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Fracture of Elastomeric
Materials by Crosslink Failure
If an elastomeric material is subjected to sufficiently large deformations, it eventually
fractures. There are two typical micromechanisms of failure in such materials: chain
scission and crosslink failure. The chain scission failure mode is mainly observed in poly-
mers with strong covalent crosslinks, while the crosslink failure mode is observed in poly-
mers with weak crosslinks. In two recent papers, we have proposed a theory for
progressive damage and rupture of polymers with strong covalent crosslinks. In this
paper, we extend our previous framework and formulate a theory for modeling failure of
elastomeric materials with weak crosslinks. We first introduce a model for the deforma-
tion of a single chain with weak crosslinks at each of its two ends using statistical
mechanics arguments, and then upscale the model from a single chain to the continuum
level for a polymer network. Finally, we introduce a damage variable to describe the pro-
gressive damage and failure of polymer networks. A central feature of our theory is the
recognition that the free energy of elastomers is not entirely entropic in nature; there is
also an energetic contribution from the deformation of the backbone bonds in a chain
and/or the crosslinks. For polymers with weak crosslinks, this energetic contribution is
mainly from the deformation of the crosslinks. It is this energetic part of the free energy
which is the driving force for progressive damage and fracture of elastomeric materials.
Moreover, we show that for elastomeric materials in which fracture occurs by crosslink
stretching and scission, the classical Lake–Thomas scaling—that the toughness Gc of an
elastomeric material is proportional to 1=

ffiffiffiffiffiffi
G0

p
, with G0 ¼ NkB# the ground-state shear

modulus of the material—does not hold. A new scaling is proposed, and some important
consequences of this scaling are remarked upon. [DOI: 10.1115/1.4040100]
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1 Introduction

Soft elastomeric materials are widely used in applications such
as carriers for drug delivery, scaffolds for tissue engineering, soft
actuators, and smart optical systems, and as packers for sealing
oil-wells. One of the distinguishing features of these materials is
that their deformation response is dominated by changes in
entropy. Accordingly, most classical theories of rubber-like elas-
ticity consider only changes in entropy and neglect any changes in
internal energy. However, when subjected to sufficiently large
deformations, these materials eventually fracture. While an
accounting of changes in entropy can adequately describe the
deformation of the material, such an accounting says nothing
about the rupture because rupture is an energetic process at the
microscale, emanating from the scission of molecular bonds in the
polymer network. The molecular bonds will be ruptured only
when the stored internal energy attains a certain critical value.
Thus, while a neglect of an internal energy contribution simplifies
the classical theories of rubber-like elasticity, it makes such theo-
ries incapable of dealing with rupture of soft materials.

There are two typical failure micromechanisms in soft materi-
als: chain scission and crosslink failure. If the cross-linking chem-
ical bonds in an elastomeric network are strong covalent bonds,
then fracture is expected to occur by scission of the chains
between the crosslinks, while if the chemical crosslinks are weak,
then fracture is expected to occur because of the scission of the
cross-linking bonds themselves.

Lake and Thomas [1] developed the first molecular theory for
the fracture energy of elastomers with strong covalent crosslinks.
They proposed that when any of the main bonds in a polymer
chain breaks, then the total energy of each bond of the stretched
chain is irreversibly lost. Therefore, the energy necessary to break
a chain is proportional to the length of that chain, i.e., proportional
to the number of backbone bonds, n, comprising the chain.2 In an
important paper, Akagi et al. [2] presented results from their
investigations on the fracture behavior of tetra(polyethylene gly-
col) (Tetra-PEG) gels with precisely controlled network struc-
tures. These controlled network structures, with greatly
suppressed heterogeneity, enabled these authors to validate the
predictions of the Lake–Thomas model; also see Ref. [3].

In two recent papers [4,5], we presented a theory for fracture of
an elastomeric solid in which, following the lead of Lake and
Thomas [1], we focused our attention on networks with strong
crosslinks, which fail by scission of the polymer chains between
the crosslinks.3 In that theory, a new field called the effective bond
stretch kb was introduced to describe the stretchability and even-
tual failure of the Kuhn segments of polymer chains, but we
neglected the stretchability of the crosslinks. However, in many
synthetic polymers, the Kuhn segments are quite stiff and strong.
Instead, it is the weak crosslinks in the network, which are
stretched and eventually lead to failure.4 The purpose of the pres-
ent paper is to present a theory in which failure occurs by cross-
link failure rather than by chain scission.

Much of the continuum-level theory developed in our previous
papers is unchanged, but what is changed is that here we introduce
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2Actually proportional to
ffiffiffi
n

p
; cf. Ref. [3] and also the Remark on page 12.

3Such as Tetra-PEG-gels of Ref. [2].
4For example, the 4-arm polyethylene glycol network with reversible metal-

ligand crosslinks [6].
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an effective crosslink stretch kc—rather than an effective bond
stretch kb—as an internal variable of the theory. Also changed are
the specialized constitutive equations for the internal energy and
entropy of the network because the micromechanism of damage
and failure is fundamentally different from what we had consid-
ered previously.

There is always a damage process zone in the vicinity of a
crack. Thus, in order to model final fracture of the elastomer, we
also introduce a damage variable dðX; tÞ 2 ½0; 1�. When d ¼ 1 at
some material point, then that point is fractured, and values of d
between zero and one correspond to partially fractured material.
For this reason, we develop a damage theory, which depends not
only on d but also on its gradient rd, which represents a measure
of the spatial inhomogeneity of the damage during the fracturing
process. Hence, there is a material length scale, ‘, in the vicinity
of a crack over which the damage variable d varies between zero
and one; ‘ therefore represents a measure of the “size of the dam-
age process zone,” Another reason for introducing a gradient-
damage theory is to “regularize” the strain-softening behavior dur-
ing the fracture process, and to avoid mesh dependency-related
issues during finite element simulations—as is common in the
recent phase-field theories of fracture [5,7–11]. Numerically, a
gradient theory can ensure that the simulation results are mesh-
independent, provided the mesh size is small enough; that is, typi-
cal element size he less than 0.2‘.

The plan of this paper is as follows: In Sec. 2, we summarize
the essence of our continuum-level model. Since the structure of
the continuum-level model is essentially unchanged from our
recent paper [5], we simply reproduce the constitutive theory pre-
sented in Sec. 2 of Ref. [5] with the effective bond stretch kb
replaced by an effective crosslink stretch kc.

5 In Sec. 3, we give
the specialized constitutive equations, which allow for failure due
to damage of crosslinks in the network. Moreover, we show that
for elastomeric materials in which fracture occurs by crosslink
stretching and scission, the Lake–Thomas scaling [1–3,12]—that
is the toughness Gc is proportional to 1=

ffiffiffiffiffiffi
G0

p
, with G0 ¼ Nkb# the

ground-state shear modulus of the material—does not hold. A
new scaling is proposed, and some important consequences of this
scaling are remarked upon. In Sec. 4, we study the capability of
our theory and its numerical implementation in a finite element
program to model plane stress fracture of (i) single-edge-notched
specimens; (ii) an asymmetric double-edge-notched specimen;
and (iii) fracture of a sheet specimen with multiple circular and
elliptical holes. Finally, we summarize our main conclusions and
make some final remarks in Sec. 5.

