdV

5E S dF
du

•Du1f“

dF
df

•DuDdV

[E S DF
Du

•DuDdV. ~9!
7-2
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We assume that the boundary terms vanish in the integra
by parts.

With the equations of motion~8!, the evolution of the
fields are overdamped and the free energy decreases in

d

dt
F5E S dF

df

]f

]t
1

dF
du

]u

]t DdV

5E H dF
df FD“

2
dF
df

2“•S f
]u

]t D G1
dF
du

]u

]t J dV

5E F2DS“dF
df D 2

1
]u

]t
•S f“

dF
df

1
dF
du D GdV

5E F2DS“dF
df D 2

2hS ]u

]t D
2GdV<0. ~10!

To solve for the fields, the functional derivatives need
be calculated explicitly. They can be written in the conv
nient form

dF
dui

52] jF ]g

]e i j
G , ~11a!

dF
df

52w2
“

2f1
]g

]f
. ~11b!

Finally, it should be pointed out that all the equations c
be made unitless by rescaling all the quantities involved.
the present model it is convenient to usew/h as the unit
length, h2 as the unit energy density, and 1/h as the unit
diffusivity. This corresponds to settingw51, h51, andh
51 in Eqs.~1!, ~8b!, and~11!. See Appendix A for informa-
tion on reduced units for the quantities used in this pape

III. STATIONARY SOLUTION

This section will calculate the profile of a stationa
straight interface between the solid and vacuum phases.
fore delving into the details, consider Eqs.~8!. A stationary
solution means thatḟ50 and u̇50. Unless we have the
trivial solution where f is constant, this implies tha
“@dF/df#50 and dF/du50. PhysicallydF/df can be
considered a chemical potential, and a nonzero gradient
result in a flow of material. This means that the chemi
potentialp is a constant. Thus to find a stationary solutio
we have to require that

dF
df

5p

and ~12!

dF
du

50.

We will find the stationary solution of a single straig
interface running perpendicular to thex direction between
the solid and the vacuum. We will therefore assume thaf
03611
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andexx only vary with respect tox, thateyy is constant, and
that exy5eyx50. Combining Eqs.~1! and ~11! with the re-
quirement in Eq.~12!, we get

]x
2f2

]g

]f
1p50, ~13a!

]x

]g

]exx
50, ~13b!

]y

]g

]eyy
50. ~13c!

Integrating Eq.~13b! gives

]g

]exx
5C. ~14!

For nonzeroC, the vacuum phase (f'0) can be shown to
be unstable, so to get an interface we must setC50. Solving
Eq. ~14! with respect toexx gives

exx5~12A!@12f2~112l!eyy#, ~15!

where

A5
l12m

l12m11/2
. ~16!

Next we multiply Eq.~13a! with ]xf. Using Eq.~14! and
remembering that]xeyy50, we can then rewrite Eq.~13a! as

]x@
1
2 ~]xf!22g@f,e#1pf#50. ~17!

Upon integration, this becomes

1
2 ~]xf!22T@f#50, ~18!

where

T@f#5g†f,e@f#‡2pf2q, ~19!

q is the constant of integration, and Eq.~15! has been used to
write g@f,e# as a function off only (eyy is considered a
constant!. HereT@f# can have two minima, giving the solid
and vacuum densities.

Notice that Eq.~18! looks like the Hamiltonian of a clas
sical particle at positionf and timex, where the first term is
the kinetic energy and2T@f# is the potential energy. If we
want a solution that starts at a small and constantf at x
52`, and ends at a larger constantf at x5`, thenT@f#
must have two stationary points with respect tof, and these
two points must have the same value. SinceT@f# is fourth
order inf, it can be written in the general form@10#

T@f#5
B2

2
~f2f1!2~f2f2!2. ~20!

Comparing this to Eqs.~2! and ~19!, we find that@11# B2

5A/2 and
7-3
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f1,25

A2keyy6A~A2keyy!
22

2k~2A2k!

