
FRACTURE SIZE EFFECT: REVIEW OF EVIDENCE FOR 

CONCRETE STRUCTURES 

By Zdenek P. Bazant,J Fellow, ASCE, Josko Ozbolt,2 and Rolf EligehausenJ 

ABSTRACT: The paper reviews experimental evidence on the size effect caused 
by energy release due to fracture growth during brittle failures of concrete struc
tures. The experimental evidence has by now become quite extensive. The size 
effect is verified for diagonal shear failure and torsional failure of longitudinally 
reinforced beams without stirrups, punching shear failure of slabs, pull-out failures 
of deformed bars and of headed anchors, failure of short and slender tied columns, 
double-punch compression failure and for part of the range also the splitting failure 
of concrete cylinders in the Brazilian test. Although much of this experimental 
evidence has been obtained with smaller laboratory specimens and concrete of 
reduced aggregate size, some significant evidence now also exists for normal-size 
structures made with normal-size aggregate. There is also extensive and multi
faceted theoretical support. A non local finite element code based on the microplane 
model is shown to be capable of correctly simulating the existing experimental data 
on the size effect. More experimental data for large structures with normal-size 
aggregate are needed to strengthen the existing verification and improve the cal
ibration of the theory. 

NATURE OF PROBLEM 

As a result of many important studies, including Humphreys (1957), 
Rusch et al. (1962), Leonhardt and Walter (1962), Kani (1967), Bhal (1968), 
Hsu (1968), McMullen and Daniel (1972), Taylor (1972), Hillerborg et al. 
(1976), Walsh (1976), Walraven (1978,1990), Chana (1981), Petersson (1981), 
Reinhardt (1981a,b), Hawkins (1985), Iguro et al. (1985), Hillerborg (1985, 
1989), Ingraffea (1985), Rots (1988, 1992) and others, it has been known 
that failure of concrete structures exhibits a size effect. For a long time the 
size effect has been explained statistically as a consequence of the random
ness of material strength, particularly by the fact that in a larger structure 
it is more likely to encounter a material point of smaller strength. Various 
existing test data on the size effect were interpreted in terms of Weibull 
weakest-link theory [e.g. Mihashi and Zaitsev (1981) and Mihashi (1983)]. 
Later, however, it was proposed (Bazant 1984, 1986) that whenever the 
failure does not occur at the initiation of cracking, which represents most 
situations, the size effect should properly be explained by energy release 
caused by macrocrack growth, and that the randomness of strength plays 
only a negligible role [in detail see Bazant and Xi (1991)]. 

The size effect, however, does not follow the classical, linear form of 
fracture mechanics, in which all the fracture process is presumed to be 
happening at one point-the crack tip. Rather, the size effect in concrete 
structures must be explained by a nonlinear form of fracture mechanics that 
takes into account the localization of damage into a fracture process zone 
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of a nonnegligible size. Such a size effect, which is characteristic of all quasi
brittle materials (including rock, ice, various fiber and particle composites, 
modern tough ceramics, etc.), exhibits at increasing structure size a gradual 
transition from the case of plastic limit analysis, for which there is no size 
effect, to the case of linear elastic fracture mechanics, for which the size 
effect is the strongest possible. 

The proper explanation of this size effect has been shown to lie in the 
release of strain energy due to fracture growth, producing damage locali
zation instabilities [see, e.g., chapters 12 and 13 in the textbook by Bazant 
and Cedolin (1991)]. Prior to failure, distributed damage, consisting prin
cipally of microcracking, localizes into a narrow fracture process zone, which 
ultimately becomes the final, major crack. The localization is driven by the 
release of stored strain energy from the structure. In a larger structure, the 
strain energy is released from a larger zone, and so the total amount that 
would be released for a unit crack advance would be larger if the nominal 
stress were the same. However, because the energy required to produce a 
unit fracture extension is approximately independent of the structure size, 
the nominal stress at failure of a larger structure must be lower, so that the 
energy release would exactly match the energy required for the fracture 
formation. 