2 Summary of the Constitutive Theory, Governing
Partial Differential Equations, and Boundary
Conditions

At the continuum level, our theory is essentially that developed
in our previous paper [5], but here we allow for an effective cross-
link stretch kc, rather than an effective bond stretch kb, as an inter-
nal variable of the theory. Our theory relates the following basic
fields:6 x ¼ vðX; tÞ, motion; F ¼ rv; J ¼ detF > 0, deforma-
tion gradient; �F ¼ J�1=3 F, distortional part of F; C ¼ F>F, right
Cauchy–Green tensor; �C ¼ �F

>�F ¼ J�2=3C, distortional part of C;

TR; TRF
> ¼ FT>

R Piola stress; TRR ¼ F�1TR, second Piola
stress; wR, free energy density per unit reference volume; eR,
internal energy density per unit reference volume; kc > 0 effec-
tive crosslink stretch (an internal variable); dðX; tÞ 2 ½0; 1�, dam-
age variable or phase-field with _d � 0; - scalar microstress
conjugate to _d; and n vector microstress conjugate to r _d.

2.1 Constitutive Equations

(1) Free energy
This is given by

wR ¼ ŵRðKÞ; with K ¼ fC; kc; d;rdg (2.1)

(2) Second Piola stress and Piola stress
The second Piola stress and the Piola stress are given by

TRR ¼ 2
@ŵR Kð Þ

@C
; TR ¼ FTRR (2.2)

(3) Implicit equation for the effective crosslink stretch
The thermodynamic requirement

@ŵR Kð Þ
@kc

¼ 0 (2.3)

reflects the fact that the actual value of the effective crosslink
stretch kc adopted by the material is the one that minimizes the
free energy. This equation serves as an implicit equation to deter-
mine kc in terms of the other constitutive variables.7

(4) Microstresses - and n
The scalar microstress - conjugate to the rate of change of
the damage variable _d is given by

- ¼ @ŵR Kð Þ
@d

|fflfflfflffl{zfflfflfflffl}

-en

þ aþ f _d
|fflfflffl{zfflfflffl}

-diss

(2.4)

with a ¼ âðKÞ and f ¼ f̂ðKÞ positive-valued scalar functions.8

Here, -en and -diss denote the energetic and dissipative parts of
-. The vector microstresses n conjugate tor _d is given by

n ¼ @ŵR Kð Þ
@rd

(2.5)

and is taken to be purely energetic with no dissipative
contribution.9

2.2 Governing Partial Differential Equations. The govern-
ing partial differential equations (PDE) consist of:

(1) Equation of motion

DivTR þ b0R ¼ qR€v (2.6)

5From the outset, we acknowledge that there is considerable overlap between this

paper and our recent publication [5], and in addition to Sec. 2, there are several other

phrases, paragraphs, and footnotes, which are (probably) the same as those in our

previous paper, but are repeated here for a coherent narrative and completeness.
6Notation: We use standard notation of modern continuum mechanics [13].

Specifically: r and Div denote the gradient and divergence with respect to the

material point X in the reference configuration, and D ¼ Divr denotes the

referential Laplace operator; grad, div, and div grad denote these operators with

respect to the point x ¼ vðX; tÞ in the deformed body; a superposed dot denotes the

material time-derivative. Throughout, we write F�> ¼ ðF�1Þ> ¼ ðF>Þ�1
, etc. We

write trA; symA; skwA; A0, and sym0A respectively, for the trace, symmetric,

skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner

product of tensors A and B is denoted by A : B, and the magnitude of A by

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi

A : A
p

.

7To limit the dynamics of failure by crosslink stretch, Eq. (2.3) may be modified

by introducing a rate-dependent term of the form @ŵRðKÞ=@k c ¼ �jcðkcÞ _kc, as we

did in Ref. [14].
8Detailed thermodynamic considerations result in the dissipation inequality (cf.

Eq. (A. 48) in our recent paper [5]) D ¼ a _d þ f _d
2
> 0 when _d > 0 The choice

a � 0 and f � 0 ensures that this dissipation inequality is satisfied.
9Thermodynamics does not require that ndiss ¼ 0. However, it is a particular

constitutive assumption that we make; cf. Eq. (A.46)3 of Ref. [5]. The assumption of

a dissipative contribution -diss to the microstress - conjugate to _d, but no dissipative

contribution ndiss to the vector microstress n conjugate to r _d, is a typical choice

which is made in recent gradient-damage/phase-field type theories for fracture, e.g.,

see Refs. [5,7–11]. In order to not depart too much from the recent literature, we

have made a similar assumption in this paper as well.
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where b0R is a noninertial body force, qR is the referential mass
density, €v is the acceleration, and the Piola stress TR is given by
(2.2)2. In the numerical simulations presented later in the paper,
we neglect all inertial effects.

(2) Microforce balance:
The microforces - and n obey the balance

Divn� - ¼ 0 (2.7)

This microforce balance, together with the thermodynamically
consistent constitutive equations (2.4) and (2.5) for - and n, gives
the following evolution equation for the damage variable d,10

f̂ Kð Þ _d ¼ � @ŵR Kð Þ
@d

þ Div
@ŵR Kð Þ
@rd

� �

� â Kð Þ (2.8)

Since f is positive-valued, the right-hand side of (2.8) must be
positive for _d to be positive and the damage to increase
monotonically.11

We also need boundary and initial conditions to complete the
theory.

(1) Boundary conditions for the PDE governing the evolution
of the motion v:
Let Sv and StR be complementary subsurfaces of the
boundary @B of the body B. Then for a time interval
t 2 ½0;T�, we consider a pair of boundary conditions in
which the motion is specified on Sv and the surface traction
on StR

v ¼ v
^

onSv � ½0; T�; and TRnR ¼ �tR onStR � ½0; T�
(2.9)

In the boundary conditions above, v
^
and �tR are prescribed func-

tions of X and t.
(2) Boundary conditions for the PDE governing the evolution

of the damage variable d
The presence of microscopic stresses n results in an
expenditure of power

Ð

@Bðn � nRÞ _d daR by the material in
contact with the body, and this necessitates a consideration
of boundary conditions on @B involving the microscopic
tractions n � nR and the rate of change of the damage vari-
able _d. We restrict attention to boundary conditions that
result in a null expenditure of microscopic power in the
sense that ðn � nRÞ _d ¼ 0. A simple set of boundary condi-
tions which satisfies this requirement is

_d ¼ 0 onSd � ½0; T�; and n � nR ¼ 0 on @BnSd � ½0;T�
(2.10)

with the microforce n given by (2.5).
The initial data are taken as

vðX; 0Þ ¼ X; _vðX; 0Þ ¼ v0ðXÞ; and dðX; 0Þ ¼ 0 in B

(2.11)

The coupled set of equations (2.6) and (2.8) together with Eqs.
(2.9)–(2.11) yield an initial/boundary-value problem for the
motion vðX; tÞ, and the damage variable dðX; tÞ.

3 Specialization of the Constitutive Equations

To build a predictive model, we wish to characterize the pro-
cess of rupture in elastomeric materials with weak crosslinks in
terms of the microscopic mechanics of molecular crosslink

deformation and failure. However, traditional hyperelasticity
models for elastomers neglect the energetics of crosslinks defor-
mation. Accordingly, we formulate a hyperelastic constitutive
model that accounts for the energetics of crosslink stretch, as well
as the well-known entropic effects of polymer elasticity. In what
follows, we begin by considering the process of deformation of a
single chain, and then extend the single chain considerations to
bulk polymer networks undergoing damage and eventual failure.

3.1 Deformation of a Single Chain. Consider a single chain
with n unstretchable segments, each of initial length Lb. Let

� r0 ¼
ffiffiffi
n

p
Lb denote the unstretched chain length determined

from random-walk statistics, and
� let r denote the end-to-end distance of chain in a deformed

configuration.

