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Fracture toughness of hydrogels: measurement
and interpretation

Rong Longa and Chung-Yuen Hui*b

The fracture mechanics of hydrogels, especially those with significantly enhanced toughness, has attracted

extensive research interests. In this article we discuss the experimental measurement and theoretical

interpretation of the fracture toughness for soft hydrogels. We first review the definition of fracture

toughness for elastic materials, and the commonly used experimental configurations to measure it. In reality

most gels are inelastic. For gels that are rate insensitive, we discuss how to interpret the fracture toughness

associated with two distinct scenarios: crack initiation and steady-state crack propagation. A formulation to

estimate energy dissipation during steady-state crack propagation is developed, and connections to previous

models in the literature are made. For gels with rate-dependent behaviors, we review the physical

mechanisms responsible for the rate-dependence, and outline the difficulties to rigorously define the

fracture toughness for both crack initiation and propagation. We conclude by discussing a few fundamental

questions on the fracture of tough gels that are yet to be answered.

1. Introduction

Hydrogels are polymer networks swollen by water molecules. The

permeability to water or solute molecules and biocompatibility of

hydrogels have made them useful for food products,1 personal

care,2 drug delivery vehicles,3–6 and tissue engineering scaffolds.6–8

Recently many new applications emerge where hydrogels are

required to bear or even generate mechanical forces.9 Examples

include artificial cartilage,10 autonomous sealants for microfluidic

channels11,12 or oil wells,13 soft actuators,14,15 and stretchable ionic

conductors.16,17 For these applications, the mechanical properties

of hydrogels are critical parameters to enable high-fidelity simula-

tion and design. Significant efforts have been devoted to modeling

the multi-faceted mechanical properties of hydrogels, including
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nonlinear elasticity,18 viscoelasticity,19–22 poroelasticity,23–26

sensitivity to pH values27 and temperature,28 damage29,30 and

fracture.31–39 Among these properties, the ability of hydrogels

to sustain mechanical stress and to resist fracture is crucial, e.g.

for setting the operation limit and service life of hydrogel-based

devices. Typically macroscopic fracture originates from the

growth of small defects (e.g. cracks) due to material damage

induced by the amplified local stress field surrounding the

defects. A metric widely used to characterize a material’s ability

to resist defect growth is the fracture toughness. In linear elastic

fracture mechanics (LEFM),40,41 toughness is usually defined in

reference to the initiation and growth of a pre-existing crack

under prescribed loading; it can refer to the critical stress

intensity factor upon crack growth (unit: Pa m1/2) or the critical

energy required per unit area of crack growth (unit: J m�2). The

latter definition, also known as fracture energy Gc, is more

appropriate for soft gels, since the concept of stress intensity

factor may not apply for cracks undergoing large deformations.42

Intrinsically hydrogels are brittle due to the reduced areal

density of polymer chains caused by their large water content.

Typical values of Gc are estimated to be on the order of 10 J m�2

(e.g. alginate gel),43,44 which is several orders of magnitude less

than that of natural rubber (B104 J m�2). This disadvantage is

overcome by the developments of hydrogels with enhanced

toughness where Gc can be as large as 103 to 104 J m�2 while the

gel maintains B90 wt% of water.44,45 A representative example

of the tough hydrogels is the double network (DN) gel pioneered

by Gong et al.45 The key mechanism behind the dramatically

enhanced fracture toughness is the energy dissipation due to the

breakage of the sacrificial network near the crack tip while the

other network maintains the macroscopic integrity of the gel.

Many other physical mechanisms have been explored to enhance

the fracture toughness, including the introduction of the crystal-

line phase,46 hybrid networks with irreversible and reversible

crosslinks,47–49 composite gels with micro-50 or nano-particles,51–53

slider ring crosslinks,54 and protein unfolding.55 Examples of tough

hydrogels and their fracture resistance are illustrated in Fig. 1. As

reviewed by Zhao,43 all toughening mechanisms share a common

theme, i.e. introducing energy dissipation mechanisms into the

polymer network while maintaining macroscopic integrity. These

mechanisms are usually triggered by a certain threshold of stress.

When coupled to the amplified stress field near the crack tip,

these energy dissipation mechanisms lead to the formation of a

dissipation zone surrounding the crack tip. As a result, the

energetic driving force supplied by the remote loading cannot

be fully delivered to the crack tip. Effectively the crack tip is

shielded from the remote loading and the apparent fracture

toughness is enhanced.

Driven by the need to further enhance the fracture resistance

of hydrogels, the proper measurement and interpretation of

fracture toughness become a frequent question of interest. The

tensile strength, i.e. maximum stress upon fracture in a uni-axial

tensile test, may serve as an indicator of fracture resistance.