The test data on the size effect in the structural engineering literature 
[analyzed systematically by Bazant and Kim (1984), Bazant and Sun (1987), 
and others] have turned out to be insufficient for understanding the phe
nomenon. Since the existence of the size effect was not suspected by most 
experimenters and was thought by others to be properly taken care of by 
statistical considerations and thus relegated to safety factors, the vast ma
jority of experimental studies of brittle failures of concrete structures has 
not even examined the size effect. Those few studies that did explored only 
a rather limited size range and, unfortunately, did not adhere in most cases 
to the requirements of geometric similarity. In consequence, the size effect 
was mixed in most tests with many other effects, e.g., those of geometric 
shape, reinforcement ratio, bar sizes, concrete cover thickness, shear span, 
etc. Attempts to filter out these other effects and isolate the size effect were 
of little value, because of the scatter of the test results and limited knowledge 
of other factors that influence the failure load [see e.g. Bazant and Kim 
(1984) and Bazant and Sun (1987)]. 

Therefore, beginning in 1982, systematic experimental studies were ini
tiated at Northwestern University. Because of cost limitations, all the tests 
were restricted to concrete with reduced maximum aggregate size (3/8, 
1/4, and 3/16 in.). The test results, obtained under careful laboratory control, 
were quite systematic, with only a small scatter of the measured failure loads 
(which was not larger than in compression tests of concrete cylinders). 
Further extensive studies of the size effect for concretes with normal ag
gregate size have later also been performed (Iguro et al. 1985; Eligehausen 
et al. 1988; Eligehausen and Sawade 1989; Walraven 1990; Marti 1989; 
Wittman, et al. 1990; Bocca et at. 1990; Eligehausen et at. 1992). Among 
the first studies in which it was proposed that not only for specimens with 
notches but also for concrete structures the size effect ought to be explained 
by fracture mechanics were those of Hillerborg et at. (1976) and Reinhardt 
(1981a,b). However, the use of linear elastic fracture mechanics in the study 
of Reinhardt (1981a,b) gave a size effect that would be too strong for most 
practical situations. 

The laboratory evidence for the fracture mechanics type of size effect in 

2378 



the basic kinds of brittle failures of concrete structures has by now become 
extensive, although the test data for large structures and normal-size ag
gregate are less extensive and for some failure types nonexistent. The main 
purpose of this paper is to review the present evidence, which now appears 
to be sufficient to conclude that the size effect ought to be taken into account 
in building codes as well as in the finite element programs for concrete 
structures. A secondary purpose is to demonstrate the capability of the 
recently formulated nonlocal finite element approach and microplane ma
terial model to describe the observed size effect. 

DESCRIPTION AND EXPLANATION OF SIZE EFFECT 

The size effect is defined by comparing the nominal strength (nominal 
stress at failure) aN of geometrically similar structures of different sizes. 
For two-dimensional (2D) similarity, aN = cnFjbd, and for three-dimen
sional similarity, aN = cn Fjd 2

; f~ = maximum (ultimate) load of the struc
ture; b = structural thickness; d = characteristic dimension (size), which 
may be introduced as any dimension of the structure, for example the 
beam depth; and Cn = chosen coefficient introduced for convenience. One 
may set Cn = 1, or one may use Cn such that aN would coincide with 
some convenient stress formula. For example, in the case of a simply 
supported beam of span L and a rectangular cross section of depth 
H, loaded at midspan, one may set d = Hand Cn = 3L12H, in which case 
(TN = 3FLl2bH 2 = maximum elastic bending stress (note that LIH and b 
are constant for 2D similarity). 

The size effect is understood as the dependence of aNon the structure 
size d (characteristic dimension). According to plastic limit analysis, as well 
as any theory in which the material failure is characterized in terms of stresses 
or strains, aN is independent of the structure size, i.e., there is no size effect 
(this may be illustrated, e.g., by the elastic or plastic formulas for beams 
subjected to bending, shear or torsion). In linear elastic fracture mechanics, 
in which all the fracture process is assumed to occur at a point-the crack 
tip-aN declines in proportion to d - 1!2. This means that the plot of log aN 

versus log d (Fig. 1) is an inclined straight line of slope -112, provided that 
the cracks at the moment of failure of structures of different sizes are 
geometrically similar. Note that the similarity of cracks at failure has been 
experimentally demonstrated for most, though not all, types of failures of 
concrete structures of different sizes, in the usual size range . 