The classical freely jointed chain theory gives the free energy w
of a single chain as [15] (as quoted in Ref. [16])

w¼ ŵ rð Þ¼ kB#n
r

nLb
bþ ln

b

sinhb

� �� �

with b¼L�1 r

nLb

� �

(3.1)

where kB is Boltzmann’s constant, # is the absolute temperature,
and L�1 is the inverse of the Langevin function
LðxÞ ¼ coth x� x�1.

In order to arrive to an expression for the free energy which
accounts for cross-link deformation, we first consider the behavior
of a single chain with a crosslink at each end, each of length Lc
(see Fig. 1).

Generally, the overall deformation of the single polymer chain
under load is due to three sources:

(i) the alignment of the Kuhn segments;
(ii) stretching of the Kuhn segments; and
(iii) stretching of the molecular bonds associated with cross-

links at each end.

We make the constitutive assumption that

� the Kuhn segments in the chain are much stiffer than the
molecular bonds associated with the two crosslinks at each
end so that the stretchability and the internal energy stored
within the Kuhn segments is negligible.

To further simplify the physical picture, we assume that the
configurational entropy stored within the molecular bonds associ-
ated with crosslinks are negligible, and that both the crosslink
bonds are aligned with and follow the direction of the stretching
force (cf. Fig. 1(b)).

The stretchable bonds associated with crosslinks may extend
such that their deformed length is

lc ¼ kc Lc (3.2)

where kc is a dimensionless stretch, which we refer to as the cross-
link stretch. Then, with ê cðk cÞ denoting the internal energy asso-
ciated with the stretching of the crosslinks, we take the free
energy to be given by

w¼ ŵ ~r ;kcð Þ¼2ê c kcð ÞþkB#n
~r

nLb
bþ ln

b

sinhb

� �� �

with

b¼L�1 ~r

nLb

� � (3.3)

and with

~r ¼ r � 2 kcLc (3.4)

the net end-to-end distance of the part of the chain with rigid
Kuhn segments. It is convenient to rewrite the free energy (3.3) in
terms of the overall chain stretch

10We use the phrases “damage variable” and “phase-field” interchangeably to

describe d.
11We do not consider “healing,” that is _d < 0, in this paper.
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k ¼ r

r0
(3.5)

where r0, the unstretched chain length, which is now given by

r0 ¼
ffiffiffi
n

p
Lb þ 2Lc (3.6)

Thus, using Eqs. (3.4)–(3.6), we have

~r

nLb
¼ k

ffiffiffi
n

p � 2Lc

nLb
kc � kð Þ (3.7)

On physical grounds, we require that

~r

nLb
! k

ffiffiffi
n

p as kc ! 1; (3.8)

so that the free energy expression (3.3) reduces to the classical
expression (3.1). However, as it stands use of the estimate Eq.
(3.7) in Eq. (3.3) does not give the desired limit. To achieve this,
we subtract a small term

2Lc

nLb
k� 1ð Þ (3.9)

from the right-hand side of Eq. (3.7) to obtain a slightly modified
estimate

~r

nLb
¼ k

ffiffiffi
n

p � 2Lc

nLb
kc � 1ð Þ (3.10)

We consider the term (3.9) to be “small” because the coefficient
ð2LcÞ=ðnLbÞ is small. Typically, the statistical segment length Lb
is approximately 5 to 10 times the length of a backbone bond
within the polymer chain (�0:15 nm), and the effective length Lc
of a crosslink is of the same order as the length of a backbone
bond; this gives ðLc=LbÞ 	 0:1 to 0:2. Also, n is much larger than
unity, and ðk� 1Þ=n is small.

Finally, using Eq. (3.10) in (3.3) leads to

w¼ ŵ k;kcð Þ

¼ 2ê c kcð Þ
|fflfflfflffl{zfflfflfflffl}

ê0 kcð Þ

þkB#n
k
ffiffiffi
n

p �2Lc kc�1ð Þ
nLb

 !

bþ ln
b

sinhb

� �" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�#ĝ k;kcð Þ

;with

b¼L�1 k
ffiffiffi
n

p �2Lc kc�1ð Þ
nLb

 !

(3.11)

Here, the first term denotes the internal energy associated with the
stretching of the crosslinks, and the second term is for the configu-
rational entropy associated with Kuhn segments.

At any fixed stretch k, increasing k c increases the internal
energy contribution to the free energy while decreasing the
entropic part. This competition induces an optimal value of k c

which will minimize the free energy and will be the actual state
adopted by the system. Thus, setting @w=@k c ¼ 0 provides an
implicit equation for k c, which reads

dêc kcð Þ
dkc

� kB#
Lc

Lb
L�1 k

ffiffiffi
n

p � 2Lc kc � 1ð Þ
nLb

 !

¼ 0 (3.12)

Remark 1. It is possible to build a crosslinked polymer chain net-
work with a unit comprising a chain of n rigid Kuhn segments,
each of fixed length Lb, with a single crosslinker of length Lc,
instead of two crosslinkers as considered above. A conceptually
simple way to reconcile the one crosslink model with the two
crosslink model is to consider the single crosslink to be divided
into two, and distributed at each end of a chain. Mathematically,
the only difference in the model based on one versus two cross-
links per chain is the factor of 2 appearing in the terms

2êc kcð Þ and
2Lc

Lb

kc � 1ð Þ
n

in Eq. (3.11). The factor of 2 in 2êcðkcÞ is inconsequential; it can
easily be absorbed in the unspecified function êcðkcÞ, and we may
redefine 2Lc as Lc, to arrive at a free energy expression corre-
sponding to a one crosslink per chain model.

3.2 Deformation, Damage, and Failure of a Crosslinked
Network of Polymer Chains. We employ the widely used
Arruda–Boyce [17] model to extend the single chain model to a
continuum model for a polymer network. To this end, we follow
Anand [18] and define the effective chain stretch

�k ¼def
ffiffiffiffiffiffiffiffiffiffiffiffi

tr�C=3
q

(3.13)

where trð�Þ represents the trace of a second-order tensor, �C ¼ �F
>�F

is the distortional right Cauchy–Green tensor, and �F ¼ ðdetFÞ�1=3F
is the distortional part of the deformation gradient. Then, with

� N representing the number of chains per unit volume of the
reference configuration,

the entropy density of the network is given by

gR ¼ ĝR
�k;kc
� �

¼�NkBn
�k
ffiffiffi
n

p �2Lc kc�1ð Þ
nLb

 !

bþ ln
b

sinhb

� �
" #

;

b¼L�1
�k
ffiffiffi
n

p �2Lc kc�1ð Þ
nLb

 !

(3.14)

where

� Lb is the statistical segment length of a rigid-link of the
chain, and

Fig. 1 Schematic of a single chain with weak crosslinks at each end: (a) rest
state and (b) stretched state. The Kuhn segments are assumed to be rigid while
the crosslinks are assumed to be deformable.
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� Lc is an effective length of a crosslink.

As mentioned previously, typically the statistical segment
length Lb is about 5 to 10 times the length of a backbone bond
within the polymer chain (�0:15 nm), and the effective length Lc
of a crosslink is of the same order as the length of a backbone
bond.