However, it does not solely characterize fracture behavior since

it is also highly dependent on the stiffness of the material. For

example, silica glass is known to be brittle41 with a Gc B 10 J m�2,

much smaller than that of the DN gel (Gc B 103 J m�2);57 but

the tensile strength of glass (B100 MPa)56 is much larger than

the DN gel (1–10 MPa)57 because of the large Young’s modulus

of glass (B70 GPa) in comparison to that of the DN gel

(0.1–1 MPa). Similarly, high fracture strain in a tensile test

does not necessarily imply high fracture toughness either. The

maximum stress or strain criterion does not work well even if

one restricts its usage to the same material. For example, larger

specimens are likely to have more and larger flaws, and as a

result, the maximum stress can be much less than that of a

smaller sample of the same shape.56 Likewise, specimens with

different shapes (e.g. a dog-bone tensile specimen versus a

rectangular thin-sheet specimen) and subjected to different

loading conditions can fail very differently.

The objective of this review is to elucidate the concept of

fracture toughness for hydrogels, especially those with energy

dissipation mechanisms and highly resistant to fracture.

Because hydrogel fracture is only studied until recently, many

interpretations and modeling of experiments are still primarily

based on linear elastic fracture mechanics (LEFM) in which

material damage was assumed to be confined in a very small

region surrounding the crack tip. In principle LEFM does not

apply for tough hydrogels where the enhanced toughness is due

to a large dissipation zone surrounding the crack tip. This

situation is parallel to the fracture of elastic-plastic or high

temperature materials which has stimulated the development

of nonlinear fracture mechanics for metals.58–61 For tough

hydrogels, a number of models have been proposed to link

the crack-tip dissipation to the fracture toughness,62–64 and

an excellent review of the toughening principle and various

physical dissipation mechanisms are recently provided in

Zhao.43 However, as noted by Creton and Ciccotti,65 a systematic

Fig. 1 (A) Double network gel consisting of a stiff brittle network and a soft

extensible network. Reproduced from ref. 57 with permission from The Royal

Society of Chemistry. (B) Micro-sphere composite gel. Reproduced from

ref. 50 with permission from John Wiley & Sons Inc. (C) Hydrogel with

slider-ring cross-linkers. Reproduced from ref. 54 with permission. (D) Hybrid

alginate–polyacrylamide gel. Fracture resistance is demonstrated by stretching

cracked specimens. Reproduced from ref. 44 by permission from Macmillan

Publisher Ltd. (E) Polyampholytes physical hydrogels. Fracture toughness is

measured using tearing test and pure shear fracture test. Reproduced from

ref. 49 by permission from Macmillan Publisher Ltd.
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theoretical framework that rigorously defines the fracture

toughness for soft dissipative materials is yet to be developed.

This is the focus of our review.

The plan of this paper is as follows. We first briefly review

the experimental methods to measure fracture toughness

(Section 2) in predominantly elastic solids. Most of the results

in this section are valid for large deformation, as long as the

material is hyperelastic. This is followed by a discussion on the

physical interpretation of toughness for tough gels with rate

insensitive damage mechanisms (Section 3). The characteriza-

tion of fracture for rate-dependent hydrogels is discussed in

Section 4. In Section 5 we will discuss a list of future challenges

related to the toughness of hydrogels.

2. Experimental measurement of
fracture toughness
2.1 Background: energy release rate and J-integral

The essential goal of fracture mechanics is to define a criterion

for crack growth and to link this criterion to the physical

mechanisms of fracture. Typically such a criterion involves the

comparison between two distinct quantities: one is a material

property which quantifies the resistance to crack growth, e.g. the

fracture toughness Gc, and the other describes the driving force

for crack growth as governed by external loading and specimen

geometry. For a crack to grow, the latter must reach or exceed the

former. There are two equivalent approaches in LEFM to define

the driving force for crack growth: the energetic approach and

the field approach. In the energetic approach, the driving force is

the energy release rate G, defined as the change in the sum of the

elastic strain energy stored in the crack specimen and the potential

energy of the loading system per unit area of crack growth. On the

other hand, the field approach defines the driving force for crack

growth according to the amplitude of the singular stress field

surrounding the crack tip. In LEFM, the crack tip stress field

follows universal structures41 and exhibits a square root singularity.

As a result, the amplitudes of the singular terms in the stress field,

known as the stress intensity factors, are used in the crack growth

criterion. Alternatively, these amplitudes are uniquely related to a

path independent integral surrounding the crack tip, known as the

J-integral. For example, in LEFM J is uniquely related to the stress

intensity factors.67 For cracks subjected to the plane stress or strain

conditions with finite deformation, the J-integral is defined as

follows:66

J ¼
ð

C

WN1 �
@ua
@X1

SabNb

� �

dx a; b ¼ 1; 2; (2.1)

where W is the strain energy density, ua is the in-plane displace-

ment field, Sab is the first Piola–Kirchhoff stress, C is a smooth

contour in the reference configuration which encloses the crack tip,

starting from the lower crack face and ending on the upper crack

face as shown in Fig. 2, x is the arc length and Nb are the Cartesian

components of the unit outward normal vector of C.