12A
eyy

2

2A
,

~21!

where

k5A~112l!22l. ~22!

To second order ineyy this gives

f1'
k~2A2k!

2A2~12A!
eyy

2 , ~23a!

f2'12
k

A
eyy2

k~2A2k!

2A2~12A!
eyy

2 . ~23b!

Note thateyy50 givesf150 andf251.
Inserting Eq.~20! into Eq. ~18! and solving forf gives

f5d tanh@dB~x2c!#1f0 , ~24!

where

d5
f22f1

2
, f05

f21f1

2
, ~25!

and the constant of integrationc determines the location o
the interface. In Fig. 2 we plotexx and f as a function of
position according to Eqs.~15! and ~24! for l52m52, c
50, andeyy50.

Notice that the form of Eq.~20! implies

p52B2f0f1f2

and ~26!

q52
B2

2
f1

2f2
2 .

FIG. 2. A plot showing the stationary solution wheneyy50,
with l52m52 andc50. Note that the strainexx(x) remains at
nonzero asf(x)→0; this is acceptable, since the strain does
contribute to the free energy in this limit~this is not true when
eyyÞ0).
03611
Consider a sample that isX wide andY tall, with an
interface perpendicular to thex direction. LetX5X11X2,
where X1 is the amount of the sample that hasf,f0
~vacuum!, and X2 corresponds tof.f0 ~solid!. Then the
free energy per unit length is

F/Y5E
X

1

2
~]xf!21g@f,e#dx5E

X
2T@f#1pf1q dx

'
4

3
d3B1p~f1X11f2X2!1qX. ~27!

The approximation is valid if the interface is far away fro
the boundaries of the sample, which means thatX1,2@1/dB.

As a prelude to the section on numerical implementati
we should point out some shortcomings of the current d
nition of the free energy. As seen above, the limiting value
f in the vacuum side of the interface is not zero ifeyyÞ0.
Strictly speaking, there is no longer a vacuum, but a
filling the voids of the cracks. What makes this troubleso
is that this ‘‘gas’’ can support shear forces. We have theref
chosen to do the numerical simulations usingeyy50 when
measuring the fracture threshold. To improve the model
more complex runs, the free energy could be adjusted
assure that the value off in the limit of no material is zero
for all stationary solutions.

IV. NUMERICS

A. Implementation

We have implemented Eqs.~11! for a plane strain system
Thus we can perform our simulations on a two-dimensio
uniform structured grid with periodic boundary conditions
both directions. The periodic boundary conditions allows
use of Fourier methods. To increase stability, we imp
mented a semi-implicit scheme@12#. The linear terms can be
solved analytically in Fourier space, which increases e
ciency considerably. Specifically, at each time step we fi
integrate the nonlinear terms using an explicit Euler sche
before multiplying with the factor exp(2dt“k

4), where“k
2 is

the discrete version of the Laplace operator ink space. In our
case, this operator is equal to“k

25( i 51,2$@2 cos(kiDxi)
21#/(Dxi)

2%. The exponential factor represents the analyti
solution to the linear part of the time derivative,ḟ
52“

4f.
In Fig. 3 we show the setup for a double-ended cra

under mode I loading that we use in our numerical simu
tions. ~See Fig. 1 for a three-dimensional representatio!

t

FIG. 3. A strained material with a double-ended crack. The h
low arrows indicate the loading direction and the dashed lines
the periodic boundaries.
7-4
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The system is initially strained in thex direction ~the hori-
zontal direction in Fig. 3! with a uniform constant strainexx .
Numerically, the strain is represented through the spatial
rivatives of the displacement fieldu, which means that there
is an inherent discontinuity in the strain field at the left a
right boundary in Fig. 3. This problem has been resolv
using ‘‘skew-periodic’’ boundary conditions. In essence,
identify u on the left withu1Du on the right.

