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Abstract: This work investigates fracture characteristics of a marble semi-circular bend (SCB) spec-
imen with a pre-defined crack under a compressive loading condition. It aims at evaluating how
the fracture toughness can be affected by the crack and span length variation. Numerically, the
model is solved using meshless methods, extended to the linear elastic fracture mechanics (LEFM),
resorting to radial point interpolation method (RPIM) and its natural neighbor versions (NNRPIMv1
and NNRPIMv2). Alternatively, to validate the meshless method results, the problem is resolved
following the finite element method (FEM) model based on the standard 2D constant strain triangle
elements. As a result, fracture toughness and the critical strain energy release rate are characterized
following the testing method on the cracked straight through semi-circular bend specimen (CSTSCB).
A comparison is drawn amongst the theoretical, meshless methods and FEM results to evaluate the
capability of advanced numerical methods. Encouraging results have been accomplished leading to
validate the supporting numerical methodologies.

Keywords: fracture toughness; SCB; FEM; LEFM; meshless methods; RPIM; NNRPIM

1. Introduction

The capability to endure a substantial amount of damage is a demand for current
engineering structures; therefore, it has become progressively imperative to improve
methodologies to anticipate failure phenomenon in damaged components. Damage toler-
ance analyses can be fulfilled within the linear elastic fracture mechanics (LEFM) concepts
where the stress intensity factor (SIF) plays a substantial role [1]. The fracture mechanics
theorem in conjunction with crack growth laws, i.e., Paris’ law, is characteristically engaged
to examine and forecast crack growth and fracture behavior of structural integrity com-
ponents [2]. To study crack growth and to evaluate the remaining lifetime of a structural
component, demanding computational analyses must be performed and the SIFs shall be
thereby evaluated. There exist several developed formulations to determine the fracture
parameters such as mode I and mixed-mode SIFs, strain energy release rate, T-stress, etc.

The fracture toughness, which is the critical SIF of a sharp crack where propagation of
the crack suddenly becomes unlimited and fast, remains a very imperative specification
of a material that can demonstrate the material resistance against the structural cracks
governing by the work required to fracture a material, known as work of fracture. It meant
that fracture toughness is a quantitative definition to express the material’s resistance to
a brittle fracture phenomenon in the presence of cracks. If the material possesses high
fracture toughness, it would be more disposed to the ductile fracture [3]. On the other
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hand, brittle fracture is a characteristic of materials with less fracture toughness. There exist
general factors which can affect the material toughness including strain rate, temperature,
presence of any stress concentration on the specimen surface and the relationship between
the material strength and its ductility [4]. The critical strain energy release rate describes
the resistance of the material against the crack growth.

In this regard, Almeida-Fernandes et al. [5] developed numerical damage models
calibrated with experimentally based fracture toughness parameters on the pultruded glass
fiber reinforced polymers. Taylor et al. [6] studied the fracture strength of brittle materials
by the effect of stress concentrations through SIF calculation. Mínguez [7] studied the
fracture toughness of a center cracked plate by the Finite Element Method (FEM) in which
the critical SIF variation through specimen thickness was characterized.

Amongst all testing specimens in the fracture mechanics studies, the semi-circular bend
(SCB) specimen received considerable attention emerging in 1984 to test brittle materials
in particular rocks contributing to determining the mode I fracture toughness [8]. Chong
et al. [9] proposed the SCB specimen in 1987, due to the method of rock and geometrical
specimens’ extraction being in a circular shape, simple geometry and demanding a common
loading configuration. Subsequently, the SCB was adopted and improved on distinct
solicitations in the field of solid and fracture mechanics. The SCB specimens can be
simply manufactured to be adopted in the experimental tests and numerical simulations.
There are other suggested testing methods for mode I fracture toughness of rock by the
International Society for Rock Mechanics (ISRM) such as short rod specimen method
(SR) [10], cracked notched Brazilian disk (CCNBD) [11], chevron-bend specimen method
(CB) [12] and cracked straight through semi-circular bend specimen (CSTSCB) [13].

