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Fracture in mode | using a conserved phase-field model
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We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional
to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic
crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics
simulations, our model avoids numerical front tracking. The added phase-field smooths the sharp interface,
enabling us to use equations of motion for the matégabunded in basic physical princip)esther than for
the interface(which often are deduced from complicated theories or empirical observatibins interface
dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode | fracture,
and also discuss numerical issues. We find that the Griffith’s threshold underestimates the critical value at
which our system fractures due to long wavelength modes excited by the fracture process.
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I. INTRODUCTION region around the crack tip would evaporate. Conserving the
phase-field also gave us insight into how to properly imple-

The study of fracture is usually approached using mathment the conservation lamsee Sec. )l Another option
ematical descriptions and numerical simulations based owould have been to add a nonconserved field, such as dam-
empirical observations. Finite element methods are comage or dislocation density, in addition to our conserved mass.
monly used to investigate the behavior of fractured materiald his would add complexity without ameliorating the numeri-
on a large scale, where the crack growth Idwg] (that is, cal challe_nges pres_ented by the conservation law. In futur_e
velocity and direction of the crack for a given stress fieldWork we intend to introduce such nonconserved state vari-
near the tip are introduced empirically. ables to model plastic flow. _

We present a continuum description starting from basic Section Il gives an outline of the theoretical model, pre-
theoretical assumptions. We introduce a phase-field modef€nting the main equations. We then investigate some of the
originally used to describe thermodynamic phase transition§tationary solutions analytically, and discuss their conse-
and widely used to model solidificatidid], and combine it duences. This is followed by a brief presentation of the nu-
with a displacement field. In contrast to other phase-fieldmerical implementation. We then measure the crack growth
models of fracturd4,5] and interfacial motion in the pres- Velocity as a function of external stress and explore the frac-
ence of strair{6,7], our phase-field is conserved, represent-ture threshold of our model. We conclude with suggestions
ing the density of the material. Bhagt al. [8] study a con- for future work.
served order-parameter phase-field model in the context of

stress voiding in electromigration; their dynamics is rather Il. THE FRACTURE MODEL

different from ours, since their elastic deformations are qua- ) i )

sistatically relaxedthe limit in our theory ofy—0, see be- _ The model consists of a phase-fieldand a displacement
low). field u. The former field is interpreted as the normalized

The phase-field serves two main purposes. First, it smears
out any sharp interfaces, facilitating numerical convergence.

Second, the model gives equations of motion for the material 1
rather than the boundaries, thus we avoid dealing with a %'i
moving boundary value problem which would require nu- 0.4
merical front tracking. One of our main goals is to find mac-  (_,
roscopic fracture laws. In our model, these laws emerge 0
naturally from the dynamics of the fields. See Fig. 1 for a
three dimensional representation of the phase-field in a frac- -
turing sample.
One incentive to use a conserved-order parameter is sim- 50
ply that density is conserved microscopicalpart from ap- 200 *
plications where etching or sublimation is imporfeiih gen- FIG. 1. A three-dimensional representation of the phase-field in

eral, a nonconserved phase-field will give a nonzero velocity fracturing sample. The vertical axis shows the value of the phase-
even for a straight material interfapgé]. This could be rem-  field ¢(x,y), where ¢=1 is unstrained material ane=0 is
edied by tuning the free energy so that the material andacuum. This example corresponds to the fourth contour in Fig. 4.
vacuum have the same energy density, but then the strainéthe values o andy are given in units ofv/h (see Appendix A
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mass density, and typically has values between zero and onglacement field is just the trace of the straW; u= eppm.

The latter field, through its derivatives, represents strain inrhe displacement fieldi(x) is defined in the deformed or
the material. The model is based on a free enefgyThe  Eulerian coordinate system, which means thatescribes a
equations of motion locally conserve the dengitymoves it |ocation in space(In the undeformed or Lagrangian descrip-
under the flow fieldu, and evolves bothp and u in the  tion, x would describe the location of the material before the
direction of the net force from the free energy: in particulardisplacement is taken into account; Lagrangian coordinates
they are constructed so thdt#/dt<0. The free energy is are usually used in finite element calculatiorihe Lame

given by the integral constants are connected through the Poisson natiy A
2 =2uvl(1—2v), see Appendix B. In the case of plane strain,
]::f W—|V¢|2+g[¢,e] dv, (1)  the addition of theV-u term in the double well potential
2 turns out to be crucial to preserve this relation. Since the