The energetic approach to fracture is attractive because it is

difficult to determine the state of stress and deformation fields

near the tip of cracks even for purely elastic solids. For soft

elastic material subjected to large deformation, the behavior of

these tensor fields is highly dependent on the constitutive

model.42 Fortunately, for purely elastic solids, the J-integral is

independent of paths such as C (see Fig. 2) and it is equal to the

energy release rate G. We emphasize that this conclusion is

based on an implicit assumption that the crack grows in a self-

similar manner. In other words, the crack extends straightly

along its length, and as the crack tip moves by an infinitesimal

amount, the crack tip stress and deformation fields translate

with respect to a coordinate system that is centered at the crack

tip. Of course, no material is perfectly elastic all the way to the

crack tip; the stress/strain singularities must ultimately be

removed by material damage in combination with inelastic

behavior. For brittle solids, these nonlinearities are localized in

a region surrounding the crack tip that is much smaller than

the typical specimen dimensions (e.g. crack length), a condition

called small scale yielding (SSY).41 As long as SSY holds, there

exists a region close to the crack tip, but away from the non-

linear zone, where the singular field still dominates, and this

justifies J E G. As a result, the energetic and field approaches are

equivalent in LEFM. However, for soft solids, especially for tough

hydrogels, the SSY assumption is usually not satisfied since the size

of the damage zone can be very large. In addition, cracks may not

grow in a self-similar way. For example, secondary cracks may

initiate on the blunted crack surface for soft gels, leading to rough

crack surfaces or tortuous crack paths.36,68 In such cases, one may

not always compute an energy release rateG, and even if it exists, will

not be equal to J. Further, J may not be path independent. These

issues will be discussed in detail in Section 2.3.

2.2 Common specimens for fracture testing

In this section we summarize four commonly used experi-

mental configurations in the literature of hydrogel fracture.

They are: (1) the pure shear (PS) test,69 (2) the simple extension

(SE) test,69 (3) the single edge crack (SEC) test,70 and (4) the

tearing test.71 These specimens allow easy calculation of the

energy release rate G during crack propagation, which is then

taken as a measurement of fracture toughness Gc. The PS, SE and

Fig. 2 Schematic of the path C for the J-integral. (A) Undeformed configu-

ration of the crack where the path C is defined. The path C is illustrated as a

dashed line starting at the lower crack face and ending on the upper crack face,

and encloses the crack tip. (B) The deformed configuration of the crack to

illustrate the distortion of path C after deformation.
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tearing configurations have the advantage that the stress and strain

fields for a steadily growing crack are invariant to crack length. In

the following, we assume that the materials are elastic and the

crack grows in a self-similar manner, and hence J = G.

2.2.1 Pure shear test. The PS test was first proposed in

Rivlin and Thomas69 to test fracture of rubber samples and has

been recently adopted to characterize gel fracture.32,33,36,44,49,72,73

The undeformed sample is a long thin strip of width L0, height

2H0 and thickness b0 with L0 c 2H0 and b0 (see Fig. 3A). A long

crack of length c (c c 2H0) lies in the middle between the top

and bottom boundaries of the strip which are clamped to the

loading device. Typically, a uniform vertical displacement�D (or

displacement rate � _D) is imposed on the top and bottom of the

strip. The condition that L0 and c c 2H0 enables the transla-

tional invariance of the stress and strain fields, i.e. they remain

unchanged in a moving coordinate system centered at the crack

tip as the crack propagates. In addition, if L0 c c, the material

far ahead of the crack tip is under spatially uniform deformation

with principle stretches l1 = 1, l2 = ls, l3 = 1/ls, where the

subscripts 1, 2, and 3 denote the direction parallel to the

undeformed crack, perpendicular to the undeformed crack and

along the thickness, respectively. As derived in Rivlin and

Thomas,69 the energy release rate is independent of crack length

and is given by

G ¼ 2W lsð ÞH0; ls ¼ 1þ D

H0

: (2.2)

where W lsð Þ is the strain energy density in material points far

ahead of the crack tip. For an isotropic incompressible elastomer,

the strain energy densityW depends only on two scalar invariants

I1 and I2 of the deformation gradient tensor, i.e. that is, W(I1,I2).

For example, for a Mooney–Rivlin solid,

W(I1,I2) = c1(I1 � 3) + c2(I2 � 3), (2.3)

where c1 and c2 are material parameters. For the PS configu-

ration, W lsð Þ can be calculated using W(I1,I2) while setting

I1 = I2 = ls
2 + ls

�2 + 1. (2.4)

In practice, W lsð Þ is typically measured by subjecting an

uncracked sample to tension under the pure shear constraint

(l1 = 1) and calculating the area under the measured stress–

strain curve.

2.2.2 Simple extension test. This configuration was also

proposed by Rivlin and Thomas69 to determine the tearing

energy of rubber. Recently it has been applied to study fracture

of DN gels.74–76 Fig. 3B shows the specimen in the deformed

state. Similar to the PS test, the undeformed sample geometry

here is defined by the length L0, height 2H0 and thickness b0.