Also, the internal energy density eR of the network is taken to
depend on kc, a damage variable d and its gradient rd, and we
also allow for internal energy contribution due to volume ratio J

eR ¼ êRðkc; J; d;rdÞ ¼ gðdÞê0Rðkc; JÞ þ êR;nonlocðrdÞ (3.15)

We consider the following specializations for the different terms
in the expression (3.15) for the internal energy per unit reference
volume:

(i) The term ê0Rðkc; JÞ represents an undamaged internal
energy per unit reference volume for which we choose a
simple constitutive relation of the form

ê0R kc; Jð Þ ¼ 1

2
Nc Ec kc � 1ð Þ2 þ 1

2
K J � 1ð Þ2
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

êRv Jð Þ

(3.16)

where,

� Ec represents a stiffness of the crosslinks;
� Nc is the number of crosslinks per unit reference vol-

ume, with Nc/N; and
� K a bulk modulus for the network to account for inter-

molecular interactions and a slight compressibility of
the material.12

(ii) The function gðdÞ is a monotonically decreasing degrada-
tion function with values

gð0Þ ¼ 1; gð1Þ ¼ 0; and g0ð1Þ ¼ 0

A widely used degradation function is

gðdÞ ¼ ð1� dÞ2 (3.17)

we adopt it here.
(iii) The term êR;nonlocðrdÞ in the internal energy density is a

nonlocal contribution

êR;nonloc rdð Þ ¼ 1

2
e
f
R ‘

2jrdj2 (3.18)

where ‘ represents an intrinsic length scale for the damage pro-
cess, and

e
f
R ¼def Nce

f
c (3.19)

represents the energy of crosslink scission per unit volume when
all crosslinks are broken.13

With the constitutive relations (3.14)–(3.19) for eR and gR in
hand, the free energy wR ¼ eR � #gR is given by

wR ¼ 1� dð Þ2 1

2
�Ec kc � 1ð Þ2 þ 1

2
K J � 1ð Þ2

� �

þ G0 n
�k
ffiffiffi
n

p � 2Lc kc � 1ð Þ
nLb

 !

bþ ln
b

sinhb

� �
" #

;

þ 1

2
e
f
R ‘

2jrdj2; with b ¼ L�1
�k
ffiffiffi
n

p � 2Lc kc � 1ð Þ
nLb

 !

(3.20)

where we have introduced the notations

G0 ¼def NkB# and �Ec ¼def Nc Ec (3.21)

with G0 representing the ground-state shear modulus for the poly-
mer network, and �Ec a crosslink stiffness parameter for the
network.

Using this free energy, Eq. (3.20) and equations (2.2) give the
Piola stress TR as

TR ¼ �G J�2=3F� �k
2
F�>

� �

þ 1� dð Þ2K J � 1ð ÞJF�>; where

�G ¼ def G0

ffiffiffi
n

p

3�k

� �

L�1
�k
ffiffiffi
n

p � 2Lc kc � 1ð Þ
nLb

 !

(3.22)

is a generalized shear modulus. Also, Eq. (2.3) gives that the
effective crosslink stretch kc is determined by solving the implicit
equation

1� dð Þ2 �Ec kc � 1ð Þ � 2G0

Lc

Lb
L�1

�k
ffiffiffi
n

p � 2Lc kc � 1ð Þ
nLb

 !

¼ 0

(3.23)

Note that generalized shear modulus �G is connected to the dam-
age field d implicitly through Eq. (3.23) for kc.

To complete the specification of the constitutive relations, we
specify the dissipative microforce -diss that expends power
through _d.14 The dissipative microforce is partitioned into a rate-
independent part and a rate-dependent part through

-diss ¼ a
|{z}

rate�independent

þ f _d
|{z}

rate�dependent

(3.24)

The rate-independent part of the dissipative microforce a is the
sum of the contributions from each crosslink and given by Eq.
(3.19), thus

a ¼ e
f
R (3.25)

The rate-dependent contribution to the dissipative microforce f _d
is simply described by a constant kinetic modulus f > 0, with the
rate-independent limit of damage evolution given by f ! 0.

Using the specializations above, the microforce balance (2.8),
which gives the evolution of d, becomes

f _d ¼ 2ð1� dÞê0Rðkc; JÞ þ e
f
R‘

2
Dd� e

f
R (3.26)

The microforce balance (3.26) can be rewritten to enforce the con-
straint d 2 ½0; 1� in a simple way. Add and subtract the term e

f
Rd

to get

12The particular form of the volumetric internal energy is not crucial for

elastomers in which the volume changes due to intermolecular interactions are

typically quite small relative to distortional deformations. In our finite element

simulations, we encountered some convergence difficulties with the simple quadratic

form êRvðJÞ ¼ 1=2KðJ � 1Þ2 of the volumetric internal energy at late stages of the

damage. Accordingly, in our computations, we have used the alternate form

êRvðJÞ ¼ K=8ðJ � J�1Þ2 , which reduces to a simple quadratic energy as J ! 1

êRvðJÞ ¼ K
8
ðJ � J�1Þ2 ¼ K

8
ðJ � 1Þ2 1þ 1

J

� �2 � 1
2
KðJ � 1Þ2 If for some numerical

reason J becomes large during the iteration process, then the alternate form leads to a

softer response [19].
13In formulating a theory that accounts for the stretching and failure of the

crosslinks, we have assumed that all crosslinks in a continuum material point are

uniformly stretched and that they fail simultaneously. This is clearly a major

approximation since the actual failure process is expected to be stochastic in nature,

with the weakest link failing first. 14Cf. Eq. (2.5).
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f _d ¼ 2ð1� dÞð̂e0Rðkc; JÞ � e
f
R=2Þ � e

f
Rd þ e

f
R‘

2
Dd (3.27)

The constraint d 2 ½0; 1� is automatically satisfied if the equation
above is modified to read as

f _d ¼ 2ð1� dÞĥe0Rðkc; JÞ � e
f
R=2i � e

f
Rðd� ‘2DdÞ (3.28)

where h•i are Macaulay brackets, i.e.,

hxi ¼ 0; x < 0

x; x � 0

�

At this stage, the irreversible nature of crosslink scission is not yet
reflected in the model. To this end, we replace the term
hê0Rðkc; JÞ � e

f
R=2i in the microforce balance with the monotoni-

cally increasing history field function [20]

HðtÞ ¼def max
s2½0;t�

ê0RðkcðsÞ; JðsÞÞ � e
f
R=2

D E

(3.29)

where at each s 2 ½0; t�

ê0R kc sð Þ; J sð Þð Þ ¼ 1

2
�Ec kc sð Þ � 1ð Þ2 þ 1

2
K J sð Þ � 1ð Þ2 (3.30)

and

e
f
R ¼ Nc e

f
c (3.31)

is a fracture energy. With these modifications, the evolution equa-
tion (2.8) for the damage variable d becomes

f _d ¼ 2ð1� dÞH � e
f
Rðd� ‘2DdÞ (3.32)

which is of a form similar to that in the paper by Miehe and
Sch€anzel [7] on phase field modeling of fracture of rubbery
polymers.

Material parameters in the theory: The theory involves the fol-
lowing material parameters:

Lb; n; N; Lc; Nc; Ec; K; efc; ‘; and f (3.33)

Here, Lb is the statistical length of a rigid segment in a chain, n is
the number of rigid segments in a chain, N is the number of chains
per unit volume, Lc is the length of a crosslink, Nc is the number
of crosslinks per unit volume, Ec represents the stiffness of the
crosslinks, K represents the bulk modulus of the material, efc, a
crosslink dissociation energy per unit volume, ‘ is a characteristic
length scale of the gradient theory under consideration; and f is a
kinetic modulus for the evolution of the damage. All parameters
are required to be positive.