elastic energy[ €] is only defined in the materidthat is,
where¢ #0), the elastic term is multiplied by a factor ¢f;
h2 thus the strain energy will go to zero in the vacuum.
gl o,e]l= Zgbz(gbs[ €]l— ¢)>+ p*E[ €] 2 The equations of motion we have chosen for the phase-
field ¢ and displacement field are overdamped and Eule-
The first term in Eq.(1) is a gradient term, energetically Man. moving the fields along the direction of net force. The
penalizing spatial fluctuations in the phase-field. The fwst“me derivative is thus proportional to the force on the field.
term in Eq.(2) is a Ginzburg-Landau double well potential, Physically, our model might describe fracture of a colloidal
favoring values ofb at zero andpJ e]=1— e, (using the crystal, or “atoms in molasses.” We are therefore intermedi-
Einstein summing conventl()mrepsresentmg the two phases &l€ between quasistatic fracturehere the crack evolution is
vacuum and solid, respectively. If the material is completelycalcmated from the static strain of the current configuration
unstrained the solid value i8] e]=1, otherwise this value and dynamic fracturéwith inertial effects and wave reflec-
is either higher(for a compressed materjaor lower (for a tion at the boundarigsSpecifically, our equations of motion

where

stretched materigl where €., is the density change for are

small strain. The factokpy €]— ¢ can be thought of as a

density of vacancies or interstitials. The paraméteontrols ﬁ(ﬁ —_V.] J=—-DV— oF ¢> u (8a)

the height of the energy barrier between the vacuum and at o

solid phases. The ratio @f andh controls the width of the

solid-vacuum interface, that is the width of the transition Jau 1 DF oF F

from = €] to $=0. E:_;m __( V5¢,) (8b)
The next term is the elastic strain energy dengifie].

The elastic energy is calculated from the strain ters@nd  \\here 5 andD are the viscosity and the diffusion constant,

is given by respectively. Note that Eq8a) is the continuity equation.

3) This means that totab, or mass, is conserved. The first term
in J is a diffusion term, while the second term makes sure

For a homogeneous, |Sotrop|c material, the terGgy can that the mass follows the motion of the displacement field.

be described by the two Lamnstantgu and\ through The total variational derivativé)Z/Du in Eqg. (Sb) can be
found by first noting that a small chandeu in u results in a

Cijii = (8 851 + 8t 6jx) + N 8ij bt » (4 change ing. The new value ofp at a point changes due to
. . ) two effects:(i) a gradient in¢ dragged by a distancau
where u is the sh_ear_ modulus and is proportional to the changes it by—(V ¢)-(Au), and (i) a divergence inAu
bulk modulus. This gives causes a change in densitypV - (Au). Together these com-
bine into the net chang& [ Au]=—V - (¢pAu). This is the

_ 1 _ 1
E[€]=30i€=3Cijxi €xi€ij -

7ij = N emmdij + 21 €ij ®) continuity equation, whereAu is the flux of ¢. The total
In two dimensions, we get change in the free energy is then
A 2 2 2 2 2 oF
E[e]zi(exx-i- €yy) T ulext eyt eyTey). (6 AFAu]= — Au+ —Ad)[Au] dv
The strain fielde;; is related to the displacement field by [_ AU-V. (¢AU)—¢}dV
1 &ui n aUJ (7)
€i=5| >t |- SF
i~ o aX X ( Au+ ¢V—¢ Au)dV
Note that in this definition of the strain field, we are ignoring
geometric nonlinearitie9], which are important for large E 9)
rotations. According to Eq(7), the divergence of the dis-
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We assume that the boundary terms vanish in the integrationd ¢, only vary with respect t, that €yy is constant, and

by parts. _ . . that e,y = €,x=0. Combining Eqs(1) and (11) with the re-
With the equations of motiorig), the evolution of the quirement in Eq(12), we get