However, unlike the PS test, here the two arms of the specimen

at the cracked end are clamped and peeled apart as shown in

Fig. 3B. The energy release rate G was determined by Rivlin and

Thomas,69 which can be written as

G ¼ 2laF

b0
� 2 ~W lað ÞH0; (2.5)

where F is the force applied to the two arms, la and W̃ are the

stretch ratio and elastic strain energy density of the arms,

respectively. The function W̃(la) can be calculated by recognizing

that the arms are under uni-axial tension where

I1 = la
2 + 2la

�1, I2 = 2la + la
�2. (2.6)

Note that in Tanaka et al.74 and other works,71 the elastic

deformation of the two arms is neglected, i.e. (la = 1, W̃ = 0),

and so eqn (2.5) is simplified to G = 2F/b0. This approximation

should not be applied if the arms are severely stretched with a

large la.

2.2.3 Single edge crack test. This test configuration was

used by Greensmith70 to determine the fracture energy of

several vulcanized natural rubbers, and was recently used to study

gel fracture.53,77,78 Using a compliance method, Greensmith70

found that the energy release rate for short cracks with length

c { L0 is approximately given by

G ¼ 6
ffiffiffi

l
p ~W lbð Þc: (2.7)

where W̃(lb) is the strain energy density of an uncracked sample

subjected to a uniaxial stretch lb, and L0 is the width of the

sample which is assumed to be much less than the sample height

2H0 (see Fig. 3C). Eqn (2.7) has two limitations:

� It is valid only for small crack lengths and for small to

moderate strains, and has not been verified for large strains.

Furthermore, it can be shown that eqn (2.7) does not reduce

to the LEFM result in the limit of lb = 1. In this limit, it

Fig. 3 Fracture test configurations. (A) Pure shear. The thickness of the

specimen is b0 (not shown in the figure), and the grips assumed to be rigid.

(B) Simple extension. (C) Single edge crack. (D) Tearing. For (A and C) the

undeformed geometry is shown to illustrate specimen dimensions, while

for (B and D) the deformed geometry is shown to illustrate the loading

mode. The crack tip is illustrated as a red point and the dashed arrow

indicates the projected crack path.
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underestimates the energy release rate by about 25% in com-

parison to the LEFM result.79

� The tensile behavior of the rubbers used by Greensmith70

was shown to obey the Mooney–Rivlin model (see eqn (2.3)). It

is not clear how well this expression works for elastomers with

different strain hardening behaviors, especially at large deformation.

2.2.4 Tearing test. The tearing test, also known as the

trousers test, was used to characterize the fracture of rubber71

and elastomers,80 and also applied to tough gels.49,81 Unlike the

three configurations above where the crack is primarily

deformed in the opening mode, or referred to as Mode I in

LEFM, in tearing tests the crack is deformed by out-of-plane

shear loading. As shown in Fig. 3D, the two arms of a pre-cracked

specimen are oppositely displaced to impose the tearing load.

The out-of-plane loading results in complex three-dimensional

stress and deformation fields in the testing specimen. However,

this can be circumvented by taking the energetic approach to

derive the energy release rate G. It turns out that for the tearing

test G can also be calculated using eqn (2.5) provided that F is the

tearing force, b0 is the specimen thickness (see Fig. 3D) and la is

the stretch ratio in the two arms. If the elastic deformation of the

two arms is neglected, G can be approximated as G = 2F/b0 which

is often used in the literature.71,80,81

2.3 Stationary versus propagating cracks

In the four experimental configurations above, the cracks are

all assumed to be propagating. There have been experiments in

the literature that start with stationary cracks, e.g. using the PS

geometry, where one can increase the applied load until it

reaches a point when the crack starts to grow. We refer to such

tests as crack initiation. For crack initiation, the energy release

rate G is not well defined since the definition of G inherently

involves crack extension. Indeed, how the crack extends after it

starts to grow cannot be determined from the crack initiation

data. A more appropriate way to characterize crack initiation is

to use the field approach, i.e. the criterion for the onset of crack

growth is based on the J-integral:

J|initiation = Ginit
c , (2.8)

where Ginit
c is a material property describing the fracture toughness

at crack initiation. The key idea is that for a stationary crack in an

elastic solid, the J-integral uniquely characterizes the crack tip

stress and strain fields. For example, in a linear elastic solid with

Young’s modulus E, the stress intensity factor KI for a plane stress

Mode I crack uniquely characterizes the crack tip fields and is

related to the J-integral by

J = KI
2/E, (2.9)

and hence the criteria governing crack initiation can also be

expressed in terms of J. The situation is more complicated for

large deformation, since the behavior of the crack tip stress field

depends on the strain energy density function W. Nevertheless, as

long as the material is elastic, the dominant stress field near the tip

of a stationary crack can be shown to be uniquely related to J.42

For predominantly elastic solids, the crack propagation tests

(e.g. using the four configurations summarized in Section 2.2)

would also give a critical energy release rate Gc. A natural

question then arises: is Ginit
c equal to the Gc measured for

propagating cracks? In other words, do the crack initiation

tests give the same toughness measurement as the crack

propagation tests? Theoretically the answer should depend on

whether the crack grows in a self-similar manner after being

initialized. If so, the concept of energy release rate G can be

applied to the crack initiation test as well, and G = J. However, if

the crack deviates from its projected path after initiation, or if

the size of the dissipation zone (even if it is small) increases as

the crack growth, then Ginit
c and Gc are not necessarily the same.

