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ABSTRACT

For fiber reinforced cement based composites, the principal beneficial

effects of fibers (metallic, mineral or organic) accrue after the matrix

has cracked. For loads beyond which the matrix has initially cracked, the

further crack extension and opening is resisted by bridging of fibers across

the cracks. The resistance provided by the fibers will depend principally

on the debonding and the pull-out resistance of fibers.

A theoretical model based on the concepts of nonlinear fracture mechanics

to predict the resistance provided by the fibers against the fracture of

matrix is presented in this report. The theoretically predicted response

is compared favorably with the experimental data on notched beams and double

cantilever beam specimens of steel fiber reinforced concrete. The proposed

theoretical model provides a method to calculate fracture resistance for a

crack extension in a specimen of any geometry.

One of the key parameters required for the model is the relationship

between the uniaxial post-cracking stress and the corresponding displacement.

This relationship will depend on the bond-slip function of fibers. A method

to estimate this relationship is presented

S.1
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INTRODUCTION AND SU4MKARY OF CONCLUSIONS

Research conducted during the last twenty years has shown that the

addition of fibers significantly improves penetration, scabbing and frag-

mentation resistance of concrete. The possible applications of fiber

reinforced concrete (FRC) include explosion and shock resistant protective

structures. Even though the enhanced "cracking resistance" is the most

important attribute of FRC, there are no rational methods of measuring or

predicting this important materialproperty.

For fiber reinforced cement based composites, the pricipal benefi-

cial effects of fibers (metallic, mineral or organic) accrue after the

cracking of matrix has occured. For loads beyond which the matrix has

initially cracked, the further crack extension and opening is resisted

by bridging of fibers across the crack. To incorporate the effects of

fibers bridging, many investigators have used the classical linear elastic

fracture mechanics concepts. These past attempts however assume one or

more of the following: (1) the closing pressure due to the fiber-bridging

is constant, (2) the extent of the fiber bridging zone is small compared

to the length of the traction free crack length, and (3) ignore the energy

absorbed in the fiber-bridging zone. In this report the results of a

theoretical model which does not make the above assumptions are presented.

An existing crack in a cement based matrix is replaced by an effective

crack length which consists of three zone: (I) a traction free zone,

(2) fiber bridging zone (Lf), and (3) the matrix process zone (p )

resulting from the aggregate interlock and microcracking (Fig. 5). It is

assumed that the stresses and deformations due to the applied loads and

ii



the closing pressures can be calculated using theory of elasticity. The

fiber bridging closing pressure depends on the crack opening displacement

which in turn depends on the geometry of the specimen, external loading

and on the closing pressure itself. An iterative procedure was developed

to account for this coupling between the closing pressure and the crack

opening displacement.

Experiments with fiber reinforced concrete specimens subjected to uni-

axial tension in a relativel3% stiff testing system indicate that the post-

peak displacement are essentially a result of opening of a single crack.

Thus it was assumed that the relationship between fiber bridging closing

pressure and the crack opening displacement (COD) are equivalent to the

uniaxial, tensile, post-peak stress-displacement function. A method to

estimate this relationship is proposed (Fig. 8) for steel fiber reinforced

concrete. Experiments to verify this concept are currently underway at

Northwestern University. Based on these experiments it is expected to

derive closing pressure vs. crack opening displacement relationship from a

single fiber pull-out vs. slip function.

Based on the theoretical model, load vs. crack mouth displacement curves

for notched, steel-fiber reinforced concrete beams were derived and compared

with experimental data (Fig. 26). The crack opening displacements for the

theoretical model were calculated using some simple approximations. A more

rigorous method of calculating COD by modelling crack as distributed dislo-

cations is currently underway.

Fracture resistance vs. crack extension relationships (R-curves) were

calculated and compared with the experimental data on the double cantilever

i. .



beam specimens of steel FRC (Fig. 20). The theoretical curves were obtained

by assuming that the displacement resulting from the fiber bridging forces

are irreversible. A good correlation was obtained with the experimentally

observed R-curves as well as load vs. load-line displacement curves (Fig.22).

Note that if the asymptotic value of R-curves is considered a material

parameter, then that value can be a useful quantity in identifying the bene-

fits of fiber addition. For example the predicted steady state value for

specimens reinforced with 37.5 mm steel fibers is approximately 40 times

that for plain unreinforced matrix (Fig. 25). This relative improvement in

fracture energy is comparable to that obtained by using an empirical method

called toughness index suggested by American Concrete Institute.

Iv



PREVIOUS THEORETICAL MODELS

Many investigators have attempted to predict the fracture behavior of

fiber reinforced composites based on the fiber bridging concept [2, 3, 4,

12, 13].

Lenian and Bunsell [2] proposed that the stress intensity factor (KR)

required for crack propagation was the algebraic sum of the stress intensity

factors resulting from the external load applied to the cracked specimen and

without considering the presence of fibers (Ko ) and the stress intensity

factor due to fibers bridging across the crack (Kr), i.e.,

- K° - Kr - Kc  (1)

where Kc - experimentally determined critical stress intensity factor for

the unreinforced matrix.

They calculated the effect of fibers bridging (Kr) in Asbestos Cement

by employing Paris and Sih's analytical expression [14] which was derived

for an internal crack in an infinite sheet under a region of uniform closing

pressure a applied at the crack tip (Fig. 1-a). This relationship is given

as:

a- sn - b _ a(- - 2) +(1 (2)

IS L a

where a, b, and c are crack length, and the boundaries of the applied uni-

form pressure a , as shown in Fig. 1-a.

They assumed that the closing stresses produced by the asbestos fibers

were the same for microcracks as for the main crack, and that a zone of

microcracking of length 1 can be represented by an imaginary increase of

crack length, xj, where x is a factor less than unity, to which the closing

stress was uniformly applied (Fig. 1-b).
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The stress intensity factor (KR) was then calculated as:

KR K° - (a + xtp) - a. + [ a+ 2 (3)

0 (a + xJ.)(a + xt) 2]

where x was the fraction of the m+crocracked zone a. Note that a is the

uniform bridging pressure of asbestos fibers which was assumed equal to the

maximum value of the post-cracking stress (amax) and was calculated from

[15]:

Umax A, Vm am + 4 n "7 r Vf4. (4-a)

Where A1 is a factor related to the extent of matrix cracking and which is

equal to or less than unity, Vm and am are the percent volume fraction of

the matrix and the matrix tensile strength. The second term in Eq. (4-a) is

primarily the contribution from fibers being pulled out. n is the effi-

ciency factor for the embedment length of fibers. no is the coefficient for

fiber orientation and distribution, while 7 , Vf, and f, are the bond
d

strength of fiber-matrix interface, fiber volume fraction, and the aspect

ratio, respectively.