In this study, several numerical methods are used to characterize the mode I fracture
toughness near the crack tip due to the remote load. The FEM and meshless methods
including radial point interpolation method (RPIM) and natural neighbor radial point
interpolation method (NNRPIM) are employed to determine the fracture toughness to be
compared with the calculated values by CSTSCB method [13].

The necessity of mesh refinement in the problems that the geometry changes or con-
tains a large distortion, FEM shows some shortcomings that leads researchers to emerge
new techniques. One of the earliest methods proposed by Belytschko et al. [14] so-called
Element-Free Galerkin (EFG) is capable to simulate cracks propagating statically and dy-
namically. Furthermore, the EFG is able to give valid values for irregular nodal distribution,
which is one of the advantages of this technique. Muthu et al. [15] proposed a variant of the
EFG method integrating the application of the level set and diffraction methods to simulate
multiple interacting cracks using a coarse meshless nodal discretization. This methodology
was deployed to model kinked cracks that have knee singularity.

On the other hand, one of the main factors affecting the acceptance of a numerical
technique is computational cost. Generally, the cost is measured for a prescribed accuracy
for a problem. Therefore, by taking into account that denser discretizations would increase
the computational cost, it is necessary to optimize the cost meticulously without a negative
effect on accuracy. In this regard, meshless methods are flexible to be optimized and may
be adjusted to produce reliable results. Besides, it is worth mentioning that meshless
methods provide the opportunity to impose the displacement constraints on the stiffness
matrix directly, but the EFG method employs the Lagrange-multipliers for this purpose
which is not as straightforward as it is for meshless methods. Meshless methods have been
successfully implemented to address fracture and damage characterizations for a variety of
material behaviors, c.f. [16–20].

So far, the FEM formulation with quadratic elements has been employed to calculate
mode I and mixed-mode SIFs for SCB specimens [9,13,21,22]. Nevertheless, meshless
methods have never been employed to calculate fracture toughness and critical strain
energy release rate for SCB specimens.

It must be mentioned that the meshless methods are advantageous due to their sim-
plicity in the formulations. Besides, it is feasible to use the FE mesh background to generate
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the nodal discretizations, which may lead to reducing the computational costs with the
absence of finite elements. Other privileges of meshless methods can be related to their in-
dependence to the element shapes/types and the element distortion that may occur during
the finite element analyses. Despite FEM, meshless methods do not require FE remeshing
which is undesirable in terms of crack propagation problems and solution convergences
on the nonlinearity in the engineering structures with complex material behaviors such as
damage mechanics or porous models, c.f. [16,17,19,20,23,24].

Nevertheless, owing to the aforementioned related works, it can be inferred that
the literature lacks a comprehensive analysis of SCB specimens for fracture toughness
characterization by meshless methods. Therefore, the main contribution of this work can be
related to the development of meshless method formulations combined with LEFM theory.
Therefore, it contributed to elastostatically simulating the cracked domain in order to attain
the fracture toughness and critical strain energy release rate.

2. Overview on Meshless Methods

In this study, the 2D deformation theory in plane stress state was taken into account
for all computational analyses. The RPIM and NNRPIM meshless method formulations
were taken into account [25] extended to the LEFM theory. Generally, meshless methods
discretize the problem domain and respective boundaries using a nodal distribution. This
nodal set cannot be categorized as a mesh, because no previous information regarding
the relationship between each node is required to build the interpolation functions for the
unknown variational fields [26].