For the latter case, assuming SSY, the fracture toughness Gc is a

function of crack length increment Dc = c � c0, where c and c0
are the current and initial crack length, respectively, that is

Gc(Dc) = G(c) = J(c), (2.10)

with Gc(Dc- 0+) = Ginit
c .

Finally, it should be noted that G and J are purely mechanical

quantities, they are completely determined by the continuum

fields and the sample geometry, whereas Gc(Dc) is a material

property that cannot be determined by continuum analysis

without additional information about the fracture process. It is

common to conflate the two, but here we try to make this

distinction as clear as possible.

3. Fracture toughness for hydrogels
with rate-independent dissipation
mechanisms

In this section, we consider rate-independent tough hydrogels

with damage mechanisms that are modulated by mechanical

deformation. A representative example of such gels is the DN

gels where both polymer networks are chemically cross-linked.

For these gels, the sacrificial bonds cannot heal and their

mechanical responses are rate insensitive. Wang and Hong29

called such materials pseudo-elastic since the loading and

unloading behaviors can be described by two separate hyper-

elastic models.

The main difficulty of applying the elastic fracture mechanics

results in Section 2 to interpret fracture tests of tough gels is that

these gels are not elastic and the SSY condition is usually not

satisfied. Indeed, it is the extensive inelastic behavior that

enables toughening. As a result, it is necessary to clarify the

usage of energy release rate G. Although one may still calculate

the strain energy for such inelastic gels, which is dependent on

loading histories, it would be too simplistic to interpret G in the

same way as elastic materials, i.e. the change in the stored strain

energy and potential energy of loading system per unit area of

crack growth. For inelastic gels, only a small part of the work

done to a material point is stored as strain energy. The rest is lost

due to inelastic mechanisms (e.g. damage or plastic deforma-

tion). Therefore, if G is still defined using the stored strain

energy, it would underestimate the energetic driving force

required for crack growth, since it does not account for the

additional energy dissipation accompanying crack growth.
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We argue that for inelastic gels G should be defined as the

total mechanical work required per unit area of crack growth.

This work consists of two parts: (i) the external work by the

loading system; (ii) the stress work by the material elements.

For the stress work, if a material element unloads during crack

growth, it does positive work to the neighboring material

elements by releasing the stored strain energy. If a material

element is further loaded during crack growth, it does negative

work to the neighboring material elements. For elastic materi-

als, the stress work is equal to the change in strain energy of the

material element. This is not true for inelastic materials with

loading–unloading hysteresis, where the stress work depends

on the particular loading path that a material element went

through during crack growth, as illustrated in Fig. 4 using uni-

axial tension as an example. Therefore, eqn (2.2), (2.5) and (2.7)

to calculate G based on the assumptions of elasticity and SSY

are not automatically applicable to tough gels. The detailed

loading history of each material element near the crack tip has

to be examined. This is not an easy task given the highly

amplified and multi-axial deformation field near the crack

tip. In the following we shall call G the effective energy release

rate since a part of it is dissipated by hysteresis and the rest is

released to perform the local fracture process. Next we review

two scenarios for crack growth in tough gels that have been

used in the literature, and examine the interpretation of

fracture toughness in a rigorous manner.

3.1 Crack initiation for rate independent gels

One way for measuring the toughness Gc of tough gels is to start

with a stationary crack in a PS sample (see Fig. 3A). A critical

effective energy release rate Gc can be calculated using eqn (2.2)

by measuring the applied stretch ratio lc at the onset of crack

growth. The function W lcð Þ should now be interpreted as the

stress work done per unit volume, instead of strain energy

density, to stretch an uncracked sample to lc under the pure

shear constraint. This critical effective energy release rate Gc is

then taken as the fracture toughness Gc.

However, a closer examination reveals that eqn (2.2) is not

applicable to crack initiation. Eqn (2.2) is based on the assump-

tion of translational invariance, which means that as the crack

grows, the stress and deformation fields in the sample remain

unchanged with respect to a translating coordinate system that

is always centered at the crack tip. If this assumption holds, the

work done to grow the crack length by an increment Da is

equivalent to moving a strip with width Da far ahead of the

crack tip (stretched to lc) to far behind of the crack tip

(completely relaxed; see Fig. 5B), and hence eqn (2.2) is derived.