./' size effect law 

St,,~~ NMiI:' 
or Yic ld Fracture " 
Criterion Mechanics LEFM ~ 2 
------+ --_____ u_ -- + '~::~ 1 

log (d) 

FIG. 1. Size Effect Law Proposed by Baiant (1984) 
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In concrete structures the size effect is transitional between the strength 
(or yield) criterion (i.e., no size effect), represented by the horizontal line 
in Fig. 1, and the size effect of linear elastic fracture mechanics, represented 
by the curve in Fig. 1. For most practical purposes, this curve can be de
scribed by the size effect law (Bazant 1984): 

(1) 

in which t' = tensile strength of concrete, introduced for convenience; and 
B, do = two constants, to be determined either experimentally or by a more 
sophisticated analysis (e.g., using a finite element code that is able to real
istically predict softening and failure process in a quasibrittle material such 
as concrete). 

For d s: do, (1) yields aN = Bf; = constant, which means that the size 
effect disappears (see the horizontal asymptote in Fig. 1). For d» du, (I) 
reduces to aN = Bf:~ -112 or log (TN = - (1I2)log d + constant, which gives 
in Fig. 1 a straight-line asymptote of downward slope -112. Thus, the 
asymptotes of the size effect curve given by (1) are the plastic limit analysis 
and the linear elastic fracture mechanics. The intersection point of the 
horizontal and inclined asymptotes is obtained by setting Bf; = Bf; ~~ 1/2, 

which yields ~ = 1 or d = do (Fig. 1). Obviously, structures of sizes d > 
do are closer to linear elastic fracture mechanics than to plasticity, i.e., are 
predominantly brittle, and structures for which d < do are closer to plasticity 
than to linear elastic fracture mechanics, i.e. are predominantly ductile. 
Therefore, the ratio ~ = dido has been called the brittleness number (in 
which do introduces the effect of structure shape). Compared to the older 
definitions of brittleness number according to Gogotsi et al. (1978), Homeny 
et al. (1980), Hillerborg (1985), and Carpinteri (1982,1986), this definition 
has the advantage of being independent of structure shape, which is achieved 
by means of dividing d by do. For these previous definitions, the same value 
of the brittleness number, say 3, can mean a very brittle behavior for one 
structure shape and a very ductile behavior for another structure shape. 
Thus, only the brittleness of structures of the same shape can be compared. 

For some structures, for example the geometrically similar panels in Fig. 
2, which are initially under uniform stress, (1) can be derived by elementary 
analysis. The panels of different sizes are assumed to have in the middle of 
the left side a weak spot, from which fracture originates. The fracture front 
may be considered in the form of a crack band of a certain width h that is 
approximately a material property, independent of the structure size. Fur
thermore, based on tests or more sophisticated analysis, it is assumed that, 
at maximum load, the length of fracture, a, is proportional to the panel 

FIG. 2. Crack Band Propagation 
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dimension d, i.e. aid = constant. Formation of a crack band may be imag
ined to relieve stress and release the initial strain energy of density a 2/2E 

from the cross-hatched areas in Fig. 2 (E = elastic modulus of concrete). 
When the fracture extends by !la, the initial strain energy that is released 
into the fracture front comes from the dotted strip of horizontal dimension 
!la. (Although the idea of the stress relief zone is, of course, only a crude 
approximation, it so happens that this type of analysis yields the correct 
form of the formula; this can be easily checked for linear elastic fracture 
mechanics. ) 

It is instructive to note that in a larger structure the energy that is released 
into the fracture extension !la is larger if the value of (J N is kept the same, 
because (for aid = constant) the energy is released from a larger zone. 
Since the energy dissipated by fracture per unit area of the fracture surface 
is approximately constant, being equal to the fracture energy of the mater
ial, G

f
, the crack length and therefore the value of aN for a larger struc

ture must be less so that the total energy release would remain the same. 
This explains the size effect. Now, quantitatively, the strain energy re
leased from the dotted strip is!lW = (htla + 2ka!la)a~I2E if !laN = 0 (i.e. 
at maximum load). Setting tl W = Gftla = dissipated energy, one gets 
aMh + 2k(ald) d] = 2EGf. Solving for aN' one can then bring the 
resulting expression to the form of the size effect law in (1), with B = 
(2EG