The RPIM is an interpolator meshless method assuring the nodal connectivity within
the influence-domain conception, which is chiefly adopted by many meshless techniques
because of its simplicity. Similar to the FEM, RPIM meshless method stands as a dis-
crete computational approach. The main difference could be related to the discretization
procedure. The elements and nodes discretize the Finite Element (FE) problem domain
whereas meshless methods discretize the problem domain only by nodal points. Likewise,
in the FEM, the nodal connectivity must be enforced in the pre-processing phase through a
predefined FE mesh establishment. Hence, any element owns the intrinsic and adequate
information to impose nodal connectivity. Despite the FEM, meshless methods do not
possess predefined connectivity mesh, it is essential to generate one [27]. Therefore, gen-
erally, the nodal interdependency must be enforced by the influence-domain geometrical
construction in meshless methods. It can be acquired once the nodal discretization is
created [25]. This is an overlap associated with the influence-domains allowing setting
up nodal connectivity. Considering an interest point in the problem domain, it is possible
to establish its influence-domain by a radial search centered in that interest point. It led
to collecting a definite number of nodes inside a fixed area or volume, the 2D and 3D
problems, respectively. The literature proved that this approach is simple to figure out and
to implement contributing to support the expansion of several meshless techniques.

Regarding RPIM meshless method, the literature [25] recommends that any 2D influence-
domain must include roughly n = [9, 16] nodes. Besides, a background integration mesh
is necessary to mathematically integrate the integro-differential equations governing the
physical phenomenon [26,28] due to the adaptation of the Galerkin weak-formulation.

In the case of the NNRPIM, the natural neighbor’s concept has been taken into account
to impose the nodal connectivity as recommended by Sibson [29]. This mathematical notion
could be described by the Voronoï diagram associated with the discretized domain. In
the NNRPIM, the problem domain Ω ∈ Rd, bounded by a physical boundary Γ ⊂ Ω, is
discretized in numerous arbitrarily distributed points N = {n0, n1, . . . , nN} scattered in
the space domain: X = {x1, x2, . . . , xN} ∈ Ω. The Voronoï diagram of N is the domain
partition determined by Ω in sub-regions Vi, closed and convex where any sub-region Vi is
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attendant with the node ni, in a way that any point in the interior of the Vi is closer to ni
than any other node nj, where nj ∈ N∧ j 6= i, xI ∈ Ω.

Vi :=
{

xI ∈ Ω ⊂ Rd : ‖xI − xi‖ < ‖xI − xj‖, ∀i 6= j
}

(1)

However, a set of Voronoï cells Vi defines the Voronoï diagram, V = {V1, V2, . . . , VN}.
In the literature [25,30,31], it is possible to find relevant works properly addressing the
Voronoï construction procedure.

In relation to the nodal connectivity in NNRPIM, it is made by a set of nodes in the
neighborhood of an interest point xi ∈ X, the NNRPIM influence-cell notion contributes to
forming the node connectivity. It contributes to naturally controlling the influence domain
associated with xi. Meanwhile, only the determination of the 2D influence-cell is given,
although this concept is applicable to n-dimensional space. In general, there are two types
of influence-cells: the first-degree influence-cell and the second-degree influence-cell. The
former one is composed of the first natural neighbors of xi and the latter one includes the
natural neighbors of the nodes belonging to the first-degree influence-cell of node xi in
addition to the first natural neighbors of xi. This concept is well described in detail in [23].

The second-degree influence-cell enforces higher nodal connectivity when compared
with the first-degree influence-cell. The literature [23] states that regardless of the studied
phenomenon, higher degree influence-cells permit to achieve more accurate solutions.

The standard FEM, RPIM and NNRPIM formulations are comprehensively demon-
strated in [25] leading to a linear equations system exhibited as Ku = f. In which, K stands
as the stiffness matrix, f is the force vector and u is the displacement field. In accordance
with Hooke’s law, it is feasible to correlate a relationship between the strain and stress
fields as,

σ = Cε⇔


σxx
σyy
τxy

 =
E

(1 + ν)(1− ν)

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx
εyy
γxy

. (2)

In this study, all integration cells are quadrilateral comprising of around 9 nodes and
nQ × nQ integration points inside, respecting the Gauss-Legendre quadrature scheme. The
literature [23] suggests that this integration scheme aggrandizes the efficiency if nQ = 3.

