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Conforming materials to rigid substrates with
Gaussian curvature — positive for spheres and
negative for saddles — has proven a versatile tool
to guide the self-assembly of defects such as scars,
pleats [1–5], folds, blisters [6, 7], and liquid crys-
tal ripples [8]. Here, we show how curvature
can likewise be used to control material failure
and guide the paths of cracks. In our experi-
ments, and unlike in previous studies on cracked
plates and shells [9–11], we constrained flat elas-
tic sheets to adopt fixed curvature profiles. This
constraint provides a geometric tool for control-
ling fracture behavior: curvature can stimulate
or suppress the growth of cracks, and steer or ar-
rest their propagation. A simple analytical model
captures crack behavior at the onset of propaga-
tion, while a two-dimensional phase-field model
with an added curvature term successfully cap-
tures the crack’s path. Because the curvature-
induced stresses are independent of material pa-
rameters for isotropic, brittle media, our results
apply across scales [12, 13].

Geometry on curved surfaces defies intuition: ‘paral-
lel’ lines diverge or converge as a consequence of cur-
vature. As a result, when a thin material conforms
to such a surface, stretching and compression are in-
evitable [3]. As stresses build up, the material can then
respond by forming structures such as wrinkles or dislo-
cations, which are themselves of geometric origin. This
interplay between curvature and structural response can
result in universal behavior, independent of material pa-
rameters [1, 2, 4, 5, 7].

A markedly different material response is to break via
propagating cracks. While the use of curvature to con-
trol the morphology of wrinkles and defects in materials
has been recently explored [1, 2, 7], here we investigate
the control of cracks by tuning the geometry of a rigid
substrate. Can we design the underlying curvature of a
substrate to steer paths of cracks in a material draped
on that surface, thereby protecting certain regions?

To probe the effect of curvature on cracks, we conform
flat PDMS sheets (Smooth-On Rubber Glass II) to 3D-
printed substrates (Fig. 1). A lubricant ensures that the
sheet conforms to the substrate while moving freely along
the surface. We consider various geometries having pos-
itive and negative Gaussian curvature in both localized
and distributed regions: spherical caps, saddles, cones,
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FIG. 1. Gaussian curvature — positive for caps and nega-
tive for saddles — governs the behavior of cracks. In the
experimental setup, an initially flat PDMS sheet conforms to
a curved 3D printed surface. A small incision nucleates the
crack.

and bumps. To begin, we focus on the bump as a model
surface, as it is a common geometry containing regions of
both positive and negative curvature. A typical experi-
mental run can be seen in Supplementary Videos 1-7. We
seed a crack by cutting a slit in the sheet, with a position
and orientation of choice. By successive cuts, we increase
their length until they exceed a critical length, known as
the Griffith length [14, 15], and propagate freely.

The Griffith length of a crack in a flat sheet is nearly
independent of position and orientation. On our curved
geometry, we find that this is not so. On the top of
the bump, a shorter slit is necessary to produce a run-
ning crack, and on the outskirts of the bump (where the
Gaussian curvature is negative), the behavior depends
strongly on the orientation of the seed crack: fracture
initiation is suppressed for radial cracks, while the Grif-
fith length for azimuthal cracks approaches that of the
flat sheet (Fig. 2b). Thus curvature can both stimulate
and suppress fracture initiation, depending on the posi-
tion and orientation of the seed crack.

To relate these findings to the curvature distribution,
we consider the stresses induced by curvature and their
interaction with the crack tip. Stresses generated in the
bulk of a material become concentrated near a crack
tip. In turn, a crack extends when the intensity of
stress concentration exceeds a material-dependent, criti-
cal value [14, 16]. Expressed mathematically, in the co-
ordinates of the crack tip (r, θ), the stress in the vicinity
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FIG. 2. a) Gaussian curvature and curvature poten-
tial distributions for a bump with height profile h(ρ) =
αx0 exp(−ρ2/2x2

0). b) While the Griffith length for a crack
in a flat sheet (dashed line) is nearly constant, curvature
modulates the critical length of a seed crack. All samples
shown had a 12 cm diameter (2R), an aspect ratio α = 1/

√

2,
bump width x0 = R/2.35, and constant radial displacement
uρ/R = 0.012.

of the tip takes the form

σij =
KI√
2πr

f I
ij(θ) +

KII√
2πr

f II
ij (θ), (1)

where f
I,II
ij are universal angular functions [16]. The

factors KI and KII measure the intensity of tensile and
shear stress concentration at the crack tip, respectively,
and are known as stress intensity factors (SIFs). Thus,
the Griffith length, ac, is the length of the crack at which
the intensity of stress concentration reaches the critical
value, Kc. In curved plates or sheets, the near-tip stress
fields display the same singular behavior as in Eqn. 1 [17],
but the values of the SIFs are governed by curvature.
Curving a flat sheet involves locally stretching and

compressing the material by certain amounts at each
point. According to the rules of differential geometry,
this stretching factor, controlled by the field Φ, is deter-
mined by an equation identical to the Poisson equation of
electrostatics [18], with the Gaussian curvature, G, play-
ing the role of a continuous charge distribution [3, 4]:

∇2Φ(x) = −G(x). (2)

As the sheet equilibrates, its elasticity tends to oppose

FIG. 3. (a-b) Crack paths kink and curve around a bump.
(c-d) Phase-field simulations of cracks on a bump, colored by
the phase-modulated energy density so that broken regions
are darkened. (e-f) The phase-field crack path predictions
(black solid curves) overlie the experimental paths (colored
curves). (Inset) Introducing a time delay matching experi-
ment for the right crack tip’s propagation eliminates the dis-
crepancy far from the bump. (g) Analytical prediction (solid
black curve) of the kink angle, θk, overlies experimental re-
sults. (h) Analytical crack path predictions overlie simula-
tions for free (constant stress) boundary conditions. All ex-
periments and simulations had aspect ratio α = 1/

√

2 and
bump width x0 = R/2.35, including the free boundary condi-
tion simulations.

this mechanical constraint, giving rise to stress. The
isotropic stress from curvature is then related to the po-
tential via σG

kk = EΦ, where E is Young’s modulus, and
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the stress components are determined by integrals of the
potential and boundary conditions (see Eqns. 25-26 of
the Supplementary Information). Our study rests on a
general geometric principle: positive (negative) curva-
ture promotes local stretching (compression) of an elastic
sheet, leading to the enhancement (suppression) of crack
initiation. Variations in the potential Φ steer the crack
path, with the form of Φ determined nonlocally from the
curvature distribution (see Eqn. 2 and Eqns. 39-41 of the
Supplementary Information).

For the bump, the curvature potential, Φ, is large on
the cap, where curvature is positive, and decays to zero
as the negative curvature ring screens the cap (Fig. 2a).
As EΦ is the isotropic stress, crack growth is stimulated
where the potential is greatest — on the cap of the bump,
resulting in a small Griffith length there (Fig. 2b). Mov-
ing away from the cap, the potential decays, producing a
stress asymmetry. This results in longer Griffith lengths
with strong orientation dependence on the outskirts of
the bump (see Eqns. 39-41 of the Supplementary Infor-

mation). Fig. 2b shows the theoretical results overlying
the experimental data, with no fitting parameters. We
find that this minimal model is sufficient to capture the
phenomenology of our system at the onset of fracture and
provides correct qualitative predictions for longer cracks,
even in the absence of symmetry.
Curvature not only governs the critical length for frac-

ture initiation, but also the direction of a crack’s prop-
agation. For cracks inclined with respect to the bump,
the cracks change direction as they begin to propagate,
kinking at the onset of crack growth and curving around
the bump, as shown in Fig. 3a. Cracks kink and curve
towards the azimuthal direction because a decaying cur-
vature potential, Φ(ρ), creates a local stress asymmetry:
σG
φφ < σG

ρρ. As a result, the crack relieves more elas-
tic energy by deflecting towards the azimuthal direction.
Analytical prediction of the kink angle, θk, is made by se-
lecting the direction of maximum hoop stress asymptot-
ically near the crack tip (Eqn. 33 of the Supplementary

Information). Fig. 3g shows excellent agreement with
experiment.

A purely analytical model is sufficient to capture the
long-time behavior of the crack if the stress is fixed at
the boundary (see 3h). This model extends the first or-
der perturbation theory for slightly curved cracks devel-
oped by Cotterell and Rice [19] to curved sheets (see the
section Perturbation Theory Prediction of Crack Paths

in the Supplementary Information). As shown in Fig. 7
of the Supplementary Information, the perturbation the-
ory prediction is also increasingly accurate for constant
displacement loading when the system size is large with
respect to the crack.
For modest sample sizes with constant displacement

boundary loading, however, a numerical approach is re-
quired. To predict the curved fracture trajectories, we
adapt the KKL phase-field model [20, 21] to include cur-

FIG. 4. (a) Curvature arrests a center crack: as the as-
pect ratio of the bump increases while the initial stress at the
boundary (σρρ(R) = 0.068E) remains fixed, the final crack
length decreases. (b) Simulations reveal that as the aspect
ratio of the bump increases, the intensity of stress concen-
tration falls below the critical value at progressively shorter
crack lengths. Inset: Final crack lengths from spring-lattice
(squares) and phase-field simulations (triangles) mimic the
arrest behavior seen in experiment (colored circles with er-
ror bars marking one standard deviation). The solid line is a
guide to the eye.

vature by incorporating the height profile of the substrate
into the two-dimensional strain field [22]. This numeri-
cal model treats local material damage as a scalar field
that evolves if there is both sufficient elastic energy den-
sity and a local gradient in the field (see Supplementary

Information). As depicted in Fig. 3c and d, these con-
ditions are met at the tip of a propagating crack. This
model captures the full crack paths, as shown by the
black curves overlying experimental results in Fig. 3e
and 3f.