The translation invariance breaks down for crack initiation in

tough gels since the amount of crack growth is exactly zero at

initiation. Moreover, translation invariance is violated even if

the crack grows straightly ahead. This point is illustrated in

Fig. 5. Before crack initiation, a material point A behind the

crack tip (X1A, X2A) is monotonically loaded as the applied

stretch l increases. After the crack grows by Da, the material

point A0 occupies the location (X1A, X2A) in the translating

coordinate system X1–X2, as shown in Fig. 5B. However, the

material point A0 is first loaded before crack initiation and

then unloaded once the crack grows. Because of the loading–

unloading hysteresis, the point A0 after crack growth does

not possess the same stress and deformation state as that at

point A before crack growth (see Fig. 5C). In principle, an extra

term of the stress work accounting for the change in the crack-

tip stress and deformation fields due to crack initiation needs

to be included in G, but this term is difficult to compute in

practice.

Now that the Gc calculated using eqn (2.2) is not the critical

energy release rate, what is the theoretical nature of this

quantity? Here we propose a justification using the J-integral

based on the field approach. Before the onset of crack growth,

the crack is stationary. If the specimen boundary is subjected to

monotonic loading, then it is a reasonable assumption that this

condition is valid for every material point; further, because of

rate insensitivity, the material behavior is indistinguishable

from a hyperelastic solid. This means that the near tip fields are

uniquely characterized by the path independent J-integral. For

elastic solids, the J-integral at the onset of crack growth is equal

Fig. 4 An example of the loading history dependence of inelastic materials

with loading–unloading hysteresis. Consider uni-axial tension along the X2

direction with nominal stress s22 and the stretch ratio l2. (A) Monotonic loading

to l0. (B) Loading and unloading back to the same stretch ratio l0. The stress

work required for the two cases is different and is given by the shaded areas.

Fig. 5 Crack initiation in inelastic gels. (A) The deformed crack in the PS

configuration at the critical stretch ratio lc before (top) and after (bottom)

crack initiation. (B) The corresponding undeformed configurations before

(top) and after (bottom) initiation. After crack growth, the coordinates of

point A0 with respect to the translating coordinate system X1–X2 is the

same as those of point A before crack growth. (C) Stress–strain states at

point A before crack growth (top) and at A0 after crack growth (bottom).

Note that both points are subjected to complex multi-axial stress–strain

states. Here we schematically illustrate the dominant stress and strain

components, i.e. nominal normal stress s22 and stretch ratio l2.
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to the Gc described above, which can be taken as a measure-

ment of fracture toughness

J|initiation = Gc = Gc(Dc = 0). (3.1)

Eqn (3.1) also applies to the inelastic gels as long as unloading

does not occur anywhere in the sample before crack initiation.

Therefore, Gc measured using crack initiation is not the energy

release rate, but rather the critical value for the J-integral. The

two approaches of fracture, energetic and field, are equivalent

only for elastic solids, but not for the inelastic gels. Similar

arguments can be extended to the other testing configurations

reviewed in Section 2.

Energy dissipation does not fit into the above interpretation

of crack initiation toughness, since this criterion does not

involve any material unloading and hysteresis. However, even

if the crack does not grow, there is undeniably material damage

and experiments have shown that damage enhances crack

initiation toughness.44,49 To reconcile the field approach for

crack initiation with this physical reality, we propose that

material damage can help reduce stress concentration at the

stationary crack tip and thus delay fracture. To illustrate this

point, we consider a class of hyperelastic material models, i.e.

the generalized neo-Hookean model, with the following strain

energy density function:

W ¼ m

2b
1þ b

n
I1 � 3ð Þ

� �n

� 1

� �

(3.2)

where m is the small strain shear modulus, b and n are material

parameters which control strain hardening, and I1 is the trace

of the Cauchy-Green tensor. Specifically we compare two cases:

(i) n = 1 where eqn (3.2) reduces to that of the neo-Hookean

model; (ii) n = 0.55 and b = 1. As shown in Fig. 6A, Case II

exhibits a uni-axial stress–strain curve that is flatter than Case I,

which we intend to simulate the softened loading curve due to

material damage. The crack tip stress field based on eqn (3.2)

for a Mode-I plane stress crack has been solved in the

literature82,83 and is rather complicated. To make our point,

we consider the distribution of the nominal stress component

s22 directly ahead of the crack tip. We assume that this opening

stress component controls the initiation of Mode-I cracks.

Using the results summarized in Long & Hui,42 we have

Case I ðn ¼ 1Þ: s22
m

¼ J

mpr

� �0:5

;

Case II ðn ¼ 0:55; b ¼ 1Þ: s22
m

¼ 0:83
J

mpr

� �0:091

;

(3.3)

where r is the distance to the crack tip in the undeformed

configuration. Note that in practice, the singularity in s22 as r

approaches zero can be regularized by local failure mechanisms

(e.g. such as breaking of the soft network) in the very vicinity of

the crack tip. Eqn (3.3) reveals that to achieve the same stress

level ahead of the crack tip at a certain r, a significantly larger J

is needed for Case II which simulates the case with damage (see

Fig. 6B). On the other hand, the vertical stretch l2 directly

ahead of the crack tip is

Case I ðn ¼ 1Þ: l2 ¼
J

mpr

� �0:5

;

Case II ðn ¼ 0:55; b ¼ 1Þ: l2 ¼ 2:2
J

mpr

� �0:91

;

(3.4)

which means in Case II the material must accommodate a

much larger deformation l2 at the crack tip as shown in Fig. 6C.