3. Mathematical Formulation

As shown in Figure 1, a cracked straight through semi-circular bend specimen (CSTSCB)
is considered as the case study following the testing method suggested by Kuruppu
et al. [13]. It aims at the determination of the mode I fracture toughness for various crack
growth stages.

Figure 1. A Schematic view of the semi-circular bend specimen.
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From the theoretical point of view, Equation (3) is applicable for the computation of
fracture toughness for mode I [13],

KIc =
P
√

πa
2RB

YI . (3)

In which P is the maximum load, R is the specimen radius, B is the specimen thickness,
and YI is the normalized SIF, which is dimensionless and dependent on the normalized
crack length and normalized span. By considering a thin specimen, KIc in Equation (3)
provides the critical SIF value. Regarding the normalized term, YI , Lim et al. [32] used
the classical displacement extrapolation method and obtained the following equation by
FE analysis;

YI = S/R
(

2.91 + 54.39 α− 391.4 α2 + 1210.6 α3 − 1650 α4 + 875.9 α5
)

. (4)

Being α = a/R indicates the ratio of the crack length to the radius. The low accuracy
of the technique used to acquire Equation (4) in comparison to J-integral, encouraged
Kuruppu et al. [13] to propose an alternative formulation. They used least-square for curve
fitting where a second-order function of α is adopted for the simple relationship expressed
in Equation (5). This equation has provided more accurate solutions in comparison to the
ones obtained by Lim et al. [32] and Tutluoghlu and Keles [33].

YI = −1.297 + 9.516
(

S
R

)
+

(
−0.47− 16.457

(
S
R

))
α +

(
1.071 + 34.401

(
S
R

))
α2. (5)

It must be noted that the recent formulation is valid if α ≥ 0.2. Nevertheless, a
fairly deep notch is necessary on the bending effect to provide a robust mode I stress field
near the notch tip. Therefore, it is suggested to respect 0.4 ≤ α ≤ 0.6. Furthermore, it
is recommended to consider 0.5 ≤ S/R ≤ 0.8 in which it is desirable to consider S/R
approaching to the maximum value [13].

Particularly in plane stress condition, the value of KIc defined in Equation (3) at
the point of crack extension is called the critical SIF value and expressed as KIc in the
literature [34]. It then defines the onset of crack extension. It does not necessarily indicate
a fracture of the specimen; it depends on the crack stability. It is usually regarded as a
material property and can be used to characterize toughness.

However, in this work, Equation (5) together with Equation (3) was considered as a
reference theoretical solution on KIc to validate the results obtained by numerical studies
resorting to FEM study by the standard 2D constant strain triangle elements and mesh-
less methods.

Considering G as the strain energy release rate per crack tip, that is, for a double-
ended crack within an infinite solid, the rate of release in strain energy per crack tip for a
linearly-elastic material is:

G =
K2

I
E

. (6)

Thus, critical strain energy release rate, Gc, is then related to the mode I fracture
toughness calculated through the following equation:

Gc =
K2

IC
E

. (7)

Being E the material elasticity modulus. It must be noted that Equation (7) will be used
to obtain the theoretical solution and the numerical solutions on the critical fracture energy.
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Regarding the radius of the fracture process zone, rc, so-called a critical distance from
the crack tip, Taylor et al. [6] adopted an equation to determine the size of rc for brittle
materials as follows:

rc =
1

2π

(
KIC
σt

)2
. (8)

in which σt denotes the material tensile strength. This term will be used to define the gap, g,
for fracture toughness calculations through numerical modeling.

Computationally, to determine the KIc within the obtained data, a numerical iterative
routine was developed to analyze the stress field derived from numerical meshless and
FEM analyses. It means that the stress field together with the point coordinates referenced
to the crack tip must be extracted on a predefined window after the crack tip. Then, this
data will be considered as an input for the developed numerical algorithm. This algorithm
links the SIF computation routine and the stress calculation following principal stresses in
the vicinity of the crack tip considering mode I condition.