The initial phase-field is set to the constant value t
minimizes the free energy for the uniform initial strain.
circular hole is inserted into the middle by removing ma
~that is, by tapering the phase-field to zero! in a circular area
in the center. A crack will grow if the strain exceeds t
fracture threshold. We will later compare this threshold to
Griffith’s criterion.

The fourth-order gradients in our evolution equatio
~8! make this problem numerically challenging: most simp
algorithms will become unstable at a time step which goe
the fourth power of the grid spacing. Roughly speaking,
time step must remain smaller than the time it takes inform
tion to pass across the footprint of the numerical stencil~the
size of the region used to calculate the gradient terms!. To
make for an efficient algorithm, we paid careful attention
minimizing this footprint area: in so doing, we found that
was important to pay close attention to the locations of
various terms with respect to the numerical grid.~For ex-
ample, the asymmetric forward derivative of the phase-fi
is located at the midpoint of the bond between two g
points!. Reference@13# contains further details and sugge
tions. Notice that the footprint was also reduced through
use of the semi-implicit scheme mentioned earlier, leav
only third-order gradients to be solved numerically.

B. Results

Consider a block of material with a small flaw in it. If a
increasing strain is applied, then at a certain point the m
rial will fail, and a crack will form. Griffith @14# suggested
that this would happen when the strain energy released is
enough to form the two newly created crack surfaces. Be
we explore how our numerical simulations compare w
Griffith’s simple model.

In most materials, the actual fracture threshold~that is, the
strain energy at which the material fractures! is higher than
the Griffith’s threshold. The reason is that the strain energ
converted not only to surface energy, but also to plastic
formation, sound emission, and heat. Our model has no p
tic deformation, but we will see that some of the strain e
ergy is lost through long wavelength emission similar to t
of phonons in dynamic fracture.

When measuring the fracture threshold experimenta
the load or displacement on a specimen is monotonic
increased until it breaks. This is difficult to do in our sim
lations, so instead we run a series of simulations, each w
different strain as the initial condition. We then measure
crack tip velocity as a function of strain energy per u
length stored in front of the crack, and define the fract
threshold as the energy where the velocity extrapolate
zero.
03611
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To measure the crack tip velocity we simulated a dou
ended crack~see Fig. 3! on an (X,Y)5(200,200) grid (Dx
5Dy51) with periodic boundary conditions. The Lam´
constants were chosen asl52m52, which corresponds to
n51/3. Initially, each simulation was given a uniform stra
exx in thex direction and no straineyy50 in they direction.
The phase-fieldf was uniformly set to the value that min
mizes the free energy integrand in Eq.~1! for a constant
strain @15#:

f5 3
4 fs@e#1 1

4 Afs
2@e#232E @e#. ~28!

To initiate the crack, a circular hole of radius 10 was inser
into the center of the sample; here, a ‘‘hole’’ means that
set f to zero, being careful to make the edges smooth
order to avoid numerical instabilities. After an initial tran
sient period, the crack would start to grow in they direction
at a uniform rate until it reached the boundaries. Here,
crack would sense its periodic image and speed up as the
crack tips coalesced. Figure 4 shows part of the grid with
f50.5 contours as the double ended crack grows in thy
direction.

To measure the crack tip velocity, we needed to track
crack tip. It turns out that the free energy density has a p
in the tip area, so we decided to define the location of t
peak as the crack tip position. The velocity could then
easily found by finding the slope of the curve describing
crack tip position as a function of time~we used the tip

FIG. 4. A section of the system showing thef50.5 level sets at
equally spaced time intervals. The circle in the middle is the ini
‘‘crack.’’ After an initial slow transient the crack reaches a consta
velocity. When it reaches the boundary and senses its periodic
age, the speed will increase again as the two tips coalesce and
a continuous crack in they direction ~not shown here!. This simu-
lation corresponds to the data point in Fig. 5 with (F/Y)strain'1 and
v'0.03.
7-5
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L. O. EASTGATEet al. PHYSICAL REVIEW E 65 036117
growing in the positivey direction in Fig. 4!. Figure 5 shows
a plot of the crack tip velocity as a function of the energy p
unit length (F/Y)strain in the uncracked region.