The matrix-cracking factor A1 is usually small and can normally be neg-

lected (equals zero). The values of n1, vil and r are generally a func-

tion of specimen geometrics, casting procedure, type and size of fibers,

fiber volume fraction, and fiber distribution (l-D, 2-D, or 3-D).

By introducing A2 - 4 71 r r, Eq. (4-a) can be rewritten as:

uma A1 Vm am + A2 Vf d (4-b)

The values of A, and A2 are varied depending on different testing con-

figurations, conditions of matrix cracking and fiber debonding. In this

study, the value of A, was assumed to be zero while different values of A2

were selected, depending from different testing and cracking conditions.
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Their theoretical model did not provide good correlation with the ex-

periment results. This may be explained from the fact that, firstly, they

used a solution which was derived for a crack in an infinite sheet to rep-

resent a specimen with finite boundaries. Secondly, the actual fiber

bridging pressure depends on the crack surface displacement. This implies

that the assumption of constant fiber bridging pressure is not an accurate

one. Thirdly, their method of including the effect of the matrix process

zone by a factor x may not be very .ccurate because x reduces the effective

crack length which influences Ko and Kr .

Foote, Cotterell and Mai [3] proposed a model using the LEFM analyses

for a semi-infinite crack (Fig. 2). They also assumed that the stress in-

tensity factor (KR) for propagating a crack in fiber reinforced concrete

specimen consisted of two components, i.e.,

KR - Ko - Kr  (5)

where Ko is the stress intensity factor at the tip of the crack if there

were no fibers bridging and Kr is the stress intensity factor due to the

bridging fibers which tends to close the crack and was therefore considered

as negative (this is similar to Lenian and Bunsell's model [2]).

However, they realized that the fiber bridging stresses (crack closing

stresses) were coupled to the crack-surface displacements which in turn was

a function of the external loading and the crack closing stresses. To solve

this problem, they assumed a fifth order polynomial for the crack closing

stress, a(t). By employing the semi-infinite crack concent and the ana-

lytical expression from Muskhelishvili'q potential function [16] which gives

the displacements of the crack faces due to closing pressure a(t), they
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calculated the displacement and stress intensitv factor due to fiber

bridging as:

f(zz dt (6)277TINz (t - Z)

u r  a 4 im 40(Z) AdZ (7)
E f

Kro / Mdt (8)

where ur and Kr are the displacement and the stress intensity factor due to

the bridging fibers.

The displacement for the crack without fiber bridging (uo) was deter-

mined from theory of elasticity as:

where Poissons' ratio v was neglected in Eq. (9), (v o).

With the calculated total displacement, u - uo + u., an iterative

method was adopted to determine the KR curve for asbestos-cement composite,

using the initiation criterion as KR equalled Kc (a critical initiation

value for matrix)

KR = Ko+Kr -Kc (10)

The comparison of the predicted results with the experimental values

was poor. They attributed it to the fact that the assumed crack closing

pressure was inaccurate due to lack of experimental data. Besides, the

semi-infinite crack solution was clearly not the actual solution for a

finite specimen and crack growth.

i
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Since the crack closing stress w(t) on the crack surfaces depends on

the displacement, u(r), and in turn the displacement u(r) depends on the

stress function it(Z), Eq. (6) cannot be solved directly without knowing

the exact u (t) and therefore an iterative method is used. By assuming a

fifth order polynomial function as the initial value of a(t), u(r) was

then calculated from Eqs. 6 and 7, and the crack closing stress 0(t) was

determined and iterated.

Using two types of test specimens, double cantilever beam and single

edge notched, Bowling and 'roves [1 explained that as the crack propagated

in the DCB specimen and became bridged by the aligned nickel wires (Fig. 3),

the measured critical stress intensity factor, for further propagation,

increased.

The increase was clearly due to the presence of wires bridging the

crack and exerting crack closing pressure which reduced the actual stress

intensity factor pertaining to the matrix crack tip. Thus a stress inten-

sity factor due to wires bridging (Kw) must be subtracted from that due to

the applied force (Ka) and the initiation criterion was set as the net

stress intensity factor (Ka - K) reached the critical value of KIC, i.e.,

Ka - Kw - c (11)

The KC value here was taken as that required for propagating an un-

bridged crack past a wire. The value of Ka for the case of DCB was cal-

culated from an expression given by Wiederhorn et al [17] as:

Ka - ( 3.457 + 2.315 --!-) (12)
00bd3/2a

where P was the applied load, a was the measured crack growth, and w, b,

and d were specimen dimensions as defined in Fig. 3.
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To calculate the contribution of the bridging wire (Kw), P in Eq. (12)

was substituted by the tensile force in the wire, and a was replaced by the

distance from the wire to the crack tip.

The main argument for this proposed model was that the assumed crack

bridging force P was independent of crack opening displacement which is un-

likely to be the case of fiber reinforced concrete [3, 12, 13, 19, 20, 21].

The effect of matrix process zone in front of the crack tip was also neg-

lected. The analysis was primarily designed for the aligned fibers and

therefore cannot be used for the case of random distributed fibers. The

formula given in Eq. (12) was also based on the elastic analysis which is

unlikely to be applicable, without any modification, to nonlinear materials

such as concrete and fiber reinforced composites.

Petersson and Hillerborg [12, 13] introduced a fictitious crack model

using finite element analysis to determine fracture toughness of concrete

and fiber reinforced composites. Their model was based on the Dugdale-

Barenblatt concept [10, 18) which primarily depends on the stress- displace-

ment relationship in the nonlinear zone (fiber bridging and matrix process

zone). Their stress-displacement relationship (a vsq ) can either be ob-

tained from a uniaxial tensile test or from a notched beam specimen. A set

of linear stress-displacement relationships was assumed in the analysis.

By keeping the work done or area under the I - n curve constant, the maxi-

mum pulled-out displacement ( fmax) which was later used as the initiation

criterion (Fig. 4) was calculated from:

max

Gc =d('i)d(13)
0(13)

v0
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With the linear a - 11 relationship, the maximum pulled-out displace-

max
ment 'fI can be expressed as:

max- 2G (14)
f Ga

max

It can be seen that the value of nfm was calculated as a function

of only GC and ( wcmax . However, f max should be primarily a function

of fiber geometry and distribution. For example, it is shown that the
I

upperbound value of I fmax equals - whether fibers are steel or glass

even though the values of Gf/ um may be different for these two types of

fibers.