fields are overdamped and the free energy decreases in time

d _f 5]—'<9¢+6]-‘<9ud 92— ¢+p 0, (139
dt S gt Su at
79
oF OF Ju OF du F) =0 (13b)
= —_— —_— X )
”&JDV 56" ("’ ) U at]dv Fex
SF du SF OF J9
= - _ —~ 4= dy——=0. 13c
” (V ¢) * (¢’V6¢+5u) v Vey (139
S5F au\? Integrating Eq(13b) gives
:f —D(V—) _7]<_) dVv=0. (10 g g Eq(13b g
o¢ at
’9 =C (14
To solve for the fields, the functional derivatives need to dexx
be calculated explicitly. They can be written in the conve-
nient form For nonzeroC, the vacuum phaseg(=0) can be shown to
be unstable, so to get an interface we mustGse0. Solving
oF 0 Eqg. (14) with respect toe,, gives
- ) o 9 (11a q p xx 9
i il o= (1= A)[1—¢—(1+2\) ey, (15)
F ag
o _\y2y2 79 where
) WV¢+&¢. (11b
ANt2u
Finally, it should be pointed out that all the equations can A= N+2u+1/2 (16)

be made unitless by rescaling all the quantities involved. For
the present model it is convenient to uagh as the unit Next we multiply Eq.(133 with d,¢. Using Eqg.(14) and
length, h? as the unit energy density, andzlas the unit remembering that,e,,=0, we can then rewrite E4133 as
diffusivity. This corresponds to setting=1, h=1, andy
=1 in Egs.(1), (8b), and(11). See Appendix A for informa- L3 (0h)2— [ d,e]+pp]=0. (17)
tion on reduced units for the quantities used in this paper.

Upon integration, this becomes

Ill. STATIONARY SOLUTION %(&XQB)Z—T[ $]=0, (18)
This section will calculate the profile of a stationary

straight interface between the solid and vacuum phases. Béhere

fore delving into the details, consider Ed8). A stationary _ o

solution means thatp)=0 andu=0. Unless we have the Tel=olé.¢ll-pé—a, (19

trivial solution where ¢ is constant, this implies that ¢ isthe constant of integration, and E@5) has been used to

V[6FI6¢]=0 and 6F/ du=0. Physically 67/5¢ can be write g[ ¢,€] as a function ofp only (eyy is considered a

considered a chemical potential, and a nonzero gradient witonstant HereT[ ¢] can have two minima, giving the solid

result in a flow of material. This means that the chemicaland vacuum densities.

potentialp is a constant. Thus to find a stationary solution,  Notice that Eq(18) looks like the Hamiltonian of a clas-

we have to require that sical particle at positiop and timex, where the first term is
the kinetic energy and-T[ ¢] is the potential energy. If we
5_7:_ want a solution that starts at a small and constardat x
8¢ P =—o, and ends at a larger constafitat x=o, thenT[ ¢]
must have two stationary points with respectftpand these
and (120 two points must have the same value. Sifi¢e] is fourth
ST order in ¢, it can be written in the general forpi0]
5_U =0. BZ

T[¢]=7(¢—¢1)2(¢—¢2)2- (20)

We will find the stationary solution of a single straight
interface running perpendicular to thedirection between Comparing this to Eqs(2) and (19), we find that[11] B2
the solid and the vacuum. We will therefore assume that =A/2 and
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FIG. 2. A plot showing the stationary solution whe,=0,
with A=2u=2 andc=0. Note that the strair,,(x) remains at
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FIG. 3. A strained material with a double-ended crack. The hol-
low arrows indicate the loading direction and the dashed lines are
the periodic boundaries.

Consider a sample that i& wide and) tall, with an
interface perpendicular to the direction. Let X=X+ X5,
where X, is the amount of the sample that h@s< ¢,
(vacuum, and X, corresponds tap> ¢, (solid). Then the

nonzero asp(x)—0; this is acceptable, since the strain does notfree energy per unit length is

contribute to the free energy in this limithis is not true when

€,y7#0).
2k(2A— k)
A— Ke‘yyi \/(A— Kéyy)z— TE%,
h12= A )
(21
where
k=A(1+2\)—2\. (22
To second order i, this gives
k(2A—kK)
~————€0y, (233
P oAt
b~1 K k(2A—k) (23b)
~1l— —€yy— — 5 €,y-
2T A op21-a) VY

Note thate,,=0 gives¢,=0 and¢,=1.
Inserting Eq.(20) into Eq. (18) and solving for¢ gives

¢=Stan SB(x—c) |+ oo, (24
where

Py oty

b= by (25

and the constant of integratiandetermines the location of

the interface. In Fig. 2 we plot,, and ¢ as a function of
position according to Eq915) and (24) for A=2u=2, c
=0, ande,,=0.

