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Fracture Mechanics of
Composites with Residual
Thermal Stresses
The problem of calculating the energy release rate for crack growth in
an arbitrary composite in the presence of residual stresses is consid-
ered. First, a general expression is given for arbitrary, mixed traction
and displacement boundary conditions. This general result is then ap-
plied to a series of specific problems including statistically homogeneous
composites under traction or displacement boundary conditions, delam-
ination of double cantilever beam specimens, and microcracking in the
transverse plies of laminates. In many examples, the energy release
rate in the presence of residual stresses can be reduced to finding the
effect of damage on the effective mechanical properties of the composite.
Because these effective properties can be evaluated by isothermal stress
analysis, the effect of residual stresses on the energy release rate can
be evaluated without recourse to any thermal elasticity stress analyses.

Introduction

When a composite comprised of materials having disparate thermal expansion coefficients is subjected to a
uniform change in temperature, it will develop residual thermal stresses. If that composite develops cracks,
either as a result of the residual thermal stresses or of some subsequently applied mechanical tractions,
the residual and mechanical stresses will change to accommodate the fracture surfaces. One effect of the
redistribution of residual thermal stresses is a change in the effective thermal expansion coefficient of the
composite (Hashin, 1988). Additionally, the redistribution of residual and mechanical stresses releases strain
energy that can drive crack propagation — the energy release rate for crack growth.

The goal of this paper is to evaluate the effect of residual thermal stresses on the energy release rate
for crack growth in composites. The redistribution of residual and mechanical stresses caused by cracks can
be viewed as similar elasticity problems but with different boundary conditions. Because of their similarity,
it is often possible to explicitly account for the effect of residual thermal stresses without doing a thermal
elasticity analysis of the composite. Some general energy release rate expressions including residual thermal
stresses are derived in the first section of this paper. The general results are for an arbitrary composite
under arbitrary, mixed traction and displacement boundary conditions. Next, the general expressions are
applied to statistically homogeneous composites, double cantilever beam delamination specimens, and mi-
crocracked laminates. The simplest possible energy release rate expressions are derived. In some examples,
the energy release depends on knowledge of both the mechanical and residual stress states, but, in some
important practical examples, the energy release rate can be expressed in terms of the effect of cracks on
the effective composite mechanical properties. These effective mechanical properties can be derived using
elasticity analyses that ignore residual stresses.

General Theory

Consider an arbitrary, multiphase composite subjected a uniform temperature change of ∆T = T and to any
mixed traction and displacement boundary conditions. Let the surface be S = ST ∪ Su, where ST is that
part of the surface subjected to traction boundary conditions:

~T = ~T 0 = σ0n̂ (1)

where σ0 is the surface applied stress (note: all tensors are written in bold-face) and n̂ is a unit normal to
the surface. Su is that part of the surface subjected to displacement boundary conditions:

~u = ~u 0 = ε0~x (2)
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where ε0 is the surface strain and ~x is a position vector on the surface. ~T 0 and ~u 0 are the boundary
conditions; in general they may depend on position. Note also that tractions and displacements may be
applied over the same portions of the surface provided they are applied along different coordinates. For
example, one section of the surface may have traction in the x direction but fixed displacement in the y
direction. Similar to Rosen and Hashin (1970), the full thermal elasticity problem can be treated as a

superposition of two problems. First, let σm and εm, with tractions ~T m and displacements ~um, be the
solution to the isothermal (T = 0) elasticity problem:

σmn̂ = ~T 0 on ST (3)

~um = ~u 0 on Su (4)

σm = Cεm and εm = Sσm (5)

where C and S are the stiffness and compliance tensors. In a composite, C and S will depend on position.
As the solution to an elasticity problem, σm satisfies equilibrium and εm satisfies compatibility. Second, let
σr and εr, with tractions ~T r and displacements ~u r, be the solution to the thermal elasticity problem:

σrn̂ = 0 on ST (6)

~u r = 0 on Su (7)

σr = C(εr −αT ) and εr = Sσr +αT (8)

where α is the position-dependent thermal expansion tensor, σr satisfies equilibrium, and εr satisfies com-
patibility. Note that ~T r may be nonzero on Su and ~u r may be nonzero on ST . A superposition of the above
two solutions, σ = σm + σr and ε = εm + εr, solves the complete thermal elasticity problem

σn̂ = ~T 0 on ST (9)

~u = ~u 0 on Su (10)

σ = C(ε −αT ) and ε = Sσ +αT (11)

σm and εm are the mechanical stresses and strains while σr and εr are the residual thermal stresses and
strains.