Assuming the plane problem of a homogeneous isotropic solid, Williams’ series
expansion on the plane stress would be appropriate as stated in the following formulations.
Notice that the significance of KI is demonstrated in Equation (10), [35]. Considering the
maximum applied load, this mode I SIF will be the fracture toughness.

σyy =
∞

∑
n=1

(
AIn

n
2

)
r

n
2−1
{[

2− (−1)n − n
2

]
cos
[(n

2
− 1
)

θ
]
+
(n

2
− 1
)

cos
[(n

2
− 3
)

θ
]}

, (9)

KIc = AI1
√

2π. (10)

In which (r, θ) represents the polar coordinates of the points referenced to the crack
tip located in the defined window after the crack tip.

4. Analysis, Results and Discussion

A pre-defined cracked SCB specimen made of marble was considered in this study, as
schematically depicted in Figure 1. Regarding geometrical characteristics, the specimen
radius was considered as R = 25 (mm) and thickness was defined as B = 1 (mm) . The
mechanical parameters for the studied marble specimen are considered according to a
reference article [36], reported in Table 1.

Table 1. Mechanical properties of the studied SCB specimen, marble.

Parameter Value

Young’s modulus E = 75, 500.0 (MPa)
Poisson’s ratio ν = 0.3

Tensile strength σt = 16.1 (MPa)

Besides, the crack and the span lengths were accordingly defined as a and S. In
this study, different crack lengths and spans were taken into account led to obtaining the
numerical results using meshless method formulations, see Table 2.

Table 2. Specification on the span and crack lengths studied in this work.

Span Length, S(mm) Crack Length, a(mm) S/R α = a/R

S1 = 12.5 a1 = 7.5 0.5 α1 = 0.3
S2 = 15.0 a2 = 10.0 0.6 α2 = 0.4
S3 = 17.5 a3 = 12.5 0.7 α3 = 0.5

As mentioned before, the critical mode I SIF, KIc, would be the most important
parameter in fracture mechanics determining the resistance of the material to the impending
urge to propagate the initial crack. This analysis is implemented on half of SCB specimen
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2D domain under 3-point-bending condition due to symmetric geometry, as shown in
Figure 2. The specimen contains an initial crack located in the middle of the SCB specimen
for which the calculation of fracture attributes is taken into account.

Figure 2. Half of SCB specimen studied in this work: (a) meshless method model discretized by
irregular nodal distribution and (b) FEM model discretized by triangular mesh, presenting the
considered central coordinates, dimensions are in mm.

Regarding the natural boundary condition, a compressive concentrated load was
considered with a magnitude of P = 1.0 (kN) applied to the model vertically aligned
with the initial crack. The essential boundary conditions were applied to the model
constraining the nodes in the horizontal direction right above the crack tip to the end
where the concentrated load is applied. On the other hand, depending on the various span
lengths, S, a nodal restriction was imposed to restrict the model in the vertical direction to
satisfy the requirements of the SCB specimen. Therefore, (as shown in Figure 2a), to simulate
the boundary conditions regarding the span, an individual node (PA) was singularly
selected to restrict v(x, y) displacement field in the corresponding point. Furthermore, a
vertical line was assumed from the crack tip, (PB), to the point, (PC), under force to be
bounded to u(x, y).

The geometry of the model and the FE mesh was built through FEMAP© software.
Then, the coordinates of the nodes/elements with their connectivity were imported as an
input to the developed numerical algorithms implemented in MATLAB©. The numerical
algorithms were based on a FEM code and used the FE mesh background to generate the
nodal discretization. It was then extended to the LEFM theory to calculate the fracture
toughness and strain energy release rate.

All stress and displacement types of boundary conditions were fully defined in the
numerical models as explained. Regarding the FEM study, the problem domain was
discretized by the standard 2D constant strain triangle elements, type S3. Then, the same
discretization was used remaining nodal points to be analyzed by meshless methods.