In the numerical simulations described in Sec. 4, instead of the
parameter list (3.33), we use the parameter list

Lc ¼ 0:2Lb; G0 ¼NkB#; n; �Ec ¼NcEc; K; e
f
R ¼Nce

f
c; ‘; and f

(3.34)

where G0 is the ground-state shear modulus for the polymer net-
work, �Ec is a crosslink-stiffness parameter for the network, and e

f
R

represents the energy per unit volume for the dissociation of the
crosslinks in a network.

3.3 Some Remarks
Remark 2. It is of interest to make a comparison between frac-

ture resulting from the chain scission mode and that resulting
from crosslink failure mode, and to identify the critical material
parameters for these two competing mechanisms. To do this, we
suppress the damage field d and any discussion of the final dam-
age process. From the discussion presented in our recent papers
on fracture due to the chain scission mechanism [4,5], and the

discussion in Sec. 3.1 of the present paper on fracture due to
crosslink failure, the free energy for a single chain accounting for
both bond stretch and crosslink stretch may be expressed as

w ¼ nêb kbð Þ þ 2êc kcð Þ

þ nkB#
k
ffiffiffi
n

p
kb

� 2Lc

nLb

kc � 1

kb

� �

bþ ln
b

sinhb

� �" #

(3.35)

with

b ¼ L�1 k
ffiffiffi
n

p
kb

� 2Lc

nLb

kc � 1

kb

� �

(3.36)

and

êb kbð Þ ¼ 1

2
Eb kb � 1ð Þ2; êc kcð Þ ¼ 1

2
Ec kc � 1ð Þ2 (3.37)

The equations that determine the bond stretch kb and the cross-
link stretch kc are again obtained by minimizing the free energy
with respect to these two variables

@w

@kb
¼ 0; and

@w

@kc
¼ 0 (3.38)

which using the free energy expression (3.35) give the following
two equations to determine kb and kc

Eb kb � 1ð Þ ¼ kB#bk
�1
b

k
ffiffiffi
n

p
kb

� 2Lc

nLb

kc � 1

kb

� �

; and

Ec kc � 1ð Þ ¼ kB#b
Lc

Lb

� �

k�1
b

(3.39)

Next, let us consider fracture of a single chain for which the
Kuhn segments and the crosslinks are allowed to stretch. Physi-
cally, as the chain is stretched, the internal energy due to bond
stretch êbðkbÞ and that due to crosslink stretch êcðkcÞ will increase.
The chain will fail by the chain scission mode or the crosslink fail-
ure mode depending on whether êbðkbÞ or êcðkcÞ first reach their
respective dissociation energies e

f
b and efc. To represent this com-

petition, we introduce a positive-valued dimensionless factor

c ¼def êc kcð Þ=efc
êb kbð Þ=efb

(3.40)

Thus, if c > 1, then the energy stored in crosslink bonds will reach
its critical value first, and the chain will fail by the crosslink fail-
ure mode. On the other hand, if c < 1, then the energy stored in
Kuhn segments will reach its critical value first, and the chain will
fail by the chain scission mode.

By using Eq. (3.37), we may rewrite c defined in Eq. (3.40) as

c ¼ Ec kc � 1ð Þ2

Eb kb � 1ð Þ2
e
f
b

e
f
c

 !

¼ E2
c kc � 1ð Þ2

E2
b kb � 1ð Þ2

Eb

Ec

� �
e
f
b

e
f
c

 !

(3.41)

Next, using Eq. (3.39), we write c alternatively as

c ¼ k
ffiffiffi
n

p
kb

� 2Lc

nLb

kc � 1

kb

� ��2 Lc

Lb

� �2
Eb

Ec

� �
e
f
b

e
f
c

 !

(3.42)

Physically, when failure occurs, by either failure mode, the quan-
tity ððk= ffiffiffi

n
p

kbÞ � ð2Lc=nLbÞðkc � 1=kbÞÞ in Eq. (3.42) is very
close to unity, and hence

c � Lc

Lb

� �2
Eb

Ec

� �
e
f
b

e
f
c

 !

(3.43)
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Thus, by using straightforward scaling relations in going from a
single chain to a polymer network (as we did in Sec. 3.2), we may
rewrite c as

c � NcLc

nNLb

� �2 �Eb

�Ec

� �
e
f
R;b

e
f
R;c

0

@

1

A (3.44)

This expression for c reveals the material parameters in a polymer
network, which control the competition between the crosslink fail-
ure mechanism and the chain scission failure mechanism. If one
knows the values of the material parameters in Eq. (3.44) for a
specific material, then one can determine the failure mode of the
material:

� If c > 1, then the network will fail by the crosslink failure
mode.

� If c < 1, then the network will fail by the chain scission fail-
ure mode.

Remark 3. A macroscopic critical energy release rate Gc may
be estimated if the crosslinks are sufficiently strong. In this case,
the internal energy will significantly outweigh the entropic part of
the free energy at the point of crosslink failure, and thus the
entropic free energy contribution to the energy release rate will be
negligible. In our gradient-damage model, the dissipation scales
as e

f
R‘

3, while for a theoretical sharp crack it would scale as Gc‘
2

so that

e
f
R � ‘ � Gc (3.45)

Remark 4. The overall response of our new model for fracture of
polymers due to crosslink failure is similar to that in our recent
papers, which focused on a model for failure of polymers due to
chain scission [4,5]. However, because of the intrinsic physical
differences embedded in these two models, there is an important
difference in the consequences from these two models regarding
the scaling of Gc with microstructural parameters. Specifically:

� The internal energy in our previous model for fracture by
chain scission reads as

e
f
R ¼ Nne

f
b (3.46)

where e
f
b is a bond dissociation energy. With q the mass density of

the polymer and m the molecular mass of a Kuhn segment, the
number of chains per unit reference volume is given by N ¼
q=ðmnÞ so that

Nn ¼ q

m
(3.47)

Using Eq. (3.47), and an estimate for ‘ in terms of the rest length
r0 ¼

ffiffiffi
n

p
Lb of a chain

‘ /
ffiffiffi
n

p
Lb (3.48)

Equation (3.45) gives

Gc /
e
f
b Lb q

m

� �

ffiffiffi
n

p
(3.49)

In this scenario, the Lake–Thomas scaling holds—the toughness
Gc is proportional to

ffiffiffi
n

p
.

As noted earlier, in their fracture experiments on Tetra-PEG
gels, with precisely controlled network structures, [2] showed that

Gc /
ffiffiffi
n

p

which confirmed the Lake–Thomas scaling for these materials; cf.
Fig. 8 of Ref. [3].15

Further, from Eq. (3.47) and the expression G0 ¼ NkB# for the
ground-state shear modulus, we have that

ffiffiffi
n

p
¼

ffiffiffiffi
q

m

r
1
ffiffiffiffi
N

p ¼
ffiffiffiffiffiffiffiffiffiffiffi

q kB#

m

r

1
ffiffiffiffiffiffi
G0

p (3.50)

use of which in Eq. (3.49) gives that

Gc /
1
ffiffiffiffiffiffi
G0

p (3.51)

Thus, for fixed crosslink elastomers, which fail by chain scission,
there is a trade-off between toughness (fracture energy Gc) and
stiffness (shear modulus G0): by increasing the cross-linking den-
sity the initial stiffness G0 ¼ NkB# increases proportionally to the
increase in the number N of chains (elastically effective strands)
per unit volume, while the toughness Gc decreases owing to the
decrease in the number n of monomers in a chain. As reviewed
recently by Creton [12], such a trade-off between the stiffening
and toughening in conventional fixed-crosslink elastomers and
gels has been observed experimentally.