The internal energy is the volume integral of stress dotted into strain relative to the free-expansion strains.
This energy can be expressed in terms of mechanical and residual stresses:

U =
1

2

∫
V

σ · (ε −αT )dV =
1

2

∫
V

σmSσmdV +

∫
V

σmSσrdV +
1

2

∫
V

σrSσrdV (12)

Assuming traction-free crack surfaces and using the divergence theorem, the mechanical stress term in
Eq. (12) may be written in terms of mechanical surface tractions, ~T m, and displacements, ~um, as

1

2

∫
V

σmSσmdV =
1

2

∫
ST

~T 0 · ~umdS +
1

2

∫
Su

~T m · ~u 0dS (13)

For the cross term in Eq. (12), the displacements caused by the residual thermal stresses can be considered
as virtual displacements to the mechanical strains or δ~u = ~u r. They correctly have ~u r = 0 on Su. By
virtual work ∫

V

σm · εrdV =

∫
ST

~T 0 · ~u rdS (14)

But also, εr = Sσr +αT , giving∫
V

σmSσrdV =

∫
ST

~T 0 · ~u rdS −
∫
V

σm ·αTdV (15)

Analogously, the residual tractions, ~T r, can be considered as virtual forces on the mechanical stresses; σr

obeys equilibrium and ~T r = 0 on ST . Thus, again by virtual work∫
V

εm · σrdV =

∫
V

σmSσrdV =

∫
Su

~T r · ~u 0dS (16)
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Finally, for the pure residual stress term in Eq. (12):

1

2

∫
V

σrSσrdV =
1

2

∫
V

(σr · εr − σr ·αT )dV =
1

2

(∫
S

~T r · ~u rdS −
∫
V

σr ·αTdV
)

(17)

But, over the entire surface, either ~T r = 0 or ~u r = 0, giving

1

2

∫
V

σrSσrdV = −1

2

∫
V

σr ·αTdV (18)

Combining Eqs. (13), (15), (16), and (18) gives

U =
1

2

∫
ST

~T 0 · ~umdS +
1

2

∫
Su

~T m · ~u 0dS +

∫
Su

~T r · ~u 0dS − 1

2

∫
V

σr ·αTdV (19)∫
V

σm ·αT =

∫
ST

~T 0 · ~u rdS −
∫
Su

~T r · ~u 0dS (20)

For fracture mechanics analysis we need to evaluate the energy release rate defined as

G =
dW

dA
− dU

dA
(21)

where W is external work and A is fracture area. The external work is caused by the action of the mechanical
tractions on ST applied over the total displacements. Thus

dW

dA
=

d

dA

(∫
ST

~T 0 · (~um + ~u r)dS

)
(22)

Combining this result with Eqs. (19) and (20) gives

G = Gmech +
V T

2

(
2
d 〈σm ·α〉

dA
+
d 〈σr ·α〉

dA

)
(23)

where Gmech is the mechanical energy release rate or the energy release when T = 0:

Gmech =
d

dA

(
1

2

∫
ST

~T 0 · ~umdS − 1

2

∫
Su

~T m · ~u 0dS

)
(24)

and angle brackets indicates a volume-averaged quantity:

〈f(x, y, z)〉 =
1

V

∫
V

f(x, y, z)dV (25)

Note that the full, thermodynamic internal energy in thermal elasticity includes heat capacity terms. The
energy associated with residual stresses that exist under zero traction (or zero displacement), can be
viewed as contributing to the effective constant pressure (or constant volume) heat capacity of the com-
posite (Rosen and Hashin, 1970). Here the residual stress energy contributes to the total energy release rate
for crack growth. The heat capacity terms associated with individual phases, however, can be ignored when
calculating energy release rates because they drop out when the derivative with respect to crack area is
evaluated.