f
lh!?) -112 and do = hdl2ak, in which dla = constant in case of geo

metric similarity. 
For more complicated structural geometries, the foregoing type of simple 

reasoning becomes impossible. However, (1) can be derived generally by 
dimensional analysis and similitude arguments (Bazant 1984, 1987). This 
general derivation rests on two basic hypotheses: (1) The propagation of a 
fracture or crack band requires an approximately constant energy supply 
per unit length and width of fracture; and (2) the potential energy released 
from the structure due to fracture growth is a function of both the fracture 
length and the area of the cracking zone (fracture process zone) at the 
fracture front. If the potential energy release is a function of only the fracture 
length, the size effect is that of linear elastic fracture mechanics, and if it 
is a function of only the cracking area, there is no size effect. In the case 
of fracture test specimens of different sizes, similarity of the fracture shape 
and length is enforced by providing geometrically similar notches. 

In real concrete structures, from which notches are absent, the size effect 
law (1) is applicable only under the following two additional hypotheses: 
(3) At P max> the fracture shapes and lengths in geometrically similar struc
tures of different sizes are also geometrically similar; and (4) the structure 
does not fail at crack initiation. There is now extensive evidence, both 
experimental and numerical, showing that hypothesis 3 is at least approx
imately satisfied according to the experience with structure tests in the 
laboratory. Hypothesis 4 is rather well satisfied in most situations, and in 
fact good design practice ensures that. 

Although the size effect law (1) is only approximate, its accuracy appears 
to be sufficient for many cases, such as the diagonal shear or pull-out, and 
for a sufficiently broad size range-up to about 1 :20 (specimens up to one 
meter). However, there are some cases in which the size effect law tends 
to underestimate the nominal structure strength for large structure sizes. 
While the size effect law predicts aN ~ 0 for d ~ 00, a change in failure 
mechanism may cause that the nominal strength may tend to a non-zero 
limit, when the structure size is increased. 
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It must be emphasized that the size effect is defined for structures made 
of the same material. This means that the mix proportions and the maximum 
aggregate size da for structures of different sizes must be considered the 
same. If da is changed, one has a different material (and, for instance, the 
specific cement content must then also be changed). When d a is changed 
simultaneously with d, one must in fact tackle two independent problems: 
first, the effect of a change in size d at constant d,o and second, the effect 
of a change in da at constant size d. The second problem is beyond the scope 
of this paper, but it might be noted that an approximate formula for intro
ducing the effect of d" into the size effect law was proposed in the closure 
of the discussion of Bazant and Kim (1984). 

The arguments for applying the size effect law may be summarized as 
follows. 

1. If the load-deflection diagram exhibits post-peak softening [Fig. 3(a)] 
it can be generally caused only by buckling or fracture (damage). But buck
ling does not occur in the failures studied here. 

2. If there is fracture, there is necessarily a size effect. Now which law 
should describe it? It depends whether the maximum load P max is nearly 
equal to the crack initiation load Pcr or is much larger. 

3. The case P max = Pcr occurs typically for metallic structures. But, for 
concrete, this case occurs only in some unreinforced structures, e.g., in the 
bending failures of unreinforced beams or slabs, which is practically im
portant for unreinforced footings. (But for some unreinforced structures, 
such as dams, one has P max » Pcr)' When P max = Pen the size effect is 
strongly statistical, as described by Weibull theory, and has also a deter
ministic component due to the finite size of the process zone, as clarified 
by Hillerborg et al. (1976) in their study of the modulus of rupture. Infor
mation on the initial flaws is important only when P max = Pen as known 
from the classical fracture mechanics of metallic structures [Fig. 3( b)]. 

4. But the initial flaws are almost irrelevant when P max » Pen which 
includes most reinforced concrete structures, and also some unreinforced 
structures such as dams. The classical Weibull models are inapplicable when 
P max » Pen and the statistical size effect disappears for d ~ 00 if P max » 
Pen as proved in Bazant and Xi (1991) (for small d, there is some statistical 
size effect, but weak and negligible). 