� However, the internal energy in the present model for frac-
ture due to crosslink stretch and failure is

e
f
R ¼ Nce

f
c (3.52)

where efc is a crosslink dissociation energy. In this case from Eq.
(3.45), with an estimate (3.48) for ‘ in terms of the rest length
r0 ¼

ffiffiffi
n

p
Lb of a chain, and with the number of crosslinks per unit

reference volume Nc proportional to the number of chains per unit
reference volume N

Nc / N ¼ q

mn
(3.53)

we obtain

Gc /
efc Lb q

m

� �

1
ffiffiffi
n

p (3.54)

In the crosslink failure-based micromechanism of fracture the
Lake–Thomas scaling does not hold—the toughness Gc is propor-
tional to 1=

ffiffiffi
n

p
and not

ffiffiffi
n

p
.

Further, using Eqs. (3.50), (3.54) implies that

Gc /
ffiffiffiffiffiffi

G0

p

(3.55)

Thus, for stretchable crosslink elastomers, the toughness (fracture
energy Gc) increases as the stiffness (shear modulus G0)
increases—a desirable outcome, indeed. However, as far as we
know, such a scaling has not been experimentally verified in the
literature for any polymer, but would indeed be a means to experi-
mentally determine whether failure of a polymer occurs by chain
scission or by crosslink failure.

In any event, our study suggests that introducing stretchable
crosslinks and a crosslink failure mode in polymer networks is a
potential solution to the problem of the trade-off between stiffness
and toughness observed in conventional fixed-crosslink elasto-
mers and gels.

15Since for swollen gels q ¼ /pqR, where qR is the mass density in an unswollen

reference configuration and /p is the polymer volume fraction, they actually showed

that Gc / /p

ffiffiffi
n

p
That is, swollen gels with the same number of links per chain,

n, have a lower toughness than the dry elastomer.
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4 Application of the Theory to Study Plane-Stress
Fracture of Elastomers

We have numerically implemented our theory in the open-
source finite element code MOOSE [21] by writing our own appli-
cation to solve three-dimensional, plane strain, plane-stress, axi-
symmetric problems. MOOSE uses a sophisticated nonlinear
solver technology, and it may be massively parallelized. Using
this new numerical capability, in this section, we report on some
representative simulations of deformation and fracture of an elas-
tomeric material. Specifically, we study the capability of the
model to describe plane stress fracture of

(i) single-edge-notched specimens;
(ii) an asymmetric double-edge-notched specimen; and
(iii) fracture of a sheet specimen with multiple circular and

elliptical holes.

All simulations were performed on a parallelized linux cluster.
Visualization of the results was performed by using the open-
source code ParaView [22].

Remark 5. In our gradient-damage theory, the free energy has a
contribution (3.18) in which e

f
R represents the energy of crosslink

scission per unit volume, and ‘ is a length scale to account for gra-
dient effects in the damage field d. Theoretically, ‘ is an intrinsic
material parameter of the theory. Actual values of ‘ in elastomeric
materials are expected to be ‘/1lm. For such a value of ‘, to
numerically resolve regions of sharp gradients in the damage vari-
able d, the finite element size he must be much smaller than ‘—
typically he/‘=5—so that he/200 nm, which is exceedingly
small. Use of such a small element size in the damage zone is
computationally tractable (on our computers) if the in-plane
dimensions of a single-edge-notched specimen are less than
1mm, and an edge crack is a few microns is size. However, if one
is interested in simulating the fracture of specimens, which have a
macroscopic in-plane dimensions of say 10mm or larger, then use
of such a small value of ‘, and therefore a small value of he, will
result in prohibitively expensive simulations. Under these circum-
stances, for pragmatic reasons, ‘ may be considered a regulariza-
tion parameter for the gradient-damage theory. Corresponding to a
small but computationally tractable mesh size he selected for
macroscopic-dimensioned specimens, a suitably large value of ‘ may
be chosen, and the value of e

f
R suitable reduced so that e

f
R � ‘ � Gc,

where Gc is the value of experimentally measured macroscopic

critical energy release rate for a given material. We take this
pragmatic approach for the numerical simulations shown in this
section.

4.1 Single-Edge-Notch Mode-I Loading Under Plane-Stress
Conditions With Different Notch Lengths. We begin with a
study of fracture in single-edge-notch specimens with different
crack lengths, under plane stress mode-I loading conditions.
Figure 2(a) shows a schematic of the specimen geometry. The
overall size of the notched sheet sample is 18 mm� 20 mm in the
plane, and the sheet is 1mm thick. We consider specimens with
notch lengths c ¼ 3; 6; and 9 mm; the initial root-radius of the
notch is fixed at 0:1mm. The material parameters used in our sim-
ulations are shown in Table 1. In our simulation, we utilize the
symmetry of the geometry and the middle edge of the specimen is
fixed, while the top edge is prescribed a displacement at a nominal
stretch rate _k ¼ 1� 10�3=s.

Some remarks concerning the choice of material parameters:

(1) We picked a round number of Gc ¼ 100 J=m2 as a repre-
sentative value of toughness for elastomeric materials. Fur-
ther, in order to make the simulations numerically tractable
we set the length scale to be ‘ ¼ 100lm. Then Eq. (3.45)
gives e

f
R ¼ 1:0MPa, as listed in Table 1.

(2) The kinetic modulus f, which has units of Pa�s, may be
thought of as a viscous regularization parameter for an
essentially rate-independent damage process, and f=G0

therefore represents a time constant in the theory. For a
given macroscopic stretch-rate _k, our numerical experi-
ments have shown that a value of f, which is commensurate
with ðf _k=G0Þ/10�3 is small enough to give an almost rate-
independent damage evolution. For the values of f and G0

listed in Table 1 and a nominal stretch rate _k ¼ 1 �10�3=s,
we have ðf _k=G0Þ ¼ 5� 10�5 which well approximates a
rate-independent damage evolution response.

Fig. 2 (a) Schematic of the single-edge-notch specimen geometry; all dimensions are in mm. The thickness of the sample is
1mm; the notch length is denoted by c; and q5 0:1 mm is the notch-root radius. (b) Calculated force–displacement curves for
c5 3; 6; 9mm. Contour plots for the damage variable d at points (a)–(h) on the load displacement curve for a specimen with
c5 9mm are shown in Fig. 3.

Table 1 Representative values of the material parameters used
in the simulations

G0 ¼ NkB# n �Ec ¼ NcEc K e
f
R ¼ Nce

f
c ‘ f

0.2MPa 4 0.2MPa 20MPa 1MPa 100 lm 10 kPa�s
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(3) We have used a value of the bulk modulus K which is 100
times larger than the ground state shear modulusG0; this corre-
sponds to a ground-state Poisson’s ratio of � ¼ 0:495, which
approximates an elastically incompressible material. We tried
using larger values of K relative to that of G0, but that slowed
down our numerical procedures considerably. So, in all the cal-
culations reported in this paper, we have used K=G0 ¼ 100.

(4) We have intentionally chosen a small value n¼ 4 for the
number of links in the chain to illustrate the features of our
theory so that failure of the chains in our simulations occurs
at reasonable levels of macroscopic stretch.