The result in Eq. (23) includes nothing specific about composites. The result for a composite with n
phases is

G = Gmech +
V T

2

n∑
i=1

viα
(i) ·

(
2
dσ(im)

dA
+
dσ(ir)

dA

)
(26)

where superscript (i) means a property of phase i, vi is the volume fraction of phase i, and the over bar
indicates a phase-averaged quantity integrated over the volume of phase i, Vi:

σ(im) =
1

V vi

∫
Vi

σmdV (27)
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In deriving Eq. (26), it was assumed that the component thermal expansion tensors in each phase are
independent of position within that phase. This situation always holds for composites with isotropic phases.
For composites with anisotropic phases at variable orientations, each orientation must be considered as a
separate phase for analysis by Eq. (26). When anisotropic phases are aligned, such as in unidirectional,
carbon-fiber reinforced composites, the anisotropic phase can be considered as a single phase.

Although the general result in Eq. (26) depends on both mechanical and thermal stresses, in some
important special cases, the energy release rate can be expressed solely in terms of mechanical properties
and stresses. For example, in many fracture situations, cracks will propagate such that failure is by pure
mode I fracture or pure opening mode fracture. For example, it has been suggested that regardless of external
loading conditions that delamination always proceeds by mode I fracture (Charalambides et al., 1992). Under
pure mode I crack growth, energy release rate is related to mode I stress intensity factor by

GI ∝ K2
I (28)

In linear thermal elasticity, KI must be linearly related to applied load and temperature change. If we thus
consider uniformly scaling all applied tractions and displacements to be

~T app = P ~T 0 and ~u app = P~u 0 (29)

where P is a scalar multiplier, stress intensity must have the form

KI = c1P + c2T (30)

where c1 and c2 are some constants that depend on material properties and geometry of the crack. The
energy release rate must therefore have the form

GI ∝ (c1P + c2T )2 (31)

Comparing Eq. (31) to Eq. (26) we can prove that

TV

2

∑n
i=1 viα

(i) · dσ(im)

dA
Gmech

=

∑n
i=1 viα

(i) · dσ(ir)

dA∑n
i=1 viα

(i) · dσ(im)

dA

(32)

Substitution back into Eq. (26) gives

GI

Gmech
=

1 +
TV

2

∑n
i=1 viα

(i) · dσ(im)

dA
Gmech


2

(33)

Remarkably, the energy release rate including residual thermal stresses depends only on the results from
a mechanical stress analysis. Thus, the effect of residual stresses can be determined without any need
for solving a thermal elasticity problem. Although this result was derived for pure mode I crack growth,
analogous expressions hold for pure mode II or III crack growth.

Examples

Uniform Traction, Statistically Isotropic Composite

A useful model for evaluating effective properties of composite materials is to consider a statistically homo-
geneous composite (Hashin, 1963; 1969). Such composites are analyzed by averaging over a representative
volume element; this element must be chosen large enough to have all averaged results representative of the
averaged results for entire composite (Hashin, 1963; 1969). Here we also consider the representative volume
element to have cracks that are representative of the entire composite. Such a representative volume element
is then subjected to a uniform traction or a traction that arises from a surface stress, σ0, that is independent
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of position. By the average strain theorem (Hill, 1963; Hashin 1963; 1969), the only remaining integral in
Gmech reduces to

1

2

∫
S

~T 0 · ~umdS =
V

2
σ0 · (〈εm〉 −Dm) =

V

2
σ0 · S∗σ0 (34)

where S∗ is the effective compliance tensor of the composite (Hashin, 1963; 1969). The tensor Dm is related
to the crack opening mechanical displacements and is defined by

Dm
ij =

1

2V

∫
Sc

(
umj ni + umi nj

)
dS (i, j = x, y, or z) (35)

where Sc is total crack surface area. The effective composite compliance is defined in terms of the apparent
average strain which is the bulk average strain reduced by the crack-opening tensor (Aboudi, 1994); thus

S∗σ0 = 〈εm〉 −Dm (36)

Substituting Eq. (34) into Eq. (26) the energy release rate becomes

G =
V

2

[
σ0 · dS

∗

dA
σ0 + T

n∑
i=1

viα
(i) ·

(
2
dσ(im)

dA
+
dσ(ir)

dA

)]
(37)