For meshless method analyses, although in previous works [37,38], the number of
nodes within an influence domain was suggested to be between n = [9, 16] nodes, Farahani
et al. [26] recommended that each influence-domain should possess 20 nodes in order to
get reliable results.

In this work, two different versions of NNRPIM were used, named NNRPIMv1 and
NNRPIMv2 referring to the first-degree and the second-degree influence-cell, respectively.
Referring to the previous works conducted on meshless methods by the authors [16,19,26],
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the parameters and the coefficients influencing the NNRPIM analysis were considered the
same. This study follows the Radial Basis Function (RBF) formulation and definition as
described in the previously published works by the authors, c.f. [19,25].

As Figure 2 depicts, the whole problem domain contains 4756 S3 elements and
2436 nodes.

In all numerical analyses, the discretization density of the problem domain, FE mesh
as well as the nodal distribution of meshless methods, may affect the solution accuracy.
Denser discretizations defined, more accurate results acquired. Hence, an interest region
was defined in the problem domain possessing a denser discretization. This interest region
is identified as the cracked area started from (PB), right after the crack tip of the first crack
length a1 = 7.5 mm. It is dimensioned as 5× 15 mm2. This interest region was defined
based on the first example, a1 = 7.5 mm and remains the same for the other crack length
examples. It is demonstrated as a dash rectangular region highlighted in red as presented
in Figure 2. It must be noted that this interest area includes a total number of 1037 nodes
and 1920 elements of type S3.

Such interest region consideration permits to guarantee that the other crack tip will be
located in a region with a denser FE mesh/meshless nodal distribution.

Concerning the FE mesh properties and meshless nodal distribution, it must be noted
that the Authors have already studied convergence studies [26,39] on different densities for
similar problems and it was concluded that this discretization owns sufficient potential to
produce accurate and robust results.

In this study, referring to Table 2, three different crack lengths, (a), are considered.
Besides, three various span lengths (S) are defined as another parametric value due to
the considerable role of span length on the magnitude of bending moment around span
coordinates leading to capture different results on the fracture characterization.

Owing to the abovementioned description, the numerical analyses have been per-
formed and Table 3 reports the obtained results for the calculation of fracture toughness
using all numerical simulations. It must be noted that the theoretical solution was calculated
based on Equation (3) in which YI was derived from Equation (5).

Table 3. KIc obtained from theoretical formulation and numerical analyses.

S (mm) a (mm)
KIc(MPa

√
mm)

Theoretical FEM RPIM NNRPIMv1 NNRPIMv2

12.5
7.5 242.30 242.03 243.32 236.83 237.13

10.0 325.65 325.43 323.40 330.11 329.69
12.5 461.17 461.89 460.92 462.45 463.03

15.0
7.5 316.81 315.10 318.74 316.40 315.89

10.0 420.24 419.15 421.71 417.18 423.17
12.5 585.10 584.57 586.38 583.31 585.31

17.5
7.5 391.32 391.12 392.73 383.03 386.58

10.0 514.82 513.49 514.71 513.33 514.63
12.5 709.02 710.71 710.23 711.92 707.85

As explained in Section 3, the numerical fracture toughness was calculated in a defined
window dimensioned as 3× 5

(
mm2) considering a gap of g ∼= 0.5 (mm) ahead of the

crack tip as illustrated in Figure 3.
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Figure 3. Demonstration of a defined window after the crack tip.

Moreover, Table 4 shows the deviation computed amongst the numerical results
compared to the theoretical solution. For all numerical calculations on fracture toughness,
it must be stated that to avoid the plastic effect that occurred at the crack tip, a gap of
g ∼= 0.5 (mm) was considered after the crack tip. This gap was defined following the plastic
radius, rc, computation derived from Equation (8) as calculated by Xie et al. [39] for the
similar SCB specimen.

Table 4. Deviation of KIc results obtained from numerical studies compared to the theoretical results.