Figure 2(b) shows the calculated force–displacement curves for
cracks with initial lengths of c ¼ 3; 6; 9 mm. As expected, as the

initial length of the crack increases the overall force level
becomes lower, and the stretch at which final fracture occurs
becomes smaller. Contour plots for the damage variable d at
points (a)–(h) on the load displacement curve for a specimen with
c ¼ 9mm are shown in Fig. 3.

Figure 3 shows the deformed geometry at points (a)–(h) on the
force–displacement curve in Fig. 2(b), together with contours of
the damage variable d. To aid visualization of the damage, ele-
ments with an average value of d > 0:99 are not plotted.16 Since
the length scale ‘¼ 100 lm is very small when compared with the

Fig. 3 Images of the deformed geometry with contour plots of the damage variable d. To aid visualization
of the damage, elements with an average value of d>0:99 are removed from the plots. Since the length
scale ‘5100lm is very small when compared with the overall dimension of the specimen (	20 mm), the
damage zone is barely visibly in this this sequence of contour plots for d.

Fig. 4 Contours of crosslink stretch kc during the fracture process in a specimen with c5 9mm. The
crosslink stretch is appreciable only in a small zone near the crack tip. The contours are plotted on the
reference configuration. Elements with d>0:99 are removed from the visualization.

16See the Appendix, which gives an example of contour plots with and without

severely damaged elements.
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overall dimension of the specimen (	20 mm), the damage zone is
barely visibly in this sequence of plots. Figure 3(a) is the initial
configuration. As the sample is stretched to (b) the notch is
blunted, but no damage has initiated. Damage initiates when the
sample is stretched further to a displacement level of 	5.5mm (a
point just before (c)), but the force is still increasing, and it is after
another 	0.5mm of extension that the force reaches a peak at
point (c) in force–displacement curve, and from the contour of
damage shown in Fig. 3(c), a small damage zone ahead of the
crack becomes observable. Further stretching begins the rupture
process, and Figs. 3(d)–3(h) show this progressive rupturing, with
(h) showing the final failed configuration. Note from Fig. 2(b) that
the force at stage (h) stage is essentially zero.

Figure 4 shows a contour plot of the crosslink stretch, kc, at a par-
ticular stage of the failure process for a specimen with an initial
notch depth of c¼ 9mm. The crack has propagated almost halfway
through the remaining ligament of the specimen. The contours are
plotted on the reference configuration in order to highlight the extent
of crack propagation relative to the initial specimen geometry. Also,
the highly damaged elements (d > 0:99) are again hidden from
view. When failure occurs for a large sample, the deformation local-
izes to a small region in the vicinity of the crack-tip. In this region,
the effective stretch �k can be very large, and kc will increase to the
level of �kð ffiffiffi

n
p

Lb=2LcÞ, which is also very large. Therefore, in order
to visualize the contours of kc, we have set the maximum value of
the contour in kc to 10. As is clear from Fig. 4, the region of high

Fig. 5 (a) Schematic of the asymmetric-double-edge-notch specimen geometry; all dimensions are in mm. The thickness of
the sample is 1mm; the notches are of length c5 3mm; and q5 0:1 mm is the notch-root radius. (b) Calculated
force–displacement curve. The contour plots for the damage variable d at points (a)–(j) on the load displacement curve are
shown in Fig. 6.

Fig. 6 The deformed geometry with contour plots of the damage variable d. To aid visualization of the
damage, elements with an average value of d>0:99 are removed from the plots. Since the length scale
‘5 100l m is very small compared with the overall dimension of the specimen (	20 mm), the damage
zone is barely visibly in this sequence of plots.
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crosslink stretch is limited to a small region in the vicinity of the
crack tip, on a scale comparable to the length scale ‘, while
the majority of the specimen displays negligible crosslink stretching.

4.2 Fracture in an Asymmetric-Double-Edge-Notched
Sheet of an Elastomeric Sample Under Mode-I Plane-Stress
Loading. In this section, we study fracture of an asymmetric-
double-notched sheet specimen of an elastomeric sample under
mode-I plane-stress loading. This example shows the powerful

capability of our gradient-damage theory to model the merging of
two growing cracks.

Figure 5(a) shows a schematic of the specimen geometry. The
overall size of the double-edge-notched sheet sample is
18mm� 20mm in the plane, and the sheet is 1mm thick. The
two offset notches each have a of length c¼ 3mm; the initial
root-radius of the notch is 0.1mm. We use the same values of the
material parameters as in Sec. 4.1. The bottom edge of the speci-
men is fixed, while the top-edge is prescribed a displacement at a
nominal stretch rate of 1� 10�3/s. Figure 5(b) shows the calcu-
lated force–displacement curve.

The contour plots for the damage variable, d at points (a)–(h)
on the load displacement curve in Fig. 5(b) are shown in in Fig. 6.
To aid visualization of the damage, elements with an average
value of d > 0:99 are removed from the plots. Since the length
scale ‘¼ 100 lm is very small compared with the overall dimen-
sion of the specimen (20 mm), the damage zone is barely visibly
in this this sequence of plots. Figure 6(a) is the initial configura-
tion. As the sample is stretched to (b) both the notches get blunted,
but no damage has initiated. Damage initiates when the sample is
stretched further to a displacement of 	6.4mm (just before state
(c)), but the force is still increasing; it is only after another
	1mm of extension that the force reaches a peak at point (c) in
the force–displacement curve Fig. 5(b), and from the contour of
damage d shown in Fig. 6(c), a small damaged zone ahead of the
crack becomes observable. Figures 6(d)–6(h) show the subsequent

Fig. 7 Schematic of the geometry of specimen with several cir-
cular and elliptical holes; all dimensions are in mm. The thick-
ness of the sample is 1mm.

Fig. 8 (a) Calculated force–displacement curve. There are four different stages within the curve: (i ) The blue
line indicates the first stage. (ii) The dashed-black line indicates the second stage. (iii) The solid-yellow line indi-
cates the third stage. And (iv) the dotted-pink line indicates the fourth stage. (b)–(d) show zoom-in figures for
the corresponding force drop stages. The contour plots for the damage variable d at points (a)–(h) on the load
displacement curve are shown in Figs. 9 and 10.
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rupturing process on two cracks merging, with Fig. 6(g) showing
a pinching off process, which leads to final fracture into two sepa-
rate pieces, as shown in Fig. 6(h).

4.3 Fracture in a Sample With Several Circular and Elliptical
Holes Under Plane-Stress Tension. In this section, we study
fracture of a sample with several circular and elliptical holes
under plane-stress tension. Sharp cracks are necessary for classical
fracture mechanics analysis. However, sharp cracks are not neces-
sary in our gradient-damage theory of fracture. This example
shows the powerful capability of our gradient-damage theory to
simulate the complicated fracture process of nucleation, propaga-
tion, branching, and merging of cracks in arbitrary geometries—
propagating cracks are tracked automatically by the evolution of
the smooth damage-field d on a fixed mesh.

Figure 7 shows a schematic of the specimen geometry. The
overall size of the sample is 20mm� 10mm in the plane, and the
sheet is 1mm thick. We use the same values of the material
parameters as in Sec. 4.1. The bottom edge of the specimen is
fixed, while the top-edge is prescribed a displacement at a nominal
stretch rate of 1� 10�3/s.

Figure 8(a) shows the calculated force–displacement curve.
There are four different stages in the force–displacement curve:

(i) The line from (a1) to (a4) indicates the first stage. In this
stage, as the specimen is stretched the force increases, and
at the end of this stage the force reaches a peak and begins
to drop.