For pure mode I (or II, or III) crack growth the energy release rate becomes

GI

Gmech
=

1 + T

∑n
i=1 viα

(i) · dσ(im)

dA

σ0 · dS
∗

dA
σ0


2

(38)

Finally, for a two phase composite (a composite with two isotropic phases or two aligned anisotropic phases)
we have

v1
dσ(1m)

dA
+ v2

dσ(2m)

dA
= 0 (39)

S(1)v1
dσ(1m)

dA
+ S(2)v2

dσ(2m)

dA
=

d 〈εm〉
dA

=
dS∗

dA
σ0 +

dDm

dA
(40)

For pure mode fracture we can derive

GI =
V

2

[(
σ0 + T (α(1) −α(2))(S(1) − S(2))−1

)
· dS

∗

dA
σ0 + T (α(1) −α(2))(S(1) − S(2))−1 · dD

m

dA

]2
σ0 · dS

∗

dA
σ0

(41)

The energy release rate depends only on the effective compliance tensor and the mechanically-induced crack-
opening displacement tensor. Note the Dm only affects the energy release rate when there are residual
thermal stresses; in the absence of residual stresses, GI depends only on S∗.

Uniform Displacement, Statistically Isotropic Composite

For uniform displacement (~u 0 = ε0~x where ε0 is independent of position) applied to a statistically homo-
geneous composite, use of the average stress theorem leads to

Gmech = −V
2

d 〈σm〉
dA

· ε0 = −V
2
ε0 · dC

∗

dA
· ε0 (42)

where C∗ is the effective stiffness tensor of the composite. For a better analogy with the uniform traction
results, some terms can be re-expressed as:

α(i) · σ(im) = −M (i) · ε(im) (43)

α(i) · σ(ir) = −M (i) · ε(ir) +α(i) ·M (i)T (44)
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Fig. 1 A double cantilever beam specimen using unidirectional composites. The fiber direction (indicated by the

internal lines) is parallel to the delamination crack growth. The specimen is point loaded by loads of P . The total

deflection between the loading points is ∆u.

whereM = −Cα is the stress-temperature tensor. Incorporating these results into the Eq. (26) and ignoring

the constant term α(i) ·M (i)T , which drops out upon differentiation, the energy release rate is

G = −V
2

[
ε0 · dC

∗

dA
ε0 + T

n∑
i=1

viM
(i) ·

(
2
dε(im)

dA
+
dε(ir)

dA

)]
(45)

This result is identical to the uniform traction results (see Eq. (37)) except for a sign change and physical
meanings of all symbols. The sign change is required because G is positive and, in general, C∗ decreases
with crack growth. By an explicit analogy to the results for uniform traction, the energy release rate for
pure mode crack growth becomes

GI

Gmech
=

1 + T

∑n
i=1 viM

(i) · dε(im)

dA

ε0 · dC
∗

dA
ε0


2

(46)

Delamination

Figure 1 shows a double cantilever beam specimen made from a unidirectional composite. The fibers run
parallel to the x direction. This problem differs from the previous sections in two respects. First, the specimen
is not statistically homogeneous because there is only one macroscopic delamination crack. Second, although
there is only traction loading, the tractions are not uniform (i.e., they depend on position). The tractions
can be written as

~T 0 = P
[
δ(~x− ~xupper)− δ(~x− ~xlower)

]
(47)

where δ(~x) is the Dirac delta function and ~xupper and ~xlower are the locations of the upper and lower load
points. Substitution into Eqs. (24) and (33) (because the crack growth is pure mode I) gives

GI =
P 2

2

dCm

dA

1 +
TV

2

∑n
i=1 viα

(i) · dσ(im)

dA
P 2

2
dCm
dA


2

(48)

where Cm = ∆um/P is the mechanical load-point compliance. The leading term is Gmech or the energy
release rate in the absence of residual stresses

Proceeding for a two-phase unidirectional composite (fibers as phase 1 and matrix as phase 2) with
aligned transversely isotropic phases, we can write

n∑
i=1

viα
(i) · dσ

(im)

dA
= v1

[
σ
(1m)
xx α

(1)
A +

(
σ
(1m)
yy + σ

(1m)
zz

)
α
(1)
T

]
+ v2

[
σ
(2m)
xx α

(2)
A +

(
σ
(2m)
yy + σ

(2m)
zz

)
α
(2)
T

]
(49)
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Fig. 2 An edge view of a microcracked laminate. The microcracks occur in the central 90◦ plies; they are located

at the top and bottom of the 90◦ plies are are separated by a distance s. Each ply has thickness ti; the total

symmetric laminate thickness is B.