5. It is now important to note that good practice requires designing con
crete structures in such a manner that P max » Pcr . This is indirectly enforced 
by many code provisions on reinforcement and detailing, and in some cases 
this is required by the code explicitly. Therefore, long major cracks, inter
secting a major part of the cross section, necessarily develop before reaching 
Pmax . Then, as long as these cracks are geometrically similar [Fig. 3(c)], the 
size effect law (1) applies. The fact that these cracks are approximately 
geometrically similar over a broad size range has transpired, for many struc
ture types, from testing as well as finite element studies. However, for a 
sufficiently broad size range, one may expect that the similarity of major 
cracks ceases to hold. 

As already mentioned, the existence of large cracks (guaranteed when 
P max » Per) and their geometric similarity are two basic hypotheses in 
extending the size effect law from fracture specimens to real (unnotched) 
concrete structures. This applies only when the structures made of different 
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a) 
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1/ 

Pmax 

deflection u 

b) 

P= Pcr P= Pma 

initIal flaw 

similar 

c) 

not similar 

Pmax 

FIG. 3. (a) Structural Softening Behavior Caused by Fracture or Instability; (b) 

Failure at Crack Initiation (Per < P max); (c) Similarity of Structure and Failure Mode 

at Peak load (P max) 

sizes are made of the same concrete. If the maximum aggregate sIze IS 
changed, its effect must be assessed separately. 

REVIEW OF AVAILABLE EVIDENCE OF SIZE EFFECT 

The existence of a size effect approximately obeying (1) has by now been 
well established. The available evidence is extensive and multifaceted. It 
may be summarized as follows: 

1. Theoretical arguments 
a. Analytical solutions of energy release and localization instabilities 

for various simplified situations, of the type already described 

(Fig. 2). 
b. Dimensional analysis and similitude arguments, already mentioned 

(Bazant 1984, 1987). 
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FIG. 4. Laboratory and Numerical Size Effect Tests of Geometrically Similar Rein

forced Concrete Structures and Optimum Fits with Size Effect Law: (a) Diagonal 

Shear, v" = UN = fj2hd, Where f~, = Peak Load; d = Beam Depth; and h = Beam 

Width 

c. Numerical microstructural simulations on a supercomputer, in which 
the concrete is modeled as a random array of particles (hard ag
gregate pieces), with a softening interparticle force-displacement 
relation (Bazant et al. 1990; van Mier 1992). 

d. Nonlinear fracture mechanics solutions based on the fictitious crack 
model with a gradually softening law for the crack bridging stresses 
(Hillerborg 1985). 

e. Deterministic limit of a non local generalization of Weibull-type 
statistical strength theory (Bazant and Xi 1991). 

f. Finite element solutions based on the smeared crack approach (Ba
zant and Oh 1983; Bazant and Lin 1988; Rots 1988; Eligehausen 
and Ozbolt 1990; Cervenka et al. 1990) and discrete crack approach 
(I ngraffea ] 985; Bocca et al. 1990). 

2. Laboratory tests 
a. Diagonal shear failure of longitudinally reinforced concrete beams 

without stirrups (BaZant and Kazemi 1991); see Fig. 4(a). (The size 
range was quite broad, 1: 16. The longitudinal bars were provided 
with hooks at the ends, in order to prevent bar pull-out. In the 
absence of hooks, the diagonal shear failure was seen to be accom
panied by pull-out, and the observed size effect was then weaker.) 

b. Torsional failure of longitudinally reinforced beams without stirrups 
and unrcinforced beams (Bazant et al. 1988); see Fig. 4(b). 
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FIG. 4(b). Torsion of Unreinforced Concrete Beams, UN = M,)O.208d 3
, Where M,u 

= Torsion Moment at Peak Load; d = Beam Depth and Width 

c. Punching shear failure of slabs with a one-sided reinforcement mesh 
(Bazant and Cao 1987); Fig. 4(c). 

d. Pull-out failure of deformed reinforcing bars (Bazant and Sener 
1988); see Fig. 4(d). 

e. Pull-out of headed anchors, with a conical failure surface (Elige
hausen and Sawade 1989); see Fig. 4(e). 

f. Double-punch compression failure of cylinders (Marti 1989); see 
Fig. 4(f). 

g. Compression failure of tied columns, short as well as slender (Ba
hnt and Kwon 1991); see Fig. 4(g). 

h. Brazilian split-cylinder tests (BaZant et al. 1991); see Fig. 4(h). 