A quadratic fit of (F/Y)strain as a function of the crack
velocity shows that the fracture threshold is (F/Y)strain
50.24760.003.

A comment should be made about our use of perio
boundary conditions. Unlike the case of dynamical fractu
our overdamped dynamics do not suffer from elastic fie
reflected from the boundaries or impinging from period
images. However, the periodic boundary conditions do h
important effects. As mentioned above, the velocity of
crack tip changes when the periodic images of the cr
become sufficiently close to each other. In addition, for s
ficiently thin systems~small width in thex direction! and low
strains (v'0), the energy released due to the Poisson rati
enough to favor a crack growing in the horizontal directio
parallel to thex axis ~limiting how thin we can make ou
rectangular region!. We have minimized the effects due
the periodic boundary conditions by using a wide system
by only measuring the crack velocity when the tip is far fro
the boundaries, although further measures might be nee
for more sophisticated simulations. Note that perio
boundary conditions make it hard to apply stresses to
system; all the simulations presented in this paper w
driven by applying an initial strain~equivalent to applying a
displacement!.

Equation~27! gives the analytical surface energy of a s
tionary interface. Witheyy50, l52m52, the total free en-
ergy per length far behind the crack tip due to the two int
faces is@16# (F/Y)surface52/9'0.222. If our model were to
obey the one proposed by Griffith, the crack tip veloc
should tend to zero as (F/Y)strain approaches (F/Y)surface.
Apparently, there is a disparity between the numerical fr
ture threshold and the analytical Griffith’s threshold for o
model. Most of the energy in front of the crack tip is tran
ferred to the newly created crack surfaces, but some e

FIG. 5. The graph shows the crack tip velocity against the st
energy per unit length (F/Y)strain in front of the crack tip. The
simulations were done with double ended cracks in a sample of
X5Y5200, withl52m52 and an initial strain in they direction
eyy50. The extrapolation of the velocity brings it to zero at a stra
energy of about (F/Y)strain50.24760.003, as compared to the the
oretical Griffith’s threshold of (F/Y)surface52/9'0.222.
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energy is needed to drive the crack forward.
Upon investigation, we find a large residual straineyy

building up across the width of the sample near the heigh
the crack tip during fracture. In front of the crack, the ma
rial has contracted in they direction, presumably because o
the Poisson ratio and the positive strain perpendicular to
crack. Behind the crack, the material has been stretche
the y direction; this is necessary to make up for the co
pressed material in front of the crack.

It turns out that the difference in energy between the fr
ture threshold and Griffith’s threshold roughly matches
residual energy stored in this deformation. Typically, visco
effects vanish as the tip velocity goes to zero, but we cla
that this one goes to a constant because the width of
deformation diverges in the limit of a stationary crack ti
Below we will give a crude analytical argument to show th
this is not a finite size or finite velocity effect, and give
rough estimate of the missing energy.

Consider an infinitely long system in they direction, but
with a fixed widthX. To make the system one dimension
we will ignore any variations inx. Here we introduce a frame
that is stationary with respect to the crack tip,ỹ5y2vt and
t̃ 5t, which means that] t→2v] ỹ since any derivatives with
respect tot̃ disappear for a stationary solution.

Both far in front of and far behind the tip we assume th
eyy50, which means that the displacement fielduy( ỹ) is
constant in these areas. In the deformed region inbetw
~that is, where the crack tip is!, the displacement field
changes by a valueDuy5uy(2`)2uy(`) ~notice that the
displacement field has a lower value in front of the tip!.
According to Eq.~5!, the strain far ahead of the tip exerts
stress

syy5lexx ~29!

on the deformed region. Since there is no strain far beh
the tip, this stress must be countered by the viscous force
to the movement of the displacement field

lexx5E ]uy

]t
dỹ52vE duy

dỹ
dỹ52vDuy . ~30!