S (mm) a (mm)
Deviation (%)

Theoretical
and FEM 1

Theoretical
and RPIM 2

Theoretical and
NNRPIMv1 3

Theoretical and
NNRPIMv2 4

12.5
7.5 0.11 0.42 2.26 2.14
10.0 0.07 0.69 1.37 1.24
12.5 0.16 0.05 0.28 0.40

15.0
7.5 0.26 0.61 0.13 0.29
10.0 0.26 0.35 0.73 0.70
12.5 0.09 0.22 0.31 0.04

17.5
7.5 0.05 0.36 2.12 1.21
10.0 0.26 0.02 0.29 0.04
12.5 0.24 0.17 0.41 0.17

1 100 ×
∣∣(KTH

Ic − KFEM
ICc

)
/KTH

Ic

∣∣; 2 100 ×
∣∣(KTH

Ic − KRPIM
Ic

)
/KTH

Ic

∣∣; 3 100 ×
∣∣(KTH

Ic − KNNRPIMv1
Ic

)
/KTH

Ic

∣∣;
4 100×

∣∣(KTH
Ic − KNNRPIMv2

Ic
)
/KTH

Ic

∣∣.
Besides, Table 5 presents the critical strain energy calculation derived from the numer-

ical analyses calculated through Equation (7). In conclusion, GC raised if the crack and
span lengths increased. Straightforwardly, the higher fracture toughness and GC , then
the greater the material’s fracture resistance, which then possibly translates into higher
damage tolerance.

Table 5. Critical strain energy release rate obtained for different methods.

S (mm) a (mm)
GC (MPa.mm)

Theoretical FEM RPIM NNRPIMv1 NNRPIMv2

12.5
7.5 0.78 0.78 0.78 0.74 0.74

10.0 1.40 1.420 1.39 1.44 1.44
12.5 2.82 2.83 2.81 2.83 2.84

15.0
7.5 1.33 1.32 1.35 1.33 1.32

10.0 2.34 2.33 2.36 2.31 2.37
12.5 4.53 4.53 4.55 4.51 4.54

17.5
7.5 2.03 2.03 2.04 1.94 1.98

10.0 3.51 3.49 3.51 3.49 3.51
12.5 6.66 6.69 6.68 6.71 6.64
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Figure 4 depicts the fracture toughness variation in terms of various α for different
normalized span (S/R) obtained from theoretical and numerical solutions. In these graphs,
a reasonable increment in fracture toughness is noticeable as the crack length grows. All
numerical methods provided similar results to the ones obtained from the theoretical
formulation. The acquired curves experienced a parabolic behavior as anticipated by the
former studies [32,33].

Figure 4. Fracture toughness for a range of normalized crack length (α) and normalized span (S/R )
obtained by different methods: (a) theoretical formulation, (b) FEM, (c) RPIM, (d) NNRPIMv1 and
(e) NNRPIMv2.
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The stress distribution in y-direction, σyy, was also obtained from all numerical stud-
ies for different crack lengths and various normalized spans (S/R), as demonstrated in
Figures 5–7. It must be noted that the stress contours were extracted in a window di-
mensioned as 3× 5

(
mm2) considering a gap of g ∼= 0.5 (mm) ahead of the crack tip as

illustrated in Figure 3.

Figure 5. The stress distribution in y-direction, σyy, on the cracked area for normalized span
equal to S/R = 0.5 obtained by different numerical methods; top row: a = 7.5 (mm), middle
row: a = 10.0 (mm) and bottom row: a = 12.5 (mm), stress value in MPa .

Figure 6. The stress profile in y-direction, σyy, on the cracked area for normalized span
equal to S/R = 0.6 obtained by different numerical methods; top row: a = 7.5 (mm), middle
row: a = 10.0 (mm) and bottom row: a = 12.5 (mm), stress value in MPa .
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Figure 7. The stress profile in y-direction, σyy, on the cracked area for normalized span
equal to S/R = 0.7 obtained by different numerical methods; top row: a = 7.5 (mm), middle
row: a = 10.0 (mm) and bottom row: a = 12.5 (mm), stress value in MPa.