In laboratory tests a.-d. and g.-h., the test specimens were of reduced 
size and made of microconcrete (maximum aggregate size 3/16 to 3/8 in.) 
with reduced-size reinforcing bars. Unless stated in the original report, the 
concrete tensile strengths shown in Fig. 4 were calculated as t: = 6vTc, 
where t; = standard cylindrical concrete compression strength (in psi). 

The Brazilian test is the only one in which a systematic deviation from 
the size effect law according to (1) has been discovered. The size effect law 
is found to be followed for the size range of approximately 1: 10. For larger 
sizes, the nominal stress at failure stops to decrease with the diameter of 
the concrete cylinder. As one reason, Bazant et al. (1991) suggested a 
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FIG. 4(c). Punching Shear of Slabs, v" = (TN = FJrrbd, Where d = Slab Thickness; 

and b = Punch Diameter 

transition to a different failure mechanism. At normal sizes, the maximum 
load achieved in the Brazilian test is governed by propagation of a fracture 
along the vertical symmetry line. However, the maximum load is not zero 
even for the case that the cylinder is cut in two halves before the test and 
the separate halves are then placed in the testing machine next to each 
other. In that case, failure is caused by frictional slip on a triangular wedge 
region under the loading platens. This slip is probably ductile, due to lateral 
confinement, and exhibits no size effect, which might explain that the size 
effect terminates with a horizontal plateau, as seen in Fig. 4(h). Another 
reason may be that the crack length at maximum load ceases to be pro
portional to d. Still another reason may be that the loads have been applied 
through metallic strips whose width has not been increased in proportion 
to d. 

Eligehausen and Sawade (1989) performed pull-out tests on headed studs 
with different embedment depths (d = 130,260, and 520 mm). The concrete 
mix was constant (maximum aggregate size 16 mm). Failure was caused by 
pulling out a concrete cone. The test results are plotted in Fig. 4(e). They 
follow quite closely the size effect law proposed by Bazant (1984). 

In another study of concrete cone failure of headed studs with embedment 
depths d = 50 to 450 mm, all the structural dimensions where related 
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FIG. 4(d). Pull-Out of Reinforcing Bar, Vu = aN = F.,IdbTId, Where d = Embedment 

Depth and db = Bar Diameter 

proportionally to the embedment depth (Eligehausen et al. 1992). The con
crete mix was kept constant. The test results can be approximated by the 
size effect law quite well. 

Eligehausen et al. (1991) evaluated the results of 209 tests with headed 
anchors carried out at different laboratories. The failure was caused by 
pulling out a concrete cone. The tests were done on concretes of differ
ent mixes and different strengths. Therefore the measured failure loads 
were normalized to a cube compression strength fcc = 25 MPa by multi
plying them with the factor Y251!cc. The normalized failure loads are plotted 
in Fig. 5 as a function of the effective embedment depth d. The failure load 
increases nearly in proportion to d J

·
5

, which means it follows the linear 
elastic fracture mechanics (LEFM) solutions. A strong size effect close to 
LEFM could of course be expected, since the observed fracture process 
zone is relatively small (Eligehausen and Sawade 1989; Eligehausen and 
Ozbolt 1990). Similar results were found for expansion anchors (Eligehausen 
et al. 1988). 

The size effect law according to (1) has also been confirmed by Walraven 
and Lehwalter (1990) for the shear strength of normal beams and deep 
beams without shear reinforcement. They analyzed the results of a number 
of test series of different authors. The test specimens were designed to check 
the size effect. The results, which are plotted in Figs. 6 and 7, are seen to 
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FIG. 4(e). Pull-Out of Headed Stud Embedded in Concrete Block, U'N = FuIA, 

Where A = Surface Area of Pull-Out Cone Base Defined by Average Angle between 

Concrete Cone Surface and Concrete Surface ex = 350 

be described quite well by the size effect law, for both slender beams (Fig. 
6) and deep beams (Fig. 7) up to sizes of about 1 m. 