(ii) The next dashed line segment indicates the second stage,
and represents the initial phase of the force drop.

(iii) The next solid line segement indicates the third stage and
represents the next phase of the force drop.

(iv) And the final dotted line-segement indicates the fourth
stage, and represents the final phase of the force–
displacement curve.

Figures 8(b)–8(d) show zoom-ins of the force decreasing por-
tions in stages two, three, and four. Within each of these stages,
there are instances in which the force–displacement curve resem-
bles the shape of the number 7. For example, as shown in
Fig. 8(b), there are three “7”-shaped instances in the second stage.
Each 7-shaped instance corresponds to the failure of a ligament in
the sample. Labels (b1)-(b4)–(h1)-(h4) marked on the force dis-
placement curves in Figs. 8(b)–8(d) are used to indicate important
frames for the failure of a specific ligament.

Contour plots for the damage variable d at points (a)–(h) on the
load displacement curve for a specimen are shown in Figs. 9 and
10. To aid visualization of the damage, elements with an average
value of d > 0:99 are not plotted. An arrow is used to indicate the
ligament in which damage and rupture is occurring.

Figure 9(a1) shows the initial configuration. As the sample is
stretched to (a2) and (a3) the holes are deformed, but no damage has
initiated. Damage initiates when the sample is stretched further to a dis-
placement level of	9mm, a point just before (a4), but the force is still
increasing. It is after another 	0.85mm of extension that the force
reaches a peak at point (a4) in force–displacement curve. From the
contours of the damage shown in Fig. 9(a4), a small damage zone indi-
cated by an arrow becomes observable. The ligaments between the

Fig. 9 Images of the deformed geometry with contour plots of the damage variable d for first and second stages. To aid visu-
alization of the damage, elements with an average value of d>0:99 are removed from the plots. The arrows indicate the liga-
ments in which damage and rupture occurs.

081008-12 / Vol. 85, AUGUST 2018 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org on 10/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



holes in the soft matrix become highly stretched by point (a4). Further
stretching begins the progressive rupture process of these ligaments.

The second stage in the force–displacement curve corresponds
to failure of three ligaments, as indicated in Figs. 8(b) and
9(b)–9(d). In these curves, the marks (b1)–(b4), (c1)–(c4), and
(d1)–(d4) are used to indicate important frames for the failure of a
specific ligament. For example, in Fig. 9(b), the damage within a
ligament indicated by the arrow is initiated in (b1), and (b2) repre-
sents a state of progressive damage of the ligament, (b3) shows a

pinching-off process, and (b4) shows the total failure of the spe-
cific ligament. As the three ligaments in Figs. 9(b)–9(d) fail pro-
gressively, the cavities within the sample start to merge, and form
a big cavity, cf. Fig. 9(d4).

After the rupture of the first three ligaments described in the
paragraph above, the total displacement of the top surface is
9.85mm; cf. Figure 8(b). At this point, the energy stored in the
remaining ligaments is not sufficient to drive further damage. To
initiate further damage, an additional macroscopic displacement

Fig. 10 Images of the deformed geometry with contour plots of the damage variable d for third and fourth stages. To aid visu-
alization of the damage, elements with an average value of d>0:99 are removed from the plots. The arrows indicate the liga-
ments in which damage and rupture occurs.

Fig. 11 (a) Contour plots with severely damaged elements. (b) The same geometry without
the severely damaged elements.
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of 	1mm needs to be imposed on the sample. As this extra dis-
placement is imposed, the remaining ligaments are further
stretched and the force increases again until the beginning of the
third stage; cf. Fig. 8(a). Upon application of this additional dis-
placement, the stored energy within two of the remaining liga-
ments attains and exceeds the critical value and damage and
rupture restarts, as shown in Figs. 8(c), 10(e), and 10(f).

After the rupture of the first five ligaments, the total displace-
ment of the top surface is 10.514mm; cf. Fig. 8(c). Again, at this
point, the energy stored in the remaining two ligaments is not suf-
ficient to drive further damage. To initiate further damage, an
additional macroscopic displacement of 	3.7mm needs to be
imposed on the sample. As this extra displacement is imposed, the
remaining two ligaments become highly stretched and the force
again increases. The remaining ligaments accumulate energy dur-
ing this additional stretching and eventually they start to damage
and fail rapidly, as shown in Figs. 8(d), 10(g), and 10(h). Figure
10(h4) shows the final failed configuration.

5 Conclusions

We have formulated a theory for progressive damage and fail-
ure of elastomeric materials in which fracture occurs by crosslink
failure. Specifically, we have extended the freely jointed inverse-
Langevin model for a single chain, and the corresponding
Arruda–Boyce [17] model for a network, to account for changes
in internal energy due to stretching of the crosslinks. Crosslink
damage and failure is postulated to occur upon the attainment of a
critical value of the internal energy due to crosslink stretching.

We have shown in this paper that the Lake–Thomas scaling
[1–3,12]—that the toughness Gc of an elastomeric material is pro-
portional to 1=

ffiffiffiffiffiffi
G0

p
, with G0 ¼ NkB# the ground-state shear modu-

lus of the material—does not hold for elastomeric materials in
which fracture occurs by crosslink stretching and scission. Accord-
ing to our theory, for such materials, the toughness is proportional
to

ffiffiffiffiffiffi
G0

p
. That is, for stretchable crosslink elastomers, the toughness

increases as the stiffness increases—a desirable outcome, indeed.
However, as far as we know, such a scaling has not been experi-
mentally verified in the literature for any polymer, but would indeed
be a means to experimentally determine whether failure of a poly-
mer occurs by chain scission or by crosslink failure. In any case,
our theory clearly suggests that introducing stretchable crosslinks
and the crosslink failure mode in polymer networks is a potential
solution to the problem of the trade-off between stiffness and tough-
ness observed in conventional fixed-crosslink elastomers and gels.

At the continuum level, our theory is a gradient-damage or
phase-field theory of fracture of elastomeric materials. We have
numerically implemented this theory in an open-source finite ele-
ment code MOOSE [21] by writing our own application. Using
this simulation capability, we have presented results from simula-
tions of: (i) fracture of single-edge-notched specimens; (ii) frac-
ture of an asymmetric double-edge-notched specimen; and (iii)
fracture of a sheet specimen with multiple circular and elliptical
holes, under our plane stress conditions. These examples show the
powerful capability of our gradient-damage theory and its numeri-
cal implementation to simulate the complicated fracture process
of nucleation, propagation, branching, and merging of cracks in
elastomeric materials in arbitrary geometries undergoing large
deformations. We expect that our theory and numerical simulation
capability will be useful in studying various interesting phenom-
ena such as crazing and cavitation in soft materials.

In this paper, we have focused our attention on fracture of an
“ideal” dry single-network elastomeric material in which fracture
occurs by crosslink failure. It would be useful to extend these
ideas to materials, which exhibit additional microscopic dissipa-
tion mechanisms—e.g., viscoelasticity, Mullins effect, degrada-
tion of interpenetrating networks with sacrificial bonds, fluid
diffusion—that accompany the rupture process in elastomeric
materials and their gels [12,14,23–25].
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Appendix: A Contour Plots With and Without Severely
Damaged Elements

In the contour plots of damage in the figures of the main text,
elements with an average value of d > 0:99 were removed from
the contour plots to aid visualization. To illustrate what we mean
by this, we show in Fig. 11(a) a contour plot, which keeps the
severely damaged elements d > 0:99, together with Fig. 11(b) the
corresponding plot without the severely damaged elements.
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