Now, double-cantilever beams specimens without residual stresses can be well analyzed using beam analy-

ses (Hashemi et al., 1990). Within the assumptions of a beam analysis σ
(im)
yy and σ

(im)
zz are identically zero

while σ
(im)
xx will net to zero by virtue of a balance between tension and compression stresses within the beam.

The energy release rate for delamination becomes simply

G =
P 2

2

dCm

dA
(50)

In other words, within the assumptions of beam analyses, residual stresses have no effect on delamination.
Residual stresses are present in both the fiber and the matrix, but they release no energy as the delamination
propagates.

Microcracked Laminate

Figure 2 shows an edge view of a symmetric, 2n-ply laminate under a uniaxial load of σ0 in the x direction
in which the central 90◦ ply group has through-the-width cracks separated by a distance s. This geometry
is appropriate for analysis of a microcracked laminate with periodic microcracks in the 90◦ plies having a
density D = 1/s (Nairn and Hu, 1994). This problem differs from previous examples in three respects. First,
the tractions are nonuniform: σ0 is applied to the uncracked plies, but there is zero traction on the cracked
90◦ plies. Second, there are more then two phases. Although the plies themselves are composites, here
each ply is treated as a homogeneous, anisotropic material. The general laminate, which may have plies at
many orientations or may even be a hybrid laminate, is thus a multiphase composite. Third, we incorporate
information about the laminated structure of the composite into the analysis. The key structural information

we use is that the x and y direction strains of all uncracked plies are equal and that σ
(im)
zz = σ

(ir)
zz = 0 in all

plies.

From Eq. (23), we can immediately write

G =
V

2

d

dA

(
σ2
0

E∗
xx

+ T
(
2 〈σm ·α〉+ 〈σr ·α〉

))
(51)
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where E∗
xx is the effective laminate modulus in the x direction. The first term is the energy release rate in

the absence of residual stresses. Furthermore, by Eq. (20) we can write

〈σm ·αT 〉 = σ0 〈εrxx〉u = σ0α
∗
xxT (52)

where α∗
xx is the effective laminate thermal expansion coefficient in the x direction and 〈εrxx〉u is the volume

averaged residual strain in the uncracked plies only. This term appears because the tractions are applied
only to the uncracked plies. Equation (52) is similar to Levin’s analysis for thermal expansion coefficient
of a composite (Levin, 1967; Rosen and Hashin, 1970) except that it is applied here under conditions of
nonuniform traction.

The energy release rate will be analyzed first using a plane stress analysis in which σ
(im)
yy = σ

(ir)
yy = 0 in

all plies. From Eq. (52):

σ0α
∗
xx =

n∑
i=1

viσ
(im)
xx α(i)

xx (53)

where vi = 2ti/B is the total volume fraction of ply i including both sides of the symmetric laminate. By
force balance and iso-strain in the uncracked plies

n∑
i=1

viσ
(im)
xx = σ0 and σ

(im)
xx =

E
(i)
xxσ0
E∗

xx

for i 6= 1 (54)

Using these results, the effective x-direction thermal expansion coefficient can be expressed as

α∗
xx = α(i)

xx −
(1− v1)∆αxxE

(u)
xx

E∗
xx

(55)

where

∆αxx = α(1)
xx − α(u)

xx , E(u)
xx =

∑n
i=2 viE

(i)
xx

1− v1
, and α(u)

xx =

∑n
i=2 viα

(i)
xxE

(i)
xx∑n

i=2 viE
(i)
xx

(56)

E
(u)
xx and α

(u)
xx are the rule-of-mixtures x-direction modulus and thermal expansion coefficient of the uncracked

plies. The residual strain energy term is

〈σr ·αT 〉 =

n∑
i=1

viσ
(ir)
xx α(i)

xxT (57)

By force balance of residual stresses and iso-strain in the uncracked plies

n∑
i=1

viσ
(ir)
xx = o and σ

(ir)
xx = E(i)

xx

(
α∗
xx − α(i)

xx

)
T for i 6= 1 (58)