A systematic deviation in the extensions of the crack
tips further from the bump is evident in Fig. 3e. In the
experiments, the tip closer to the bump begins its ad-
vance first, and the dynamics of the tip are not purely
quasistatic. In the phase-field simulation, simply sup-
pressing the tip further from the bump for a short time
until the near tip has reached a distance matching exper-
iment eliminates this deviation, as shown in the inset of
Fig.3e (see the Phase-Field Model section of the Supple-

mentary Information for details).

Having seen how curvature affects the initiation and
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FIG. 5. A crack’s response to curvature exhibits universal behavior. (a) Inverting the sign of the curvature (red for positive,
blue for negative) inverts the behavior of the crack, as shown by the contrasting crack paths on a L = 12 cm spherical cap (top,
G = 1/L2) and on a L =15 cm pseudospherical saddle (bottom, G = −1/L2). Seed crack locations are marked in green. (b)
On spherical caps, cones, and bumps, the positive integrated curvature from the center to the crack’s position directs cracks
towards the azimuthal direction, while the negative curvature saddle inverts this behavior. (c) Further phase-field simulations
demonstrate that curvature can protect a region of a material conformed to a bump (here under 3% biaxial displacement) or
(d) induce desired crack paths (here shown under 1.5% uniaxial displacement). Final crack paths (black) for various initial
slits (green) are overlaid to demonstrate that the bumps’ central regions are protected. The results demonstrate that merely
the addition of simple bumps offer a wide range of control, in experimentally realizable conformations.

propagation of cracks, we now turn our attention to the
ability of curvature to arrest cracks. As seen previously
in Fig. 3, curved cracks can terminate before reaching
the sample boundary. We find, moreover, that curva-
ture can arrest cracks even for cases in which the path
is undeflected, as shown in Fig. 4. In flat sheets, center
cracks propagate all the way to the boundary, but if we
introduce a bump while holding the initial stress at the
boundary fixed, the final crack length decreases.

From the decaying isotropic stress profile, we can infer
that curvature generates azimuthal compression, halting
the crack’s advance. Using our phase-field model, we in-
deed find that increasing the aspect ratio of the bump

lowers the intensity of stress concentration for larger
crack lengths (Fig. 4b). A fully 3D spring network sim-
ulation using finite element methods provides additional
confirmation (open squares in Fig. 4b). Thus, curvature
decreases the final crack length, despite promoting crack
initiation on top of the bump.

Curvature’s influence on the propagation of cracks that
we have investigated on the bump is not peculiar to that
surface. As shown in Fig. 5, we demonstrate this general-
ity by testing a number of additional surfaces, including
spherical caps (uniform G > 0), cones (G = G0 δ(x)),
and pseudospherical saddles (uniform G < 0). A re-
gion of positive curvature, such as the tip of a cone, lo-
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cally stimulates crack growth near the region, but also
guides cracks around that region. Conversely, negative
curvature of a saddle suppresses crack growth and orients
cracks away from the center (see Fig. 5 and Supplemen-

tary Information). Thus an opposite curvature source
induces an opposite response: the behavior of cracks is
tunable by engineering the curvature landscape.

In Fig. 5c and d, we demonstrate the robustness of cur-
vature’s effects by considering samples without azimuthal
symmetry using the phase-field model. Here, we use a
bump to protect a central region from incoming cracks
of various orientations, to produce oscillating cracks, and
to focus and diverge possible crack paths. For the ge-
ometries of Fig. 5d, a somewhat reduced critical stress
intensity factor compared to our experimental material
prevents crack arrest. Though the stress is highest on top
of a bump, these regions are protected from approaching
cracks (see Supplementary Video 8 ).

The use of substrate curvature to control fracture
morphology differs from using existing cracks or inclu-
sions in that our method requires no introduction of pre-
existing structure into the fracturing sheets [23, 24]. For
brittle sheets with isotropic elasticity, curvature-induced
stresses are independent of material parameters and only
dependent on geometry. Therefore, our results represent
the effects of substrate curvature on fracture morphology
for a wide range of materials, with potential implications
for thin films, monolayers [12, 25], geological strata such
as near salt diapirs [13, 26], and stretchable electron-
ics [27]. Since the results are based on the modulations of
the material’s metric, they should also apply beyond con-
formed sheets, with metrics engineered by other methods
— for instance, temperature gradients [28] or differential
swelling [29].
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lations and analytical crack trajectories are available
at https://github.com/irvinelab/fracture, including de-
tailed documentation.
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