This is consistent with the principle proposed by Zhao43 that

high extensibility of the damaged network is required to

achieve enhanced toughness.

Note that our argument here is based on the implicit

assumption that crack initiation is controlled by the nominal

stress s22. Other criteria may be proposed, which may result in

a different conclusion. For example, the true stress t22 directly

ahead of the crack tip follows the distribution below

Case I ðn ¼ 1Þ: t22
m

¼ J

mpr
;

Case II ðn ¼ 0:55; b ¼ 1Þ: t22
m

¼ 1:82
J

mpr
;

(3.5)

where Case II shows slightly larger t22 than that of Case I.

A crack growth criterion based on the true tress t22 would

suggest a less difference in crack initiation between these two

materials. How to impose a physically based criterion for crack

initiation in terms of the crack tip fields is a question yet to be

Fig. 6 (A) Uni-axial tensile response for Case I and II: normalized nominal tensile stress st/m versus stretch ratio lt. (B) The nominal stress s22/m directly

ahead of the crack tip where r is the distance from the crack tip in the undeformed configuration. (C) Stretch ratio l2 directly ahead of the crack tip.
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answered, which will probably involve extensive experimental

and multi-scale modeling efforts.

So far we have assumed monotonic loading for every material

point before the onset of crack growth. A possible exception is

when the gel exhibits necking behavior, as shown by the experi-

ments of Na et al.84 and Nakajima et al.85 Necking is also captured

by the model of Wang and Hong.29 For these gels, unloading can

occur locally before crack growth even if the external loading is

monotonic. In this case, the use of eqn (3.1) may not be justified.

3.2 Steady state crack propagation for rate independent gels

When a crack starts to propagate in a PS specimen, it is

reasonable to assume that it will eventually reach a steady

state. Modeling the transition from initiation to steady state

crack propagation is a difficult problem and has not been

systematically studied. Hence we only consider the steady state

crack propagation. For this case, the effective energy release

rate G needed to drive steady-state crack propagation is well

defined and can be easily computed. Therefore, it is convenient

to use the energetic approach to define an effective fracture

toughness Gc. It has been well recognized that most of the

energy release rate is dissipated, and only a small fraction of it

is used to drive the fracture process. In tough gels, the amount

of dissipation is strongly tied to the local fracture process, and

here we review this coupling to gain insight into the interplay

between toughening and local failure mechanisms. The basic

idea is simple: the actual amount of energy released to drive

crack propagation is determined by subtracting the energy

dissipation from the energy supplied by the loading device.

This principle has been utilized in the literature to derive

models for the toughness of DN gels.62–64 We attempt to state

it in a rigorous manner. We will use the PS configuration as an

example, but the same argument can be extended to other

testing configurations where steady state crack propagation is

possible, such as the simple extension (SE) test.

The steady state condition implies that the stress and strain

fields everywhere in the sample are invariant with respect to an

observer moving together with the crack tip. In contrast to the

crack initiation test, here the translational invariance of stress

and strain fields allows us to apply eqn (2.2). However, since the

material is no longer elastic, the function W lsð Þ in eqn (2.2)

needs to be interpreted as the stress work per unit undeformed

volume to stretch the material to ls, where ls = 1 + D/H0 is the

applied stretch for steady state crack propagation. In the PS

geometry, this stress work is performed solely by s22, i.e. the

nominal stress component in the X2 direction (see Fig. 7B).

Therefore, we obtain

G ¼ 2H0W lsð Þ ¼ 2H0

ðls

1

s22dl2; (3.6)

For tough gels, most of G is consumed by energy dissipation.

To compute the actual energy available to drive the crack,

consider a material element in the slab located at X2 = Y (B in

Fig. 7C). The steady state condition implies that the deforma-

tion history of B can be determined by fixing the crack at the

origin and translating this element from X1 = N all the way to

X1 = �N. Since the gel is rate independent, the speed of

translation has no effect on the mechanics. As this element

moves closer to the crack tip, it undergoes additional loading or

unloading. This additional load is multi-axial, e.g. the element

is subjected to shear and can rotate and stretch in different

directions. When a material element starts to unload depends

on its vertical position Y. For example, the material elements

located near Y = H0 or �H0 start to unload earlier than those

near Y = 0. Indeed, the strain energy released by unloading the

former material elements (near Y = H0 or�H0) is used to further

load those near Y = 0, since the applied displacement D remains

fixed. Nevertheless, all the material elements at any Y should be

completely relaxed when they reach X1 = �N, provided that the

material does not retain any permanent or plastic deformation

after unloading. We emphasize that if plastic deformation

exists, the material elements are under residual stresses when

they are translated to far behind the crack tip. This scenario is

not hypothetical; Yu et al.75 observed a wake of damaged

material trailing behind the crack in their tearing experiments.