Marti (1989) performed tests on concrete cylinders of different sizes loaded 
up to failure in double-punch compression. Normal concrete has been used, 
with a constant maximum aggregate size of 10 mm. The diameters of the 
cylinders have been proportionally scaled in the range d = 76 to 1,220 mm 
(1 :16). As shown in Fig. 4(f), the results of the study show a good agreement 
with the size effect law. 

The foregoing experimental evidence is rather broad, robust and clear. 
It was not clear in the numerous test data obtained previously. The reason 
is that the previous tests were not designed to reveal the size effect or to 
check any particular theory. As generally agreed in physical sciences, in 
order to prove or disprove a theory it is necessary to formulate it first as a 
hypothesis and then design the experiment according to this hypothesis. 
One reason why the aforementioned tests provided a conclusive picture is 
that they were designed to prove or disprove (l). 

COMPARISONS WITH NONLOCAL MICROPLANE MODEL 

Finite Element Code 
To model concrete fracture and size effect, the most important require

ment for a finite element code is that it must be insensitive to the mesh 
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Where d = Cylinder Diameter 

shape (orientation) and mesh size. Mesh shape sensitivity in finite element 
analysis is caused by the fact that the material softening (microcracking) is 
not modeled correctly (shear locking), while mesh-size sensitivity is a con
sequence of strain softening and is manifested as localization of energy 
dissipation into a zero volume. To avoid mesh-size sensitivity and simulate 
brittle failures including the size effect, the finite element code must be 
endowed with what has been called a localization limiter-a mathematical 
device that prevents localization of damage into a zone of zero volume. 
Alternatively, correct prediction can be obtained by a finite element code 
with discrete cracks characterized by a softening crack - bridging law. Such 
a code, however, appears to be less versatile in general situations. 

The simplest localization limiter-a mere restriction on the minimum 
element size coupled with adjustment of the postpeak slope of the stress
strain diagram for larger than minimum sizes-is used in the crack band 
model. However, there is now much evidence that, because of mesh-shape 
sensitivity, finite element codes based on the crack band model cannot always 
correctly simulate brittle failures of concrete structures (de Borst 1991; de 
Borst and Rots 1989; Oibolt and Eligehausen 1991; Rots 1992; Petrangeli 
and Oibolt 1992). In fact, mesh-shape sensitivity of the crack band model 
seems to be too large, and generally this model is applicable only if the 
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cracking is parallel to the mesh lines. This means that the crack pattern 
should be known in advance when generating the finite element mesh. 

Therefore, more general nonlocal codes with material models that are 
able to model the material softening process more realistically are required. 
It has been demonstrated that the nonlocal microplane model does not 
exhibit spurious mesh sensitivity (Ozbolt 1992). It provides a powerful tool 
in general three-dimensional smeared-cracking finite element analysis of 
concrete and reinforced structures. 

A key parameter in the nonlocal approach is the value of the characteristic 
length I, which defines the size of the representative volume. In the nu
merical calculations, the characteristic length was chosen such that, in a 
certain test, the failure load of the medium size specimens would be matched 
correctly and then this value was kept constant when analyzing the specimens 
of different sizes. The optimum values of the ratio IIda of the characteristic 
length 1 to the maximum aggregate size da , indicated in Fig. 8, show sub
stantial variation from one type of specimen to another. This variation seems 
broader than one could explain by differences in the composition of con
crete. Apparently 1 is not a material constant but a material function de
pending on the strain and stress fields in the neighborhood of a point, 
especially for points in the fracture process zone. The law governing the 
value of l/da needs to be researched. 
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In nonlocal codes, it is important that the stress-strain relation describe 
quite realistically not only tensile cracking and fracture, but also the non
linear triaxial behavior under various stress or strain histories, for both 
tensile and compressive stress states. A very powerful and general descrip
tion of such behavior is provided by the microplane mode!' Its advanced 
form, agreeing with all the basic muItiaxial test data for concrete, was 
presented in Bazant and Prat (1988). 