-Ie
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BASIC CONCEPTS OF THE PROPOSED MODEL

A crack just prior to its extension in Mode I opening in a fiber rein-

forced concrete specimen is shown in Fig. 5. The length of the crack can

be divided into three regions: 1) a traction-free crack length which con-

sists of initial cast notch and the zone of crack length where fibers are

completely pulled out of the matrix, 2) the region of fiber bridging ( Id,

and 3) the matrix process zone (generally due to aggregate debonding and

interlocking) in front of the crack tip. Both fiber bridging and matrix

process zone provide resistance to crack opening. The effect of the fiber

bridging is normally much more significant than that contributed from the

matrix process zone, and as a result, the crack closing pressure in the

matrix process zone is neglected in this study.

Region 1 (traction-free crack) and region 2 (fiber bridging) were

separated at the point where the crack surface displacement was equal to

f f (the maximum crack displacement where fiber bridging stress is zero,
max

since all fibers at that point are completely pulled out, Fig. 6), while

the fiber bridging zone and the matrix process zone were divided at the
m

point where crack surface displacement equalled to m the maximum dis-

placement of the matrix in the descending branch of the uniaxial tensile

test where stress is equal to zero, Fig. 6).

The value of Im has been reported by Wecharatana and Shah (19, 20,

21]. This value is about 0.8 x 10-3 in. for matrix mix 1:2:0:0.5 (c:6:A:w).

The 4 value used in this study was half the fiber length. This may be
max

justified (as shown in Fig. 6) from the observation that fibers are randomly

distributed across the crack. The smallest pulled-out distance is equal to

zero (labelled 3 in Fig. 6) and the largest pulled-out distance is half the

- A. L ........................
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fiber length (labelled 2 in Fig. 6). This implies that if the two crack

surfaces are separated by a distance of half the fiber length, there will

not be any fibers left bridging across the crack which subsequently means

the fiber bridging pressure is zero.

If fibers are randomly distributed rather than aligned, then the maxi-

mum embedment length approaches t/2 in. Similarly, the ilm refers to
max

the crack surface displacement where zero aggregate bridging and inter-

locking pressure is assumed (Fig. 6).

If the stresses in these nonlinear zones (fiber bridging and matrix

process zone) are assumed to be purely under uniaxial tensile behavior,

then crack length "a" can be replaced by an effective (elastic) crack

a ef such that aeff a + L., where L. is the idealized length of the

matrix process zone (Fig. 5). This effective crack "aeff" sustains two

types of crack closing pressures: one due to the fiber bridging and another

due to aggregate bridging which was neglected as explained earlier. The

concept of this model is somewhat similar to that originally proposed by

Dugdale [10] and Barenblatt [18].

For a given applied load and an effective crack length, the crack open-

ing process is primarily resisted by the bridging of fibers across the crack.

It is necessary to first calculate the size of the fiber bridging zone.

Since it is a function of the crack profile and the length of the fibers

used, an approximate crack profile was first assumed (a linear crack pro-

file was assumed in this study). Knowing the crack profile, crack length

and n (half the fiber length), the size of fiber bridging zone was then
max

determined. From the uniaxial tensile stress-displacement relationship and

the assumed crack profile, the fiber bridging pressure can also be obtained.
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The stress displacement relationships for different fiber volume fraction

and aspect ratio are given in Table 1. Details of how to obtain such re-

lationships will be discussed later.

In this analysis, it is assumed that crack will initiate as the crack

surface displacement at the tip of the effective crack length "a" reaches

a value 1m (defined in Figures 5 and 6).

As the fiber bridging pressure distribution depends on the crack sur-

face displacement, which in turn is a function of the applied load, speci-

men geometry, the size of fiber bridging zone, the length of the matrix

process zone Z. and the closing pressure itself, an iterative procedure
p

was then needed in the analysis as follows:

Consider a given crack length "a" in a fiber reinforced concrete

specimen just prior to its further extension.

1. Assume a crack profile and a matrix process zone of length tp.

With the given length of fibers used, the size of fiber bridging

zone I can be calculated using q f  as the limit of the fiber
f max

bridging zone.

2. Knowing it and the assumed crack profile, calculate the closing
f

pressure distribution, using the stress-displacement relation-

ship given in Table 1. Note that for simplicity the closing

pressure distribution in the matrix process zone is neglected.

3. For a given specimen geometry (double cantilever beam and notched

beam specimens were considered here), the applied load P and the

crack closing pressure, calculate using theory of elasticity, the

crack opening displacements for the effective crack aeff.

'FAT"



11

4. If the crack opening displacement at the end of matrix process

zone ( g) is equal to vim then the initiation criterion isp max'

satisfied and the assumed value of Q1 is partially a correct one;

otherwise a new value of Ip is assumed and the above steps are

repeated until the initiation condition is satisfied.

5. To further ensure that the iterated I. and the assumed crackp

profile are correct, the load line deformation ( np ) is cal-

culated based on the same elastic principle and then compared

with the experimentally observed values. If these values do not

correspond to the measured data, a new crack profile is assumed

and the above procedure is repeated until this condition is

satisfied.

NOMALIZED UNIAXIAL TENSILE STRESS-DISPLACEMENT RELATIONSHIP

Experiments with fiber reinforced concrete specimens subjected to uni-

axial tension in a rigid testing system have shown that the post-peak dis-

placements of the specimens are essentially a result of the opening of a

single crack [22]. Thus the uniaxial tensile stress-disvlacement relation-

ship in the post cracking region can be taken as the crack closing pressure

(6 ) versus crack surface displacement (, ) relationship.

Since the uniaxial tensile stress-displacement is important to the

fracture behavior of fiber reinforced concrete, careful study of this rela-

tion is essential, particularly in the post cracking region. Many inves-

tigations have conducted uniaxial tensile tests of fiber reinforced con-

crete with different fiber volume fractions and aspect ratios (12, 22, 23).