Notice that the form of Eq(20) implies

p=2B%poh1 ¢,
and (26)

BZ
a=—— $id5.

1
Y= [ 500077+ ol 6. elax= [ 2061+ po+ads
X2 X

4
~ 3 B+p(dr1Xy+ oA5) + Q4. (27)

The approximation is valid if the interface is far away from
the boundaries of the sample, which means ftig>1/6B.

As a prelude to the section on numerical implementation,
we should point out some shortcomings of the current defi-
nition of the free energy. As seen above, the limiting value of
¢ in the vacuum side of the interface is not zerc|f+ 0.
Strictly speaking, there is no longer a vacuum, but a gas
filling the voids of the cracks. What makes this troublesome
is that this “gas” can support shear forces. We have therefore
chosen to do the numerical simulations usikjg=0 when
measuring the fracture threshold. To improve the model for
more complex runs, the free energy could be adjusted to
assure that the value @f in the limit of no material is zero
for all stationary solutions.

IV. NUMERICS
A. Implementation

We have implemented Eqgll) for a plane strain system.
Thus we can perform our simulations on a two-dimensional
uniform structured grid with periodic boundary conditions in
both directions. The periodic boundary conditions allows the
use of Fourier methods. To increase stability, we imple-
mented a semi-implicit scheni&2]. The linear terms can be
solved analytically in Fourier space, which increases effi-
ciency considerably. Specifically, at each time step we first
integrate the nonlinear terms using an explicit Euler scheme
before multiplying with the factor exp{dtV}), whereV? is
the discrete version of the Laplace operatok ispace. In our
case, this operator is equal WE:Ei:l,z{[Z coskiAx)
—1]/(Ax)?}. The exponential factor represents the analytical
soluticln to the linear part of the time derivativep
=—-V*¢p.

In Fig. 3 we show the setup for a double-ended crack
under mode | loading that we use in our numerical simula-
tions. (See Fig. 1 for a three-dimensional representation.
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The system is initially strained in the direction (the hori- 100 T
zontal direction in Fig. Bwith a uniform constant straia,, .
Numerically, the strain is represented through the spatial de-
rivatives of the displacement fieldd which means that there

is an inherent discontinuity in the strain field at the left and 50 |-
right boundary in Fig. 3. This problem has been resolved
using “skew-periodic” boundary conditions. In essence, we
identify u on the left withu+ Au on the right.

The initial phase-field is set to the constant value that
minimizes the free energy for the uniform initial strain. A
circular hole is inserted into the middle by removing mass
(that is, by tapering the phase-field to zeima circular area
in the center. A crack will grow if the strain exceeds the
fracture threshold. We will later compare this threshold to the 50 |-
Griffith’s criterion.

The fourth-order gradients in our evolution equations
(8) make this problem numerically challenging: most simple
algorithms will become unstable at a time step which goes as 100 .
the fourth power of the grid spacing. Roughly speaking, the .50 0 50
time step must remain smaller than the time it takes informa-
tion to pass across the footprint of the numerical steftio#
size of the region used to calculate the gradient teriis FIG. 4. A section of the system showing tie=0.5 level sets at
make for an efficient algorithm, we paid careful attention toequally spaced time intervals. The circle in the middle is the initial
minimizing this footprint area: in so doing, we found that it “crack.” After an initial slow transient the crack reaches a constant
was important to pay close attention to the locations of theelocity. When it reaches the boundary and senses its periodic im-
various terms with respect to the numerical griElor ex-  age, the speed will increase again as the two tips coalesce and form
ample, the asymmetric forward derivative of the phase-fielch continuous crack in thg direction (not shown here This simu-
is located at the midpoint of the bond between two gridlation corresponds to the data point in Fig. 5 Withl §)) ¢yrai~1 and
pointg. Referencd 13] contains further details and sugges- v~0.03.
tions. Notice that the footprint was also reduced through our
use of the semi-implicit scheme mentioned earlier, leaving To measure the crack tip velocity we simulated a double

y (in units of w/h)

x (in units of w/h)

only third-order gradients to be solved numerically. ended cracKsee Fig. 3 on an (¥,))=(200,200) grid Ax
=Ay=1) with periodic boundary conditions. The Lame
B. Results constants were chosen as=2u =2, which corresponds to