In the microplane constitutive model, there is no need to use the stress 
and strain invariants. The tensorial invariance restrictions are satisfied au
tomatically by combining the stresses acting on planes of all orientations 
within the material, called the microplanes (the reason for this term is that 
the constitutive properties specified on these planes approximately simulate 
the microstructural behavior, c.g., behavior on the interparticle contact 
planes, interfaces, microcracks, etc.). The constitutive properties are en
tirely characterized by a relation between the normal and shear components 
of stress and strain on the microplanes. The microplane strain components 
are assumed to be the projections of the macroscopic continuum strain 
tensor. The macroscopic stress tensor is obtained by integrating the stresses 
from all the microplanes according to the virtual work principle. 

In the microplane model, the strain calculated for each integration point 
of each finite element, and each loading stage of each iteration, is first 
decomposed into components on a discrete set of microplanes [typically 21 

of them, see Bazant and Ozbolt (1990)]. After calculating the stresses from 
the strains on all the microplanes, the macroscopic stress tensor is obtained 
by summation over these microplanes, which approximates an integral over 
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all spatial orientations of the microplanes. Obviously, this process adds 
considerable further computational work. Initially it was thought that this 
would preclude applications in large finite element codes, and the same was 
thought of the nonlocal averaging over all the adjacent finite elements. 
However, by virtue of the great recent advances in computer power ,these 
two problems are no longer unsurmountable. It is now possible to run a 
large non local finite element program with thousands of degrees of freedom 
on a desk microcomputer (with the Intel 486 chip). 

To demonstrate the power of the non local microplane code, the failure 
loads for some of the test specimens shown in Fig. 4 have been calculated. 
The results are plotted in Figs. 4(a, b, h) and Fig. 9. Except for the pull
out of headed anchors, the experimental results are also plotted for com
parison. The size effect law giving the best fit of the experimental data is 
plotted as a solid curve. The agreement between experimental and numerical 
results is seen to be generally quite acceptable. For the pull-out of headed 
anchors (Fig. 9), only the calculated data are given because the assumed 
geometry of the specimens analyzed differs from the geometry of the spec
imens tested. 

As mentioned earlier, the non local microplane model leads to close agree-
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ment with the existing basic triaxial test data under various multiaxial stress 
histories, including compressive stress states. These capabilities appear to 
be quite important for some applications, such as the modeling of the ter
mination of the size effect observed in the Brazilian split cylinder test [Fig. 
4(h )]. 

The success of the present fitting of the size effect test data at the same 
time provides a further justification for explaining the size effect by means 
of fracture-mechanics-type energy release. The finite element code used was 
deterministic, and thus no statistical size effect due to random strength can 
be present in the finite element results. 

Recently, the microplane model has been improved (Ozbolt and Petran
geli 1993) such that it is now able to model more realistically the evolution 
of cracking in arbitrary direction in general three-dimensional codes, with 
material discontinuity incorporated in the material model. The model has 
been also coupled with the new nonlocal approach that is based on the 
microcrack interactions (Bazant 1992: Ozbolt 1992). 

CONCLUSIONS 

1. There is now extensive laboratory experimental evidence proving that 
essentially all the types of brittle failures of concrete structures exhibit a 
strong size effect due to energy release. 

2. The theoretical support for the size effect due to energy release is now 
strong and multifaceted, coming from various directions and offering a 
coherent picture. Under the conditions that: (1) The maximum load is much 
larger than the crack initiation load; (2) the major cracks at maximum load 
occupy a substantial portion of the cross section, and (3) are geometrically 
similar for specimens of different sizes, the size of the crack at maximum 
load is assumed to be approximately proportional to the structure size. Then 
the size effect law (1) is valid. The aforementioned conditions appear to be 
satisfied in most applications, but an exception exists- Brazilian splitting 
tests of a very broad size range. 

3. The nonlocal microplane finite element code provides a realistic ma
terial model for smeared cracking analysis. This model prevents the local
ization of damage into a zero volume and can correctly predict the size 
effect in brittle failures of concrete structures. 

4. Further experimental data for large structures with normal-size ag-
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gregate are needed to strengthen the verification and improve the calibration 
of the theory. 
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