These results were used for the analysis here.
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The stress-displacement relationship of fiber reinforced composites in

the post-cracking region is bounded by two parameters (Fig. 7): the maximum

post-cracking strength ( fma,) and the maximum pulled-out displacement of

f

fiber (f max)

The maximum post-cracking strength is generally known to be a function

of fiber volume fraction (Vf), aspect ratio (), fiber distribution and

embedment length coefficient ( 0 or 4 q, no in Eq. 4-a) and the bond

strength of fiber matrix interface (7) (15] where:

Wmax " vf + (15)

The maximum fiber pulled-out displacement normally depends on the em-

bedment length and the fibers orientation. It can be seen (Fig. 6) that

fibers may bridge over a crack in different ways; some fibers may have most

of the length embedded on one side, and have only a small portion left on

the other side of the crack (labelled 1); some fibers may be totally em-

bedded on one side of the crack (labelled 3); and hardly but possibly that

a fiber may be equally embedded on both sides of the crack (labelled 2 in

Fig. 6). Since the smaller side of the embedment length is the one which

will be pulled out of the matrix (this is due to a smaller total resisting

force or frictional force), it can then be concluded that the maximum

pulled-out displacement cannot exceed half the fiber length which is used

here as the value 
of max"

By normalizing the post-cracking stress with the maximum post-cracking

strength (O/ emax) and the post-cracking displacement with it (--,)'
max f

max

it was found that there exists a unique relationship between the

normalized post-cracking stress and displacement for a given 
type of fiber.

............
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This relationship was independent of the fiber volume fraction and aspect

ratio as can be seen in Fig. 8. To generalize a unique normalized stress-

displacement relationship for steel fiber reinforced concrete, it was

assumed that the maximum post-cracking strength occurs at the end of the

matrix process zone or the beginning of the fiber bridging zone, and

smoothly decreases to zero as the crack-surfaces displacement reaches half

of the fiber length. Therefore, the boundaries for this relationship can

be summarized as:

at x W o or n - o a 1.0

omax

(16)

at X = i or 1 - 'If a a 0.0f max m axc

where x is the distance from the crack tip, n is the crack surface dis-

placement at x. For the condition of monotorically decreasing stress, we

can write:

do < o for o < np < q (17)
d n max

or o < X < ef

At attempt to predict the normalized stress-displacement relationships

for steel fiber reinforced concrete based on the experimental results re-

ported in [11, 22, 23] is made here. To satisfy all the required boundary

conditions given in Eqs. (16, 17), one of the possible solutions is:

0 f 2(18)
emaaf

masxh mxiu

where w is the maximum post-cracking strength and a is the maximum

pulied-out displacement of fibers.
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For other types of fiber reinforced composites, the normalized stress-

displacement relationship given in Eq. 18 may be modified with an exponen-

tial factor of e-A[-]B where Eq. 18 can be rewritten as:

(19)

iwhere a and n are constants which will devend on the type and the pull-out

behavior of fibers.

It can be seen that the post-cracking strength at any pulled-out dis-

f
placement (n) can be predicted provided that nmax and n max are known

('max is a function of n , , , Vf, and 1/d while n m equals

half the fiber length). Thus the normalized relationship shown in Eqs. 8,

18, 19 could be very useful in design of fiber reinforced concrete com-

posites.

To predict the tensile stress-displacement relationships in this

study, the value of Al in Eq. 4-b was neglected and the factor A2 which is

a function of TL , % , and 7 has been selected from the literatures

(15, 24 - 26] as follows:

For the double cantilever beam specimen, with the method of casting,

the type of fibers used and the critical specimen thickness of 0.5 in. (11),
the value of A2 was selected as 600 psi. In the case of the notched beam

specimens, the different fibers size, the method of casting, and specimen

thickness of 1.5 in. (6), lead to the value of A2 as 300 psi. With these

selected values of A2 , the stress-displacement relationship can be predic-

ted, using Eqs. 15 and 18.
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Different C-ri relationships for different fiber volume fraction

and aspect ratio used in this study are given in Table I.

CALCULATION OF CRACK SURFACE DISPLACEMENT

Most fracture studies for cementitious composites in the past were

based on the calculation of the stress intensity factor K using the linear

elastic fracture mechanics concept. In this study, a method is proposed

to calculate the strain energy release rate G based on the change of global

compliance dC
da approach.

Approximate and simple methods of calculating compliances of a

cracked double cantilever beam and centrally notched beam are described in

the following section.

DOUBLE CANTILEVER BEAMS

The compliance of the double cantilever beam specimens was calculated

using the so-called DCB approach (19, 20].

A single cantilever beam model under the applied load P and the crack

closing pressure is shown in Fig. 9. The deformation for the double can-

tilever beam in this analysis was calculated from the beam bending theory

where deformation due to the applied point-load P for a single cantilever

beam (Fig. 9) can be determined from (19]:

2

Y -x 12P a effX 1 In-H(x) 1X 1 + 1_
BE(x I [2H X)H2 (0) C 2 n H(o) -2 2 {Hix) H~o

+ )1 ln ! ] (2o)

+ ( + 2 H(x) C2 - 0(20)

where yp(x) is the deformation at any point x from the effective crack tip,
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aeff. C1 and C2 are the beam depths at the free end and the slope of the

tapered beam. E and u are material constants, and B, H(x) and H1(O) are

beam width and thicknesses at distance x from crack tip and at the crack

tip. These variables are shown in Fig. 9.

For the deformation due to fiber bridging pressure, with the nonlinear

crack closing pressure, a numerical integration was employed to solve the

beam bending governing equation:

d2y M k dV (21)

- EI + AG dx

where A and I are cross sectional area and moment of inertia, E and G are

elastic and shear modulus while K is the average shear constant. M and V

are moment and shear which are given as:

for .£ < x < +A ;
p f p Lf +Lp

M (x ) .Jx t . d(t) ( -x) dt

-f + p(22)

V(x) - t . (t) dt

for o < x<P ; t I

M(x) -
I tn. U(t) (t-x) dt

p

= If + (23)

V(x)
tn. o(t) dt

for x >f P

M(x) 0 ; V(x)n 0 (24)

mt
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The total deformation is enuivalent to the deformation due to annlied

load P subtracted by those due to fiber bridging.

( P)total TIP ) apnlied load - ( n
P)fiber bridping (25)

Details of the test setun and snecimen dimensions are given in Fig. 10.

CALCULATION OF CRACK MOUTH DISPLACEMENT FOR NB SPECIMENS

A fiber reinforced concrete beam with an initial cast notch of length,

ao , subjected to pure bending, is shown in Fig. 11. As similar to the case

of double cantilever beam analysis for a given load P and crack length *a",

all nonlinear zones (matrix process zone and fiber bridging zone) were re-

placed by a regicn of crack closing pressure. The crack closing pressure

within the matrix process zone was assumed to be small compared to those

due to fiber bridging and therefore was neglected.