Consider a block of material with a small flaw in it. If an ¥~ 1/3. Initially, each simulation was given a uniform strain

increasing strain is applied, then at a certain point the mateSxx in thex d.|rect|on and ho straigy,=0 in they dlrectlon_. .
rial will fail, and a crack will form. Griffith[14] suggested The phase-fieldp was “’?'fo”“'y set to the value that mini-
that this would happen when the strain energy released is ju§fiZeS the free energy integrand in E@) for a constant
enough to form the two newly created crack surfaces. Below " @iN[15]:
v(;/(;ﬁietﬁ?slosrﬁngéwmzzzﬁumencal simulations compare with b= ]+ 1o el-32% €. 29)

In most materials, the actual fracture threshtdt is, the
strain energy at which the material fracturés higher than  To initiate the crack, a circular hole of radius 10 was inserted
the Griffith’s threshold. The reason is that the strain energy into the center of the sample; here, a “hole” means that we
converted not only to surface energy, but also to plastic deset ¢ to zero, being careful to make the edges smooth in
formation, sound emission, and heat. Our model has no plasrder to avoid numerical instabilities. After an initial tran-
tic deformation, but we will see that some of the strain en-sient period, the crack would start to grow in theirection
ergy is lost through long wavelength emission similar to thatat a uniform rate until it reached the boundaries. Here, the
of phonons in dynamic fracture. crack would sense its periodic image and speed up as the two

When measuring the fracture threshold experimentallycrack tips coalesced. Figure 4 shows part of the grid with the
the load or displacement on a specimen is monotonicallyp=0.5 contours as the double ended crack grows inythe
increased until it breaks. This is difficult to do in our simu- direction.
lations, so instead we run a series of simulations, each with a To measure the crack tip velocity, we needed to track the
different strain as the initial condition. We then measure thecrack tip. It turns out that the free energy density has a peak
crack tip velocity as a function of strain energy per unitin the tip area, so we decided to define the location of this
length stored in front of the crack, and define the fracturgpeak as the crack tip position. The velocity could then be
threshold as the energy where the velocity extrapolates teasily found by finding the slope of the curve describing the
zero. crack tip position as a function of timéve used the tip
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0.07 -- | - T - . - | energy is needed to drive the crack forward.

[ ] Upon investigation, we find a large residual stradyy,
building up across the width of the sample near the height of
the crack tip during fracture. In front of the crack, the mate-
rial has contracted in thg direction, presumably because of
the Poisson ratio and the positive strain perpendicular to the
crack. Behind the crack, the material has been stretched in

3

crack velocity (in units of h™/wn)

I

=3

=
T

O simulations
— quadratic fit

I

=)

G
—

o

[

K
T

0'03. © ® ] the y direction; this is necessary to make up for the com-
0.02 Griffith’s || Fracture | - pressed material in front of the crack.
I prediction: | | threshold: | 1 It turns out that the difference in energy between the frac-
O'OIT@{‘? 022 025 17 ture threshold and Griffith’s threshold roughly matches the
0 .

| . ! . ! . | residual energy stored in this deformation. Typically, viscous
0.5 1 1.5 2
(F1Y)

=)

effects vanish as the tip velocity goes to zero, but we claim

strain (1 UNts of wh) that this one goes to a constant because the width of the
. . . _deformation diverges in the limit of a stationary crack tip.

FIG. 5. The graph shows the crack tip velocity against the straingg|ow we will give a crude analytical argument to show that

energy per unit length &/ ))swain in front of the crack tip. The s is not a finite size or finite velocity effect, and give a
simulations were done with double ended cracks in a sample of SizFough estimate of the missing energy.

X=Y=200, withA\=2x=2 and an initial strain in thg direction : P . : ;
. . S . nsider an infinitely lon tem in thedirection
e,,=0. The extrapolation of the velocity brings it to zero at a strain Consider a tely long syste t ection, but

energy of about £/)) yain=0.247+0.003, as compared to the the- with a fjxed width . To makg the SVSte”." one dimensional,
oretical Griffith’s threshold of £1) e 2/9~0.222. we will ignore any variations ix. Here we |nt£oduce a frame

that is stationary with respect to the crack §psy—vt and
growing in the positivey direction in Fig. 4. Figure 5 shows t=t, which means that,— — v J; since any derivatives with
a plot of the crack tip velocity as a function of the energy perrespect td disappear for a stationary solution.