Using these results, the residual strain energy term is

〈σr ·αT 〉 = constant− α∗
xx(1− v1)T 2∆αxxE

(u)
xx (59)

The “constant” term is not evaluated because it drops out when finding the energy release rate.
Substituting Eqs. (52), (55), and (59) into Eq. (51) gives

G =
V

2

(
σ0 −∆αxxE

(u)
xx (1− v1)T

)2 d

dA

(
1

E∗
xx

)
(60)

The energy release rate in the presence of residual thermal stresses depends only on one effective property —
E∗

xx; that property can be evaluated by an isothermal stress analysis. If we imagine formation of a complete
new microcrack midway between two existing microcracks, we have

V = BWs =
BW

D
and dA = 2t1W = v1BW (61)
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The integrated energy release rate for formation of a complete microcrack is

G =
1

2v1D

(
σ0 −∆αxxE

(u)
xx (1− v1)T

)2
∆

(
1

E∗
xx

)
(62)

where ∆(1/E∗
xx) is the change in the effective x-direction modulus caused by the new microcrack. An energy

release expression mathematically identical to Eq. (62) is given in a different form in Nairn et al. (1993) and
Nairn and Hu (1994) and in the identical form in Nairn (1995). In Nairn et al. (1993), Nairn and Hu (1994),
and Nairn (1995), however, the energy release rate was the specific result of a thermal elasticity analysis.
Here the energy release rate is derived as a general result. The accuracy of finding G is only limited to the
accuracy in finding E∗

xx. In Nairn (1995), variational mechanics was used to bound E∗
xx and an average of

those bounds gave a virtually exact solution for G.

A better connection with laminated plate theory can be derived by considering a generalized plane-strain
analysis of a cracked laminate instead of the previous plane stress analysis. In the generalized plane-strain
analysis, it is assumed that the y-direction strain in all plies is −ν∗xyσ0/E∗

xx where ν∗xy is the effective x-y
Poisson’s ratio of the cracked laminate. The resulting new analysis will correct the plane stress analysis to
account for differential Poisson’s ratios between the plies. The corrections are generally small, but can be
accomplished in a straight-forward analysis.

Equations (51) and (52) are unchanged in the generalized plane-strain analysis. Starting from Eq. (52):

σ0α
∗
xx =

n∑
i=1

(
viσ

(im)
xx α(i)

xx + viσ
(im)
yy α(i)

yy

)
(63)

By force balance and iso-strain in the uncracked plies

n∑
i=1

viσ
(im)
xx = σ0 and

n∑
i=1

viσ
(im)
yy = 0 (64)

σ
(im)
xx =

(
Q

(i)
11 − ν∗xyQ

(i)
12

) σ0
E∗

xx

for i 6= 1 (65)

σ
(im)
yy =

(
Q

(i)
12 − ν∗xyQ

(i)
22

) σ0
E∗

xx

for i 6= 1 (66)

where Q
(i)
kj (k, j = 1, 2, 6) are the suitably-rotated elements of the in-plane stiffness matrix for ply i (Tsai,

1987). Using these results, the effective x-direction thermal expansion coefficient becomes

α∗
xx = α(1)

xx +
1

E∗
xx

n∑
i=2

vi

[(
α(i)
xx − α(1)

xx

)
Q

(i)
11 +

(
α(i)
yy − α(1)

yy

)
Q

(i)
12

]
−
ν∗xy
E∗

xx

n∑
i=2

vi

[(
α(i)
xx − α(1)

xx

)
Q

(i)
12 +

(
α(i)
yy − α(1)

yy

)
Q

(i)
22

]
(67)

Now consider the laminate created by removing the cracked plies and joining the remaining plies; call it the
“uncracked” laminate. By laminated plate analysis of the symmetric “uncracked” laminate (Tsai, 1987), it
can be shown that

n∑
i=2

viQ
(i)
kj =

A
(u)
kj

B
(68)

n∑
i=2

vi

(
α(i)
xxQ

(i)
11 + α(i)

yyQ
(i)
12

)
=

1

B

(
A

(u)
11 α

(u)
xx +A

(u)
12 α

(u)
yy

)
(69)

n∑
i=2

vi

(
α(i)
xxQ

(i)
12 + α(i)

yyQ
(i)
22

)
=

1

B

(
A

(u)
12 α

(u)
xx +A

(u)
22 α

(u)
yy

)
(70)
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where A
(u)
kj are the elements of the laminated plate theory [A] matrix for the “uncracked” laminate and α