The fiber bridging stress again denends on the assumed crack profile

which is a function of crack growth "a" and crack mouth displacement "CMD".

Using the normalized stress-displacement relationship given in Ea. 18, thi

calculated maximum post-cracking strength ( amax) 
and the assumed crack

nrofile, the fiber bridging stress distribution can then be deterr.ined as

follows:

For the assumed linear crack profile:

CMD - _n
a y (26)

and CMD
= a " y

Note that Eq. 26 gives T - 0 when y = 0 which is in fact not true. Only

for the simplicity in calculating the fiber bridging pressure, this assump-

tion is made.
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Substitute n from Eq. 26 into the normalized stress-displacement re-

lationship (Eq. 19). Eq. 18 can be rewritten as:

orI - 1 ( D)Y] (27)
L (Y) = 0 max [ ax

where f is the maximum pulled-out disnlacement (equal to half the fiber
rlmax

length).

By introducing Ak -_-- -) , Eq. 27 can be rewritten as:
a. l max

a (y) -
0
max I - AkY] 2 (28)

Knowing the fiber bridging stress acting along the length of Lf on

the effective crack of length a + , the change in rotation of the beam

resulting from the effective crack - aeff can be calculated from the rela-

tions derived by Okamura et al [27, 28]

( . XFM * F + X " M (29)

where 9 is the relative rotation of the crack front, F is the axial force

resulted from the fiber bridging pressure, M is the resultant moment due to

the external load and those resisting moment due to F (Fig. 11), and AFM

and XM are the increments of the compliances caused by the presence of the

effective crack - aeff and are given as:

xFM - 2(l- 2) 6 YF YM d (30-a)
BE f

0

2(1-v 2) j6) Y2() dt (30-b)

IM

o , f M

. .. 0
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where ' = aeff and YF( , YM(t) are given as:

Yr ) * 1.99 - 0.41( ) + 18.70( 2 - 38.48( ) + 53.85( )4

(30-c)

Y( ) = 1.99 - 2.47( ) + 12.97( )2 _ 23.17( )3 + 24.80( E )4

(30-d)

Note that Eqs. 29 and 30 are applicable only for < 0.6.

For the case of non-uniformly distributed fiber bridging stress, the

total F can be determined from:

F - B f(y) dy (31)

0

substitute G(y) from Eq. 281[ ,
F = B max  f ]2 dy (32)

0

F - BOmax * f [l-Ak tf +Ak2 f2 (33)

3

Note that. the size of fiber bridging zone was again controlled by half the

fiber length; however, in the case of notched beam specimen the value of

COD was always smaller than half the fiber length. As a result, the size

of tf was equal to:

for COD < L/2

f a - ao  (34)

The resisting moment due to force V depends on the distance between

the neutral axis and the crack tip. The problem then depends on where the
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location of the neutral axis is. According to Hannant [15], the neutral

axis of an unnotched fiber reinforced concrete beam is approximately one-

cuarter of the beam depth (or the unnotched distance) from the compressive

surface. Therefore, the distance between the crack tin and the neutral axis

was assumed to be equal to (2 W + - a)
4 4

The resisting moment can then be determined from:

Mr - a(y) W + ao - a) + y dy (35)
BP0 4
0

3 aIntroducing dm a w + - a , and substituting a(y) from Eq.28:
4

t't r C U f f
Omx( Aky) 2 

(dm )d (36)

Mr ax  + Y) dy

Mr B -(ma f d + L (1 - 2 -Adm
2

+ If 2  (Ak2 dma-2 Ak)+Ak2 ]3 k +A 2 I3  
(37)

I4
For a given value of the applied bending moment, the dimensions of the

beam and the length of the notch, a value of £ can be iterated such that
P

the calculated value of e from Eq. 29 is equal to I m / Ip (the value of
max Pm -2

in was considered from the matrix and was found to be 0.08 x 10 in.
max

according to [19, 20, 21] ).

Once the initiation condition is satisfied, the crack mouth displace-

ment is calculated from:

CMD = e(a + I ) (38).iP

, . . ._ _ , .'. . .. ,, , , . . . ,, ,h , , m m m - - < .. . . . ... -. I. . . I l l I .. . .. . ". .
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the calculated value of CM is then checked with the experimentally ob-

served data. If this condition is satisfied, the assumed crack profile

and the iterated I are correct, otherwise a new crack profile is assumed

and the above procedure is repeated until such displacement condition is

satisfied.

Details of the test setuv and the specimen dimensions for the notched

beam specimen are given in Fig. 12.

CALCULATION OF FRACTURE ENTERGY

The resistance to crack extension can be expressed in terms of the

strain energy release rate. This term should include, in addition to the

elastic energy, the energy absorbed in the fiber bridging zone (as well as

in the matrix process zone, which was ignored here). In terms of the

global compliance concept, the terms for strain energy release rate should

include both the unloading compliance (CR in Fig. 13) and the permanent

deformation ( 6p).

To determine the actual amount of energy required for crack propaga-

tion, it has been shown that the classical concept of strain energy release

rate must be modified to include the effect of nonlinear zone (in this case,

the fiber bridging zone) (7, 9, 19]. It was also shown that the energy

required for incremental crack growth should be the area under the load

deformation curve between two unloading lines at those corresponding crack

growths (shaded area in Fig. 13), i.e.,

G 1i2 [dCR P 1] 2 (39)
m 2tn [daeff 2 f

* -V - -*.--, *~.A;~*.--I
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where P1 and Pi are two consecutive neighboring loads, tn is the critical

thickness in the crack plane, CR and 6p are the unloadinR (elastic) com-

pliance and the Dermanent deformation, respectively. To calculate Gm from

Eq. 39, it is clearly indicated that the change of unloading compliance and

permanent deformation with crack growth must be determined.

During the unloading process, the fiber slipping distance or Dulled-

out displacement was assumed to remain constant. This behavior was exper-

imentally observed by Hawkins, Lin and Jeang [29]. They reported that the

slip in reinforced concrete during unloading remains constant (Fig. 14).

It implies that the same fiber bridging pressure which resists the crack

from opening during the loading nrocess also acts as frictional force and

resists the crack from closing during the unloading process. As a result,

we can conclude that the existing permanent deformation at the end of the

unloading period (P - 0) is equal to the load-line deformation due to fiber

bridging stress which prevents the crack from opening. If the fiber bridg-

ing stress was assumed to remain constant throughout the unloading, the

deformation 2 (due to fiber bridging during loading) must equal the defor-

mation 3 (due to fiber preventing crack from closing during unloading)

(Fig. 15).