uni'tAIengt(T ({f_/yf),itrai? in/the uncracke;j re%ion. - . Both farin front of and far behind the tip we assume that
quadratic fit of (#/)syain as a function of the crac €,y=0, which means that the displacement fielg(y) is

velocity shows that the fracture threshold i$7()strain . A
—0.247+0.003. constant in these areas. In the deformed region inbetween

A comment should be made about our use of periodic(that is, where the crack tip Jis the dlsplac_ement field
changes by a valuAuy=uy(—«)—uy(=) (notice that the

boundary conditions. Unlike the case of dynamical fracturedis lacement field has a lower value in front of the).i
our overdamped dynamics do not suffer from elastic ﬁeldsA P dina to Ea(5). the strain far ahead of the ti -tp
reflected from the boundaries or impinging from periodic ccording to Eq.(5), the strain far ahead of the tip exerts a
images. However, the periodic boundary conditions do havétresS

important effects. As mentioned above, the velocity of the Too=\e€ (29)
crack tip changes when the periodic images of the crack e

become sufficiently close to each other. In addition, for sufon the deformed region. Since there is no strain far behind
ficiently thin systemgsmall width in thex direction) and low  the tip, this stress must be countered by the viscous force due
strains ¢ ~0), the energy released due to the Poisson ratio io the movement of the displacement field
enough to favor a crack growing in the horizontal direction,
parallel to thex axis (limiting how thin we can make our auy du, ~
rectangular region We have minimized the effects due to N €xx= J’ Wdy=—vJ dey=—vAuy. (30
the periodic boundary conditions by using a wide system and y
by only measuring the crack velocity when the tip is far from
the boundaries, although further measures might be needenq
for more sophisticated simulations. Note that periodic
boundary conditions make it hard to apply stresses to the
system; all the simulations presented in this paper were 3 U au U au
driven by applying an initial straifequivalent to applying a U=, Y= (N+2u) —Y+y—2=0. (3D
displacement gty ot ay ay> 9y

Equation(27) gives the analytical surface energy of a sta- . ) ) . .
tionary interface. Withe,, =0, A\=2u=2, the total free en- A solution to this second-order differential equation apart
ergy per length far behind the crack tip due to the two interfrom the crack tip positiory=uvt is
faces is[16] (F/)) surface= 2/9~0.222. If our model were to

Knowing how muchu, changes, we want to find its shape
the deformed region. Usingsu,=0 and duy=
8FI duy= (N +2u)d2u,, we have

obey the one proposed by Griffith, the crack tip velocity Auy, y<ut
should tend to zero asH ))stain approaches X/Y) surtace uy(y,t)= v

Apparently, there is a disparity between the numerical frac- Auyexp — m(y—vt) , y=ut
ture threshold and the analytical Griffith’s threshold for our (32)

model. Most of the energy in front of the crack tip is trans-
ferred to the newly created crack surfaces, but some extrahere we usedi (=) =0.
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We can now find the energy dissipated due to the materiahight also be unwanted anisotropy included due to the un-
deformation around the crack tip. Ignoring the phase-field irderlying grid in the numerical solver, and one might be able
Eq. (10), our crude estimate gives the energy dissipated peto repress this effect by adding “counter” anisotropy in the
unit length as the inverse velocity times the energy dissipateguantities mentioned above. In addition to anisotropy, one

per unit time: could add some noise; either spatially in the Hamiltonian or
) initial conditions, which would break the symmetry and add
(f) _ 1 i o fjm(%) dy heterogeneities, or temporally, which would mimic the ef-

Viges vdU vlol dt fects of fluctuations due to a finite temperature.

Because of the fourth-order gradients, our simulation is

[ 2 2 . . . . . . .
:ff v-Auy exp— v y} dy rather numerically intensive. Using a multiresolution grid
vJo [Nt2u At2 would speed up the calculatigd9]. The main idea is that
(e )2 additional information can be added between existing grid

XX

- , (33 points where a linear interpolation would give poor results

(N+2u)2 (that is, add grid points locally where the solution has high
frequency componentsThis way one can achieve a solution
with uniform accuracy and avoid unnecessary use of compu-
tational resources. A similar approach can be founfRi,
where an adaptive mesh in a phase-field solidification prob-
hIgm is used to add detail only at the boundaries where it is
needed.