Knowing how muchuy changes, we want to find its shap
in the deformed region. Using] t̃uy50 and ] tuy5
2dF/duy5(l12m)]y

2uy , we have

]

] t̃
uy5

]uy

]t
1v

]uy

]y
5~l12m!

]2uy

]y2
1v

]uy

]y
50. ~31!

A solution to this second-order differential equation ap
from the crack tip positiony5vt is

uy~y,t !5H Duy , y,vt

Duy expF2
v

l12m
~y2vt !G , y.vt

~32!

where we useduy(`)50.
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We can now find the energy dissipated due to the mate
deformation around the crack tip. Ignoring the phase-field
Eq. ~10!, our crude estimate gives the energy dissipated
unit length as the inverse velocity times the energy dissipa
per unit time:

S F
YD

diss

52
1

v
d

dt
F'

X
v E0

`S ]uy

]t D 2

dỹ

5
X
v E0

`F v2Duy

l12m
exp2S v

l12m D ỹG2

dỹ

5
~lexx!

2X
~l12m!2

, ~33!

where we used Eq.~30! in the last step.@To quadratic order
in exx , this equalsl2/4m(l12m) times (F/Y)strain, so the
dissipation is a fixed fraction of the total available stra
energy. For our system, the fraction is 1/8.# We thus conclude
that the energy dissipated due to the deformation around
crack tip only depends on the initial strain and the width
the system. In our system of widthX5200, the strain corre-
sponding to the fracture threshold is aboutexx50.026. For
numerical comparison, we insert the strain and the other
ues that we used in our simulations into Eq.~33!, and find
that F/Ydiss'0.07, which is about twice the difference b
tweenF/Ystrain andF/Ysurface. Even though we ignored bot
the phase-fieldf and all variations inx, our crude estimate
shows that as the velocity goes to zero a fixed fraction of
energy in front of the crack is used to strain the material i
diverging region around the crack tip before it is dissipat

We also did a simulation to verify that Eq.~32! is of the
right form. With (X,Y)5(100,1200) andexx50.08 @which
gives (F/Y)strain51.01#, we did see an exponential decay
uy in front of the crack tip. The numerical values we
slightly off, with the exponential decay being twice as fast
predicted. This was to be expected since we have ignored
phase-field completely, which clearly couples to the displa
ment field at long distances. Our simulation area still was
long enough forDuy to saturate, but it reached about 2/3
the value predicted in Eq.~30!.

In Fig. 5, we plot the velocity as a function of stra
energy available for fracture (F/Y)strain. In the fracture lit-
erature, the mode I fracture threshold is usually quoted
terms of the energy release rate@17#: the strain energyG
flowing into the crack tip. This can be measured, for e
ample, by the use ofJ integrals@18#, see Appendix C.

From the discussion above, we conclude that the dispa
between Griffith’s prediction and the fracture threshold
measured by (F/Y)strain is due to energy dissipation far from
the crack. Thus we cannot expectG to equal (F/Y)strain.
Indeed, the fracture threshold measured using aJ integral
close to the crack tip should agree with Griffith’s predictio

V. FUTURE WORK

Fracture often occurs in crystalline materials, and it the
fore seems reasonable to add anisotropy to quantities su
mobility, surface tension, and elastic strain energy. Th
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might also be unwanted anisotropy included due to the
derlying grid in the numerical solver, and one might be a
to repress this effect by adding ‘‘counter’’ anisotropy in th
quantities mentioned above. In addition to anisotropy, o
could add some noise; either spatially in the Hamiltonian
initial conditions, which would break the symmetry and a
heterogeneities, or temporally, which would mimic the e
fects of fluctuations due to a finite temperature.