(u)
xx

and α
(u)
yy are the thermal expansion coefficients for the “uncracked” laminate defined by:

α(u)
xx = B

[
a
(u)
11

n∑
i=2

vi

(
α(i)
xxQ

(i)
11 + α(i)

yyQ
(i)
12

)
+ a

(u)
12

n∑
i=2

vi

(
α(i)
xxQ

(i)
12 + α(i)

yyQ
(i)
22

)]
(71)

α(u)
yy = B

[
a
(u)
12

n∑
i=2

vi

(
α(i)
xxQ

(i)
11 + α(i)

yyQ
(i)
12

)
+ a

(u)
22

n∑
i=2

vi

(
α(i)
xxQ

(i)
12 + α(i)

yyQ
(i)
22

)]
(72)

Here a
(u)
kj are elements of the laminated plate theory [a] matrix which is the inverse of the [A] matrix. Using

these results, the effective x-direction thermal expansion coefficient can be expressed as

α∗
xx = α(1)

xx −
(1− v1)∆1

E∗
xx

+
ν∗xy(1− v1)∆2

E∗
xx

(73)

where

∆1 =
1

B(1− v1)

[
A

(u)
11

(
α(1)
xx − α(u)

xx

)
+A

(u)
12

(
α(1)
yy − α(u)

yy

)]
(74)

∆2 =
1

B(1− v1)

[
A

(u)
12

(
α(1)
xx − α(u)

xx

)
+A

(u)
22

(
α(1)
yy − α(u)

yy

)]
(75)

Note that A
(u)
kj /(B(1−v1)) are the elements of the normalized, x−y plane stiffness matrix for the “uncracked”

laminate (Tsai, 1987). By a similar analysis but with σ0 applied in the y direction, the effective y-direction
thermal expansion coefficient can be expressed as

α∗
yy = α(1)

yy −
(1− v1)∆2

E∗
yy

+
ν∗xy(1− v1)∆1

E∗
xx

(76)

The residual strain energy term is

〈σr ·αT 〉 =

n∑
i=1

(
viσ

(ir)
xx α(i)

xxT + viσ
(ir)
yy α(i)

yyT
)

(77)

By force balance of residual stresses and iso-strain in the uncracked plies

n∑
i=1

viσ
(ir)
xx = 0 and

n∑
i=1

viσ
(ir)
yy = 0 (78)

σ
(ir)
xx = Q

(i)
11

(
α∗
xx − α(i)

xx

)
T +Q

(i)
12

(
α∗
yy − α(i)

yy

)
T for i 6= 1 (79)

σ
(ir)
yy = Q

(i)
12

(
α∗
xx − α(i)

xx

)
T +Q

(i)
22

(
α∗
yy − α(i)

yy

)
T for i 6= 1 (80)

Using these results, the residual strain energy term is

〈σr ·αT 〉 = constant− α∗
xx(1− v1)T 2∆1 − α∗

yy(1− v1)T 2∆2 (81)

The “constant” term is not evaluated because it drops out when finding the energy release rate.
Substituting Eqs. (52), (73), (76), and (81) into Eq. (51) gives

G =
V

2

[(
σ0 − (1− v1)T∆1

)2
d

dA

(
1

E∗
xx

)
+ 2(1− v1)T∆2

(
σ0 − (1− v1)T∆1

)
d

dA

(
ν∗xy
E∗

xx

)

+ (1− v1)2T 2∆2
2

d

dA

(
1

E∗
yy

)]
(82)
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The energy release rate depends only on E∗
xx, E∗

yy, and ν∗xy, all of which can be evaluated by an isothermal
stress analysis. Equation (82) is exact for any damage mode in a microcracked laminate. If the damage is
mode I propagation of a new microcrack between the existing microcracks, we can use Eq. (31) to derive an
exact relation between laminate effective properties:

d
dA

(
ν∗xy
E∗

xx

)
d
dA

(
1
E∗

xx

) =

d
dA

(
1
E∗

yy

)
d
dA

(
ν∗xy
E∗

xx

) (83)