where we used Ed30) in the last step[To quadratic order
in €., this equals\?/4u(\+2u) times (F1)) syains SO the
dissipation is a fixed fraction of the total available strain
energy. For our system, the fraction is 1M/e thus conclude
that the energy dissipated due to the deformation around t
crack tip only depends on the initial strain and the width of . . . ,
the system. In our system of widtki= 200, the strain corre- Cu_rrentl_y, the numerlcalllntegran_on of the phase—_ﬁeld
sponding to the fracture threshold is abeyt=0.026. For equations is done partly using Fourier transf.orms.. Th.IS. al-
numerical comparison, we insert the strain and the other valoWs Us to do all the linear parts of the equations implicitly
ues that we used in our simulations into E83), and find without §o|vmg hugeT linear systems. On th'e other hand., the
that F/Y4.e~0.07, which is about twice the difference be- current implementations put several limitations on the kinds
tweenF Ve,ain and F1 Veurace EVen though we ignored both Of simulations that can be done. In particular, it is hard to do
the phase-fields and all variations inx, our crude estimate simulations without using periodic boundary conditions. It
shows that as the velocity goes to zero a fixed fraction of théhus seems beneficial to use real-space implicit mettemuis
energy in front of the crack is used to strain the material in aerhaps add in multiresolution capabilities at the same)time
diverging region around the crack tip before it is dissipated. This paper is only concerned with mode | fracture in two
We also did a simulation to verify that E¢B2) is of the  dimensions. It would seem reasonable to try to extend the
right form. With (X,))=(100,1200) andk,,=0.08 [which  model to include modes Il and Ill as well. Mode Il could be
gives (F1)) syaii= 1.01], we did see an exponential decay of done either by shearing the model with a crack running ver-
uy in front of the crack tip. The numerical values were tical or horizontal, or by squeezing one way and extending
slightly off, with the exponential decay being twice as fast ashe other with a strairs and 45° crack, whers is equal to
predicted. This was to be expected since we have ignored thfie shear strain divided by2. One way to start exploring
phase-field completely, which clearly couples to the displacemode Il could be to use finite element calculations to get an
ment field at long distances. Our simulation area still was nofnitial sheared configuration, and then use the phase-field
long enough forAu, to saturate, but it reached about 2/3 of model to relax this system. Mode IIl has recently been ex-
the value predicted in Eq30). plored in Ref.[5], where a different, nonconserved phase-
In Fig. 5, we plot the velocity as a function of strain field model is used. Ultimately, the goal is to do three-
energy available for fracture{Y)suqin- In the fracture lit-  dimensional simulations incorporating all three modes of
erature, the mode | fracture threshold is usually quoted ifracture, given the success of the two-dimensional models.
terms of the energy release rdte7]: the strain energyy
flowing into the crack tip. This can be measured, for ex-
ample, by the use af integrals[18], see Appendix C. ACKNOWLEDGMENTS
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TABLE |. Relations between, w, andv when a material is stretched infinitesimally.

Dimension @' Fo Fi Fa
2 — 2 1 2
hw N= ur 1 N nv
h/W/ 1-v 2 1—v
2 1 _ 2pv _2pv _ 2pv+l 1
)\_1—1/ )\_1_1/ A= 1-v 2
3 1 _ 2pwv _ 2upv _ 2pv
T 1-2v T1-2v T 1-2v
Paul Dawson, and Nick Bailey for helpful comments and _ Exx
discussions. v=lim | ——]. (B1)
h’ —h €yy
APPENDIX A: REDUCED UNITS Before doing the model proper, we start off with a free

. o , , ) energy thabnly includes the elastic energy
Most of the equations in this paper are written in unitless

form, where the basic units are
J—‘0=f dV&[e]. (B2a)
\%
I=w/h (length), (Ala)
In the scenario that is described above there is no shear, so
f=h2 (energy density (Alb) €;=0 if i#]j. Further, e,,=(h"—h)/h’, and €,=¢,,