To determine R-curve (fracture energy vs. crack extension) from a given

set of load P and crack a, the procedure mentioned earlier for DCB and NB

was used to iterate for the size of the matrix process zone and calculate

the total load-line deformation (p ) total. From the same crack closing

pressure, the permanent deformation (np ) perm can also be calculated from

the elastic beam bending theory. Knowing both the oermanent deformation

and the total load-line displacement, the elastic deformation can be deter-

mined from Fig. 15:

-. -. .- A
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(rp) total - (7) perm. + ( Tip) elastic (40)

The unloading compliance (CR) can then be calculated from:

CR- ( Tip)elasticCR = -- j- (41)

By olotting C and (np) perm. with crack length, the change of un-

loading compliance and permanent deformation with respect to crack growth

can be determined. Consequently, Gm can be calculated from Eq. 39, and

eventually R-curve can be obtained by plotting the obtained GR with the

actual crack growth, &a.
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EXPERIMENTAL INVESTIGATION

SPECIMEN CONFICURATION

The double cantilever beam specimens (Fig. 10) used in this study

were 24 in. long tapered beams developed by Visalvanich and Naaman I").

The snecimens were 2 in. thick with double grooves along the center line

of the specimen which provided a 0.5 in. critical thickness. Details of

the specimen setup were given in Ul.

The notched beam specimens were tested by Velazco et al (30). The

specimens were 1.5 in. thick with 3 in. width and a span length of 15 in.

Details of the specimen and test setup are shown in Fig. 12.

MATERIAL PROPERTIES AND MIX PROPORTION

The matrix mix-proportion used in this study was (1:2:0.5) (Cement

Sand : Water). The cement used was high early strength ASTM Type III ce-

ment; the sand was a siliceous sand with a maximum particle size sassing

sieve No. 8 (0.0937 in. opening).

The fibers used were straight cut, brass coated steel fibers with the

3
specific gravity of 490 lb/ft . Three different volume fraction of fibers,

0.5, 1 and 2 percent were selected to study the effect of fiber content.

Two different sizes of fiber: 0.25 in. long with 0.006 in. diameter, and

0.75 in. long with 0.016 in. diameter, were used. In this report, four

series of fiber volume fraction and 'aspect ratio (as listed in Table 1),

with two specimens each, were theoretically studied. Only the series of

Vf a 1 Z with j, - 0.25", and d - 0.006" which were tested by the authors

with the loading-unloading technique £7, 19]; all other series of DCB

specimens were tested by Visalvanich (11) without the unloading process

and therefore could not be used to obtain the experimental R-curves.

- '-
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The notched beam tests were conducted by Velazco [30]. The data used

in this study have a constant fiber volume fraction of 1 percent with the

initial cast notch varied from 3/8 in. to 1.5 in. The steel fibers used

were brass-coated, 1 in. long, and 0.01 in. in diameter ( t/d - 100). The

fibers specific gravity was 490 lb/ft3 , and the matrix mix-proportion was

1:2:0.5 (Cement : Sand : Water). The experimental data provided by Velazco

[30] were the applied load, crack growth and the crack mouth displacement;

no unloading was reported in the testing procedure.
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COMPARISON WITH EXPERIMENTAL DCB DATA

Since only the series of Vf - 1%, I - 0.25", and d - 0.006" for the

double cantilever beam specimens were tested with the loading-unloading

technique, only the experimental R-curves of these series were then cal-

culated and comnared with the theoretical values in this section, while

the results of all other series will be reported later.

With the assumed crack profile, the iterated I was calculated by
P

satisfying the initiation criterion (i.e., crack displacement at the end of

the matrix process zone equals Tlm of the matrix, Figs. 5 and 6). To
max

ensure that the obtained p and the assumed crack profile were correct,P

the Predicted total load-line deformation must be in good agreement with

the observed values.

Fig. 16 shows the plot of total load-line deformation (n Ptotal with

crack growth while Fig. 17 reports the load-deformation curves. It can be

seen that the predicted values are in good agreement with the experimentally

observed values. (Note that the solid points refer to the experimental data

while the blank point represents the predicted values; the same notation

will be used throughout this study.)

Since the fiber bridging pressure primarily resulted from the fric-

tional bond strength and the slipping distance was assumed to remain con-

stant during unloading (29], the permanent deformations can easily be deter-

mined from the obtained fiber bridging pressure, using the elastic beam

bending concept. Fig. 18 shows a Plot of Permanent deformation versus

crack growth and it can be seen that the predicted results are in good

correlation with the experimental data.

*
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In Fig. 19, a good correlation is also observed for the predicted and

measured unloading compliances at small crack growth. The correlation is

poorer at the larger crack growth. This may be because of the so-called

end-effect. The end-effect in the double cantilever beam specimen is re-

lated to the size of the uncracked portion of the specimen since the DCB

analyses assume the beam to be fixed at the crack tip. As a result, the

smaller the uncracked ligament, the more inaccurate the fixed-end concept.

For the double cantilever beam used in this study, the valid region without

the end-effect is for crack growth of less than 16 in.

Knowing the change of permanent deformation and unloading compliance

with crack growth (Figs. 18 and 19), R-curves can be determined from Eq.

(391 The predicted R-curve was compared with the experimentally observed

R-curve in Fig. 20 where good agreement was observed in general.

COMPARISON WITH OTHER DCB DATA

Other DCB experimental data which will be used for comparison with the

predicted results are the series of Vf - 0.5 2, ' = 0.25", d = 0.006";

Vf a 2 %, I - 0.25", d - 0.006"; and Vf - 1%, L -0.75", d = 0.016".

The comparisons of the theoretically predicted load-line deformation

with the experimental results reported in [11] are presented in Figs.(21a -

21c) which are the plot of load-line deformation with crack growth. It can

be seen that all predicted results were in good correlation with the exper-

imental data. This implies that the assumptions of linear crack profile and

the neglipibility of crack closing pressure within the matrix process zone

are satisfactory. It was also found that the higher the fiber volume frac-

tion (Vf), the larger the total load-line deformation.

[ i . ...
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The load-deformation curves predicted, using the proposed model, were

found to be in good agreement with the experimentally observed values re-

ported in [ii], as can be seen in Figs. 22a - 22c.