Because of the fourth-order gradients, our simulation
rather numerically intensive. Using a multiresolution gr
would speed up the calculation@19#. The main idea is that
additional information can be added between existing g
points where a linear interpolation would give poor resu
~that is, add grid points locally where the solution has hi
frequency components!. This way one can achieve a solutio
with uniform accuracy and avoid unnecessary use of com
tational resources. A similar approach can be found in@20#,
where an adaptive mesh in a phase-field solidification pr
lem is used to add detail only at the boundaries where i
needed.

Currently, the numerical integration of the phase-fie
equations is done partly using Fourier transforms. This
lows us to do all the linear parts of the equations implici
without solving huge linear systems. On the other hand,
current implementations put several limitations on the kin
of simulations that can be done. In particular, it is hard to
simulations without using periodic boundary conditions.
thus seems beneficial to use real-space implicit methods~and
perhaps add in multiresolution capabilities at the same tim!.

This paper is only concerned with mode I fracture in tw
dimensions. It would seem reasonable to try to extend
model to include modes II and III as well. Mode II could b
done either by shearing the model with a crack running v
tical or horizontal, or by squeezing one way and extend
the other with a strains and 45° crack, wheres is equal to
the shear strain divided byA2. One way to start exploring
mode II could be to use finite element calculations to get
initial sheared configuration, and then use the phase-fi
model to relax this system. Mode III has recently been
plored in Ref.@5#, where a different, nonconserved phas
field model is used. Ultimately, the goal is to do thre
dimensional simulations incorporating all three modes
fracture, given the success of the two-dimensional mode
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TABLE I. Relations betweenl, m, andn when a material is stretched infinitesimally.

Dimension f8 F0 F1 F2

2 hw

h8w8

—
l5

2mn

12n
2

1
2

l5
2mn

12n

2 1
l5

2mn

12n
l5

2mn

12n
l5

2mn11
12n

2
1
2

3 1
l5

2mn
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l5

2mn
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2mn
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s

is
t-

o

ly

n

p

-
ta

y

e

r, so

tor

of

d,

r

ite

e

is
ra-
Paul Dawson, and Nick Bailey for helpful comments a
discussions.

APPENDIX A: REDUCED UNITS

Most of the equations in this paper are written in unitle
form, where the basic units are

l 5w/h ~ length!, ~A1a!

f 5h2 ~energy density!, ~A1b!

d51/h ~diffusivity!. ~A1c!

Herew2 is the cost of gradients off in Eq. ~1!, h2/64 is the
height of the energy barrier between the phases in Eq.~2!,
and h is the viscosity controlling the response of the d
placement field in Eq.~8b!. The equations were made uni
less by replacing all quantities~say,x andt) by their unitless
counterparts multiplied by the appropriate combination
basic units~as in x* l and t* l 2/ f d, * 5 unitless!, and then
choosing the basic unitsl , f , andd conveniently. To trans-
form the quantities back from unitless form, just multip
them with their basic unit (x5x* l ).

As a reminder, the variational derivatives of the free e
ergy and the Lame´ constantsl and m all have units of en-
ergy densityf, and the diffusion constantD has units of dif-
fusivity d.

APPENDIX B: LAME´ CONSTANTS

We have to determine what the relation betweenl, m, and
n is in our model: the addition off changes the effective
elastic constants on long wavelengths from the values in
to the free energy in Eq.~5!. In the following, two-~2D! and
three-dimensional~3D! refer to the mathematical dimension
ality of the system, not special cases like plain strain. S
with a rectangular sheet~2D! or block ~3D! of material, with
height h in the y direction, and widthw in the x direction
~and in thez direction if it is in 3D!. The idea is then to strain
the material by an infinitesimal amount in they direction
until the height becomesh8, and minimize the free energ
with respect to the new widthw8. The Poisson ration is then
given by
03611
s

-

f

-

ut

rt

n5 lim
h8→h

S 2
exx

eyy
D . ~B1!