=(w’'—w)/w’ (in 2D, €,, is nonexistent The integrand is
constant everywhere, so the integral turns into a factor
d=1/n (diffusivity). (Alc) h’(w")? (or h'w’ in 2D). This is inserted into Eq(B2a).
Next, one finds the minimum of, with respect tov’ (keep-
Herew? is the cost of gradients ap in Eq. (1), h2/64 is the ing all th_e other \_/ariables _constaz,nand in;erts it in_to Eq.
height of the energy barrier between the phases in(£g. (B1), taking the limit. Solving forA does m_deed give the
and 7 is the viscosity controlling the response of the dis-Standard answers for both two and three dimensions.
placement field in Eq(8h). The equations were made unit- 1 he next two energies that were tried were
less by replacing all quantitigsay,x andt) by their unitless 1
counterparts multiplied by the appropriate combination of f]_:f dV= ¢2(p—1)%+ €[ €], (B2b)
basic units(as inx*| andt*1%/fd, *= unitless, and then v 4
choosing the basic unils f, andd conveniently. To trans- 1
form the quantities back from unitless form, just multiply B 2 2. 2
them with their basic unit=x*1). Fa= fvdvz‘ﬁ (p=@d e+ ¢°Ele]. (B2
As a reminder, the variational derivatives of the free en-
ergy and the Lameonstants\ and w all have units of en-  The gradient term is zero, singgis uniform. Having intro-
ergy densityf, and the diffusion constam has units of dif-  duced¢, we need to add another restriction: conservation of
fusivity d. mass is given bypohw?=¢'h’'(w')? (or gohw='h’'w’
in 2D). Here, ¢, is the value when the material is relaxed,
while ¢’ is the value after the material has been stretdlted
is the latter which will be inserted into Eq$B2b) and
We have to determine what the relation betwaem, and  (B2¢)]. We assume tha#,=1. We checked two cases for
v is in our model: the addition of changes the effective ¢': one where¢’'=1 (the density was not allowed to
elastic constants on long wavelengths from the values inputhangg¢, and one wherep’ =hw/h’w’ (the latter is the 2D
to the free energy in Eq5). In the following, two-(2D) and  expression; havingd change in three dimensions was quite
three-dimensional3D) refer to the mathematical dimension- hard to calculate
ality of the system, not special cases like plain strain. Start The results after minimizing the free energy, finding
with a rectangular she¢2D) or block (3D) of material, with  taking the limit, and solving fok can be found in Table I. As
heighth in they direction, and widthw in the x direction  one can see, adding the phase-fi¢ldo the model also re-
(and in thez direction if itis in 3D). The idea is then to strain quires that the double-well potential includes g, term
the material by an infinitesimal amount in tlyedirection  (throughded €]) in order to get the right relation between the
until the height becomek’, and minimize the free energy material constants.
with respect to the new widt’. The Poisson rati@ is then A final comment: The model described in this paper is
given by two dimensional, so the maximum range for the Poisson ra-

APPENDIX B: LAME CONSTANTS
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tio in two dimensions is & v<<1. This is equivalentto a

PESICAL REVIEW E 65036117

A small complication is that ouf)(x,y) is given in de-

three-dimensional model under plain strain, where the correflormed coordinatest,(x,y) =x+ux(x,y) and &y(x,y)=y

sponding range for the Poisson ratio is.@<<1/2. Thus the
latter expressiorifor three-dimensional plain straims used
throughout the paper, often using the value 1/3.

+uy(x,y):

APPENDIX C: THE J INTEGRAL Jy=- f;ﬁ(gxv§y)|j(§x'§y)|d§xd§y’ (€3
The energy release ragecan be calculated for our prob-
lem (where the crack is parallel to theaxis) using theJ,  whereJ is the Jacobian given by
component of thel integral. Instead of performing the line
integral, it is common to convert it to an area integral for ox  Ix
increased accuracy when doing the integral numerically. The _— —
area integral is defined as Tl )= 9y &y ca
xrey gy ay
d&x  dEy
3= | o0cydxdy v
A Using the identity7(¢,,£y) - J(X,y) =1, one gets
where
Tyl = o =
o B aq u; dq oo e | T,y FxéxdyEy— dyéxdxéy
(X,y)—g[é]w—ﬁijwa—xj- (C2 1 s

Here q is a function that is unity around the crack tip and
zero outside. Notice that iff is constant in a region, then

1+ € (1+ €yy) — dyUydylly”

Q(x,y)=0, and in effect the line integral is replaced by a The energy release rate can thus easily be computed using
“thick line” integral, where the thick line exists everywhere Eq. (C3), whereé, and ¢, are the usual coordinates on the

g has a gradient.

phase-field grid.
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