Fig. 23 shows a plot of predicted permanent deformation for all four

sets of fiber reinforced concrete. It was observed that the higher the

volume fraction, the longer the predicted permanent deformation. It can

also be seen that the larger the value of fiber aspect ratio, the larger

the permanent deformation. The rate of change in permanent deformation

(with respect to crack growth also increased with fiber volume fraction

and aspect ratio.

A plot of unloading compliance with crack growth for all four sets of

fiber reinforced concrete was shown in Fig. 24. For Vf - 0.5 %, the pre-

dicted Ck-a relationship was close to linear. It was also observed that

the larger the amount of fibers (higher volume fraction), the more non-

linear behavior exists for the unloading compliance and crack growth rela-

tionship.

Fig. 25 shows the comparison of the predicted R-curves for all four

series of fiber reinforced concrete. It can be seen that increasing the

amount of fibers (volume fraction) resulted in an increase in the fracture

resistance. For the same volume fraction, increasing the fiber aspect

ratio (length) also increased the fracture toughness of the composites.

Note that if the asymptotic value of the R-curve is considered as a

material parameter, then that value can be a useful quantity in identifying

the benefit of fiber addition. For example, by comparing the R-curves of

specimens reinforced with 0.75 in. long fibers and plain mortar, it can be

observed that the asymptotic steady-state value of fracture energy is

= 0 _. ,.I. ,. _ :.
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increased more than 40 times due to fiber addition. This relative value is

somewhat comparable with the reported value of "toughness index" (relative

values of areas under the load-deflection curve in flexure) by other inves-

tigators (33, 34, 35]. Thus, the model oronosed here seems to provide a

tool for predicting the effectiveness of fibers in imvrov~ng the fracture

resistance of concrete.

COMPARISON WITH EXPERLMENTAL NOTCHED BEAM DATA

Using the theoretical model proposed for the notched beam specimens,

the theoretical load-crack mouth displacement relationships were predicted

for vlain mortar and fiber reinforced concrete (Fig. 26). The mix-propor-

tion for plain mortar was 1:2:0.5 (Cement : Sand : Water). Three different

sets of initial notch ao with Vf equalled to 1 percent and "a - 300 psi"
max

were studied.

A good correlation is observed for the predicted and the measured

crack mouth displacement for plain mortar (Fig. 26). These results were

calculated using the observed peak loads and the initial crack letngth from

(30].

For fiber reinforced concrete, the comparisons in Fig. 26 show that

the analysis does not correlate exactly with the experimental results.

However, the predicted values were still in good agreement with the ob-

served data. These variations may be attributed to the fact that: 1) the

actual neutral axis for the notched-fiber reinforced beam. is not known, the

neutral axis used in this analysis was based on what has been proposed by

Hannant (15]-- (d/4 from the compression face where d is the depth of the

unnotched beam); 2) the theoretical concept proposed by Okamura et al

& 
9'
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(27, 28) is valid only when the a/w ratio is less than 0.6, with fiber re-

inforced concrete, most observed crack growths reported in Ref. [30] had

a/w much larger than 0.6. The assumed linear crack profile might not

be accurate enough for the case of notched beam specimens which leads to a

wrong estimation of the fiber bridging pressure.

Additional theoretical analysis for predlicting crack mouth displace-

ment more accurately for notched beam specimens is currently under way.

MATRIX PROCESS ZONE, FIBER BRIDGING ZONE AND CRITICAL COD

The value of the matrix process zone L can only be obtained through

the iteration procedure which must satisfy the initiation criterion that

the crack tip opening displacement equals n m used here for the matrix
max

was 0.08 x 10-2 in., as reported in References[19, 20, and 21]. The fiber

bridging zone was calculated from the assumed crack profile with the condi-

tion that fibers will be completely pulled out when the crack surface dis-

placement equals (half the fiber length, Fig. 6). In this study,
max f

since the value of crack opening displacement was always less than nf max

(half the fiber length), the size of the fiber bridging zone was then equal

to the crack length subtracted by the length of the initial cast notch.

Fig. 27 shows the plot of both the calculated matrix process zone and

the fiber bridging zone (t and I respectively) for the DCB specimens.p f

It can be observed that the matrix process zone is essentially constant with

respect to crack growth. The value of I calculated from fiber reinforced

mortar specimen was almost identical to those obtained from mortar specimens

(19, 20, 21]. The conclusion of constant process zone was also confirmed in

other materials like DMMA (31, 32). The obtained value of Ip was found to

p
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be approximately about 3 in. and seemed to be independent of different fiber

volume fraction and aspect ratio (Fig. 27).

A Plot of the matrix Process zone and the fiber bridging zone with the

uncracked ligament in the notched beam snecimens is shown in Fig. 28. The

predicted matrix process zones, using the proposed model, were found close

to what has been reported for the unreinforced mortar [19, 20]. Fig. 18

also shows that the fiber bridging zone increases with crack growth, or as

the uncracked ligament decreases.

S* j ..
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Table 1. PREDICTED STRESS-DISPLACEM4ENT RELATIONSHIPS

FOR DIFFERENT Vf AND 1/d FOR DCB SPECIMENS

Vf /d d relationship**

(in.) (in.) 1 (psi)

0.5 41.67 0.25 0.006 a - 125 (1 8l )2

1.0 41.67 0.25 0.006 F - 250 (1 - 8r )2

1.0 46.88 0.75 0.016 ' - 281.28 (1 - 2 . 6 7 
n )2

2.0 41.67 0.25 0.006 a - 500 (1 - Sn )2

These stress-displacement relationships were predicted, using

r - 600 psi, and the proposed normalized relationship (Eq. 15)
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APPENDIX I - NOTATIONS

A cross sectional area

A a factor for composite strength that related to the extent

of matrix cracking

A2  a factor for composite strength that related to fiber

bridging ( - 4 n T )

A k  a constant obtained from the ratio of CD/(a -i )k- max

a crack length

a traction-free crack length

aeff effective crack length (-a + I )

B beam thickness

b, c boundaries of the zone of uniform crack closing pressure

C compliance ( = 6/ )

C1  DCB - beam depth at free end

C2  slope of the tapered DCB specimen

C unloading - reloading compliance
R

CMD crack mouth displacement

COD crack opening displacement

d diameter of fiber

dm distance from crack tip to the assumed neutral axis

E modulus of elasticity

F total axial force in notched beam specimen

C shear modulus of elasticity

G critical strain energy release ratec

G m  modified strain energy release rate

'rR strain energy release rate - resistance curve

.. I
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H(O) DCB - beam depth at crack tip