Before doing the model proper, we start off with a fre
energy thatonly includes the elastic energy

F05E
V
dVE @e#. ~B2a!

In the scenario that is described above there is no shea
e i j 50 if iÞ j . Further, eyy5(h82h)/h8, and exx5ezz
5(w82w)/w8 ~in 2D, ezz is nonexistent!. The integrand is
constant everywhere, so the integral turns into a fac
h8(w8)2 ~or h8w8 in 2D!. This is inserted into Eq.~B2a!.
Next, one finds the minimum ofF0 with respect tow8 ~keep-
ing all the other variables constant!, and inserts it into Eq.
~B1!, taking the limit. Solving forl does indeed give the
standard answers for both two and three dimensions.

The next two energies that were tried were

F15E
V
dV

1

4
f2~f21!21f2E @e#, ~B2b!

F25E
V
dV

1

4
f2~f2fs@e#!21f2E @e#. ~B2c!

The gradient term is zero, sincef is uniform. Having intro-
ducedf, we need to add another restriction: conservation
mass is given byf0hw25f8h8(w8)2 ~or f0hw5f8h8w8
in 2D!. Here,f0 is the value when the material is relaxe
while f8 is the value after the material has been stretched@it
is the latter which will be inserted into Eqs.~B2b! and
~B2c!#. We assume thatf0[1. We checked two cases fo
f8: one wheref8[1 ~the density was not allowed to
change!, and one wheref85hw/h8w8 ~the latter is the 2D
expression; havingf change in three dimensions was qu
hard to calculate!.

The results after minimizing the free energy, findingn,
taking the limit, and solving forl can be found in Table I. As
one can see, adding the phase-fieldf to the model also re-
quires that the double-well potential includes theemm term
~throughfs@e#) in order to get the right relation between th
material constants.

A final comment: The model described in this paper
two dimensional, so the maximum range for the Poisson
7-8
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FRACTURE IN MODE I USING A CONSERVED PHASE- . . . PHYSICAL REVIEW E 65 036117
tio in two dimensions is 0,n,1. This is equivalentto a
three-dimensional model under plain strain, where the co
sponding range for the Poisson ratio is 0,n,1/2. Thus the
latter expression~for three-dimensional plain strain! is used
throughout the paper, often using the valuen51/3.

APPENDIX C: THE J INTEGRAL

The energy release rateG can be calculated for our prob
lem ~where the crack is parallel to they axis! using theJy
component of theJ integral. Instead of performing the lin
integral, it is common to convert it to an area integral f
increased accuracy when doing the integral numerically.
area integral is defined as

Jy52E
A
V~x,y!dx dy, ~C1!

where

V~x,y!5E@e#
]q

]y
2s i j

]ui

]y

]q

]xj
. ~C2!

Here q is a function that is unity around the crack tip an
zero outside. Notice that ifq is constant in a region, the
V(x,y)[0, and in effect the line integral is replaced by
‘‘thick line’’ integral, where the thick line exists everywher
q has a gradient.
g

v.
d

d

ra
a

y

or
ia

03611
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e

A small complication is that ourV(x,y) is given in de-
formed coordinatesjx(x,y)[x1ux(x,y) and jy(x,y)[y
1uy(x,y):

Jy52E
Ã
Ṽ~jx ,jy!uJ~jx ,jy!udjx djy , ~C3!

whereJ is the Jacobian given by

J~jx ,jy!5F ]x

]jx

]x

]jy

]y

]jx

]y

]jy

G . ~C4!

Using the identityJ(jx ,jy)•J(x,y)5I , one gets

uJ~jx ,jy!u5
1

uJ~x,y!u
5

1

]xjx]yjy2]yjx]xjy

5
1

~11exx!~11eyy!2]yux]xuy
. ~C5!

The energy release rate can thus easily be computed u
Eq. ~C3!, wherejx and jy are the usual coordinates on th
phase-field grid.
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