The smooth contours on the integration nodes of meshless methods and the FEM infer
that the density and the area of the stress distribution enhance by increasing the crack
length and span. The cracked area accounted for the maximum stress conforming to the
LEFM theory. As the crack length raised, the stress singularities increased around the crack
tip. In most cases, NNRPIMv1 and NNRPIMv2 depict a much similar stress distribution in
comparison to the RPIM and FEM even though there is no significant difference amongst
the profiles.

The verified results acquired from different methods in terms of accuracy would prove
the potential capability of meshless methods to provide accurate solutions. Therefore, it can
be inferred that the obtained results have shown promising accuracy leading to validate
the numerical methodologies.

5. Conclusions

This study deals with the fracture characterization on a marble SCB specimen using
advanced discretization techniques. The numerical model was prepared through the FEM
in FEMAP© software and the essential data of FE mesh was exported to feed the numerical
algorithms developed in MATLAB©.

The numerical elastostatic algorithm was implemented based on the FEM fundamen-
tals and RBF formulation in which the meshless nodal discretization was generated based
on the FE mesh background, which was built by the standard 2D constant strain triangle
elements. Then, respecting the FE mesh property, maintaining the nodal points, the RPIM
and NNRPIM meshless models were generated in which the latter one employed on both
first- and second-influence cell versions. As an output, the fracture toughness, KIc, and the
strain energy release rate, Gc, were computed.

The obtained numerical results (from FEM and meshless models) on KIc and Gc were
compared to a reference theoretical solution proposed for the SCB specimen available in
the literature. It aimed at describing how the fracture toughness of the studied specimen
can be affected by the crack and span lengths defined in the geometry. However, the results
infer that KIc, Gc and stress gradient around the crack tip accounted for a greater value
if the crack length grows or the span length increases. The acquired results imply that
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although the FEM solutions were closer to the reference solution, meshless methods results
were sufficiently accurate and promising.

A general discussion on the meshless method privileges can be drawn as:
The meshless methods are capable to offer numerically advantageous models to

evaluate the fracture characterization of the engineering structures since their formulations
are based on the FE mesh background (nodes) and some difficulties that FEM models may
face are already overcome. These issues can be identified as the dependency on the element
type and shape, FE distortions, convergence study on the nonlinearity, high degrees of
freedom and FE remeshing in terms of crack propagation problems. Besides, in terms
of computational cost, it must be mentioned that the meshless methods would have the
potential to reduce the computational costs since they are solving the problems only using
the nodal distribution in the problem domain. Moreover, it will be feasible to allocate
denser discretization in the interest region/influence domain of the corresponding model.
This aspect is more significant in solving large structures with complex material behaviors,
for instance, elastoplastic analyses, damage models and porous materials.

However, a simple model was studied in this work but it can be pointed out that the
meshless methods formulations extended to the LEFM are practically capable to simu-
late the fracture problems providing sufficiently accurate results to validate the support-
ing methodology.
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Nomenclature

CB Chevron-bend
CCNBD Cracked notched Brazilian disk
CSTSCB Cracked straight through semi-circular bend
EFG Element-Free Galerkin
FEM Finite element method
ISRM International Society for Rock Mechanics
LEFM Linear elastic fracture mechanics
NNRPIM Natural Neighbour Radial Point Interpolation Method
RFB Radial basis function
RPIM Radial Point Interpolation Method
SCB Semi-circular bend
SIF Stress intensity factor
SR Short rod
a Crack length
B Specimen thickness
E Young’s modulus
f Force vector
g Gap

https://sigarra.up.pt/feup/en/FUNC_GERAL.FORMVIEW?p_codigo=207900
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G Fracture energy
K Stiffens matrix
KIc Fracture toughness
P Applied load
R Specimen radius
S Span length
u Displacement vector
V Voronoï cells
YI Normalized SIF
α Normalized crack length
ε Strain tensor
ν Poisson’s coefficient
σ Stress tensor
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