H(x) DCB - beam depth at x

I moment of inertia

k average shear constant

Ka  stress intensity factor due to applied force P

Kc  critical stress intensity factor

K 0 stress intensity factor at crack tip calculated without

considering the presence of fibers

K R  stress intensity factor for crack porpagation in fiber

reinforced matrix

K stress intensity factor due to fiber bridging
r

Kw  stress intensity factor due to wires bridging

KIC critical stress intensity factor under mode I opening

, L fiber length

If zone of fiber bridging

I p microcracked zone or matrix process zone

kfiber aspect ratio

d

M applied moment

m, n exponential constants for variation of fiber pulled-out

behavior

P applied load

Pit P 2 two consecutive neighboring loads in the loading sequence

t critical beam thickness in the crack planen

u crack-surface displacement of a crack without fiber

bridging
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u r crack-surface displacement due to fiber bridging

V shear force

Vf volume fraction of fibers

Vm percent volume of matrix

W depth of notched beam specimen

x distance from crack tip

y distance from crack tip in fiber bridging zone of notched

beam specimen

yp(X) crack-surface displacement at distance x from crack tip

due to applied force

YF( &), YM( polynomial functions due to force and moment in

terms of & for notched beam specimen

a a factor (less than unity) for the effective process zone

8 efficiency factor due to fiber distribution and embedment

length

uniform crack closing pressure

am  tensile strength of matrix

amax  maximum post-cracking strength of fiber reinforced composites

a(t) non-uniform crack closing pressure

0(y) crack closing pressure at distance y in notched beam specimen

( dc max maximum strength of fiber reinforced comoosites

n crack-surface displacement

in efficiency factor for the embedment length of fibers

n coefficient for fiber distribution and orientation

Inp load-line deformation

n p elastic elaitic load-line deformation (reversible)
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( n )p ermanent load-line deformation (irreversible)
p perm

( n )total total load-line deformation

f maximum pulled-out displacement of fiber reinforcedn
max

matrix ( - half the fiber length)

nm maximum displacement of matrix in the descending branch
max

of the uniaxial tensile test

r shear strength of matrix and fiber interface

effective crack over depth ratio in notched beam
aeff.

specimen ( = wf

a p permanent deformation

6 relative beam rotation of the crack front in notched

beam specimen

PM, AM increments of the compliances caused by the pressure

of force and moment, respectively

(z) Muskhelishvili's pentential function

v Poissons' ratio
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APPENDIX II - LIST OF FIGURES

Fig. 1-a Uniform Crack Closing Pressure Applied on a Crack in an

Infinite Sheet [Paris and Sih]

Fig. 1-b Assumed Uniform Crack Closing Pressure due to Fiber

Bridging and Microcracking in a Cracked Asbestos-Cement

Specimen [Lenian and Bunsell]

Fig. 2 Semi-Infinite Crack Model with an Assumed Fiber Bridging

Stress - a(t) [Foote, Cotterell and Mai]

Fig. 3 Double Cantilever Epoxy Beam Reinforced with Aligned Nickel

Wires [Bowling and Groves].

Fig. 4 Assumed Linear Stress-Displacement Relationship Compared to

that Obtained from Uniaxial Tensile Test [Petersson and

Hillerborg].

Fig. 5 Fracture Model for Fiber Reinforced Concrete.

Fig. 6 Uniaxial Tensile Behaviors and Crack Closing Stress

Distribution.

Fig. 7 Uniaxial Tensile Behavior of Fiber Reinforced Concrete.

a) Small Fiber Volume Fraction

b) Large Fiber Volume Fraction

Fig. 8 Normalized Post-Cracking Tensile Stress-Displacement

Relationship.
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Fig. 9 A Single Cantilever Beam and the Applied Loads.

Fig. 10 Double Cantilever Beam; Test Setup.

Fig. 11 A Model for Fiber Reinforced Concrete; Notched Beam

Specimen.

Fig. 12 Dimensions and Test Setup; Notched Beam Specimen.

Fig. 13 ConcepE of Modified Strain Energy Release Rate.

Fig. 14 Bond Stress vs. Slip Relationships in Reinforced Concrete.

[Hawkins et al..

Fig. 15 Characteristic of Load-Line Deformation.

Fig. 16 Comparison of Experimental and Theoretical Load-Line

Deformation vs. Crack Growth for Fiber Reinforced Concrete

(Vf = 1%, L - 0.25", d - 0.006") - DCB.

Fig. 17 Comparison of Experimental and Theoretical Load-Deforma-

tion Curves for Fiber Reinforced Concrete

(Vf - 1%, L - 0.25", d = 0.006") - DCB.

Fig. 18 Comparison of Experimental and Theoretical Permanent

Deformation for Fiber Reinforced Concrete

(Vf - 1%, L - 0.25", d - 0.006") - DCB.

Fig. 19 Experimental and Theoretical Compliances for Fiber

Reinforced Concrete: (Vf - 1Z, L - 0.25", d - 0.006") - DCB.

F 

Fig-
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Fig. 20 Experimental and Theoretical GR - Curves - DCB

(Vf = 1%, L - 0.25", D - 0.006")

Fig. 21 Experimental and Theoretical Load-Line Deformation and

Crack Growth Relationships :

a) Vf W 0.5%, L - 0.25", d - 0.006"

b) Vf - 2% , L - 0.25", d - 0.006"

C) Vf - 1% , L - 0.75", d - 0.016"

Fig. 22 Experimental and Theoretical Load-Deformation Curves

a) Vf = 0.5%, L ,,0.25", d w 0.006"

b) Vf - 2% , L - 0.25", d - 0.006"

c) Vf - 1% , L - 0.75", d - 0.016"

Fig. 23 Comparison of Theoretical Permanent Deformation for

Different Fiber Volume Fraction and Aspect Ratio.

Fig. 24 Comioarison of Theoretical Unloading Compliance for

Different Fiber Volume Fraction and Aspect Ratio.

Fig. 25 Comparison of Theoretical Strain Energy Release Rate for

Different Fiber Volume Fraction and Aspect Ratio.

Fig. 26 Comparison of Experimental and Theoretical Load-Crack

Mouth Displacement in Notched Beam Specimens.

Fig. 27 Matrix Process Zone and Fiber Bridging Zone in Fiber

Reinforced Concrete - DCB Specimens.

Fig. 28 Matrix Process Zone and Fiber Bridging Zone in Fiber

Reinforced Concrete - Notched Beam Specimens.
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