Interestingly, an analysis of fracture in the presence of residual thermal stresses has lead to a relation between
effective mechanical properties. Using Eq. (83) the mode I microcracking energy release is

GI =
V

2

[(
σ0 − (1− v1)T∆1

)
d
dA

(
1
E∗

xx

)
+ (1− v1)T∆2

d
dA

(
ν∗xy
E∗

xx

)]2
d
dA

(
1
E∗

xx

) (84)

The mode I energy release rate depends only on E∗
xx and ν∗xy. McCartney (1994) derived results that appear

equivalent to Eqs. (82) and (83). McCartney’s results, however, were a specific result of an approximate
generalized, plane-strain, thermal elasticity analysis of a microcracked laminate. The results here were
derived by a very different path and are exact provided exact results for E∗

xx, ν∗xy, and E∗
yy are known.

The previous results were for uniaxial loading. It is trivial to extend the analysis to generalized in-plane
loading of the microcracked laminate. The energy release rate becomes

G =
V

2
σeff · d

dA


1
E∗

xx
−
ν∗xy
E∗

xx
0

−
ν∗xy
E∗

xx

1
E∗

yy
0

0 0 1
G∗

xy

σeff
Note: V/2 is a
correction vs.

published paper
(85)

where G∗
xy is the effective in-plane shear modulus and σeff is the effective in-plane applied stressed defined

by
σeff =

(
σx0 − (1− v1)T∆1, σy0 − (1− v1)T∆2, τxy0

)
(86)

Here σx0, σy0, and τxy0 are the applied in-plane stresses.

Discussion

In many examples considered, the energy release rate for crack growth, G, was reduced to an expression that
depends only on the effective compliance (S∗) or stiffness (C∗) tensors and the phase average mechanical
stresses. Because these terms can be evaluated by isothermal elasticity methods (Hashin 1963; 1969), it
is often possible to include the effect of residual thermal stresses on the energy release rate without ever
evaluating the thermal stresses. In other words, no thermal elasticity analysis of the composite is required.
This result, however, does not imply that the effect of residual thermal stresses is a trivial extension of
isothermal fracture mechanics analysis. For example, the isothermal energy release rate for microcracking
of a laminate depends only on the E∗

xx. In contrast, the energy release rate in the presence of residual
stresses depends on E∗

xx, ν∗xy, and E∗
yy. Thus, in general, the fracture mechanics analysis of a composite

with residual thermal stresses will require more isothermal elasticity analysis of composite properties than
the corresponding isothermal fracture mechanics analysis.

The discussion here was confined to residual thermal stresses, but identical results could be derived
for other types of residual stresses. For example, fiber-reinforced, polymer-matrix composites can develop
residual stresses due to differential moisture absorption between the fibers and the matrix (Tsai, 1987). The
results for moisture-induced residual stresses can be generated from the results given here by replacing α by
the moisture expansion tensor and T by the moisture concentration. Residual stresses induced by nonuniform
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temperature (T a function of position) are more complicated. The general theory derived here up to Eq. (23)
still applies when there is nonuniform T . Many subsequent simplifications, however, only hold for uniform
T .

The energy release rate in the presence of residual stresses depends on derivatives of mechanical terms
like

dS∗

dA
,

dC∗

dA
, and

dσ(im)

dA
(87)

Many damage mechanics models have been developed that give effective properties as a function damage.
The results in this paper could easily be incorporated into such models to simultaneously give the energy
release rate for damage growth. An important observation, however, is that the ability of a damage analysis
to predict effective properties is necessary but not sufficient justification for use of that analysis to calculate
energy release rate. The problem is that calculating derivatives of effective properties is a harder problem
than calculating the average property itself. Analyses that are accurate to within a few percent for effective
properties may be grossly in error when calculating the derivative. Thus any damage mechanics analysis
that seeks to calculate energy release rate must be verified to have accurate derivatives of the required
terms. Experimentally this verification can be done by comparing fracture experiments to fracture mechanics
predictions. In contrast, experimental verification based on effective property predictions, such as modulus
reductions, are inadequate tests of energy release rate models.
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