We emphasize that initially when the slab (�H0 r Yr H0) is

located at X1 = N, only part of the stress work density W lsð Þ is
stored in the material as elastic strain energy density, this is

denoted by We(ls) and illustrated by the shaded area in Fig. 7B.

As the slab moves from X1 = N to X1 = �N, deformation in the

slab is redistributed by the process described above, which

further dissipates energy. Therefore, the energy release rate

available to the crack tip is in general less than 2H0W
e(ls).

Assisted by the above picture, we can compute the energy

dissipation for a material element located at Y by following its

loading history, which consists of two parts. First, a material

element starts at an initially relaxed state (zero stress and

strain) and then stretched to the deformation state at X1 = N.

Fig. 7 (A) Deformed configuration for steady-state crack propagation in

the PS geometry. (B) The stress–strain relation of the slab far ahead of the

crack tip. The stress work W lsð Þ is the area under the loading curve (solid

line), while the stored strain energy density W
e(ls) is shown as the shaded

area. (C) Energy dissipation can be computed for imaginarily moving a slab

from X1 =N to �N. (D) The loading histories of points B and D as they are

translated from X1 = N to �N. The shaded area is the energy dissipation

density at point B. Point D is closer to Y = 0, and it can reach to higher

maximum stretch lm than point B, which means larger dissipation density

at point D.
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For the PS configuration, this deformation is characterized by

l1 = 1, l2 = ls, and l3 = 1/ls. Second, the material element

undergoes loading and unloading as it translates from X1 = N

to X1 = �N. We denote the energy dissipation per unit volume

by W�N
(Y) which can be written as

W�1ðYÞ ¼
ð

gðYÞ
sijdFij ; (3.7)

where Fij is the deformation gradient tensor and sij is

the nominal stress. Here g(Y) represents the aforementioned

deformation history of the material element at Y. The loading

path g(Y) depends on Y. Summing the energy dissipation along

Y, we obtain the following expression for the energy dissipated

per unit crack extension, GD:

GD ¼ 2

ðH0

0

W�1ðYÞdY : (3.8)

The energy flow to the crack tip per unit crack extension is

denoted as the local energy release rate Gtip, which is defined by

Gtip = G � GD. (3.9)

For tough gels, during crack propagation G c Gtip which

implies GD c Gtip. If we make the additional assumption that

the local failure process is also rate independent, then Gtip for

steady state crack growth must be a constant independent of

crack speed. Thus, the crack growth condition is Gtip = Gintrinsic.

Here it is important to note that the mechanics of crack growth

is controlled by the intrinsic toughness Gintrinsic, which is much

smaller than the effective fracture toughness Gc. In experiments,

it is Gc and not Gintrinsic that can be measured. Yet a small

increase in Gintrinsic can substantially increase the effective

toughness, as shown in the next section.

The above formulation is exact as long as the steady state

condition is satisfied (whether or not a plastic wake exists).

However, to evaluate GD, one must specify a multi-axial material

model which may not be readily available, impose a local failure

condition, and then solve the stress and deformation fields in the

crack sample using the full set of continuum equations – a non-

trivial problem that requires numerical solutions. Nevertheless, the

basic idea can be illustrated by approximating the complex multi-

axial deformation as the slab is translated from X1 =N to�N by a

simple constrained tension state, i.e.with l1 = 1, l2 = l, l3 = 1/l. The

corresponding nominal tensile stress s22 is denoted as S. The

loading history g(Y) corresponding to this approximation can be

described as follows. The material element is first stretched from

l = 1 to ls. As it is translated from X1 = N to �N, l further

increases to some maximum value lm and is then unloaded to

1 (here we assume for simplicity that there is no plastic wake). Since

the maximum stretch lm is a function of the vertical coordinate of

the material element Y, eqn (3.9) becomes

Gtip ¼ G� GD ¼ 2H0

ðls

1

Sþdl� 2

ðH0

0

U lmðYÞð ÞdY ; (3.10)

where U lmð Þ ¼
Ð lm
0
Sþdlþ

Ð 0

lm
S�dl is the area of the hysteresis

loop in the stress–strain diagram under constrained tension

(see Fig. 7D). The ‘‘+’’ and ‘‘�’’ signs in the superscript of S

denote the loading and unloading branches, respectively. The

function lm(Y) in eqn (3.10) depends on the sample geometry,

loading configuration, bulk material behavior as well as the

intrinsic toughness Gintrinsic, and is difficult to determine. To

determine lm(Y), a full-field solution of the stretch ratio l(X1,X2)

in the translating coordinate system (X1,X2) is needed. A

possible approximation to simplify eqn (3.10) is to replace

lm(Y) by its average value lam in the slab �H0 r Y r H0, and

treat lam as a fitting parameter to match experimental data.

Alternatively, eqn (3.10) can be simplified based on experi-

mental observations (e.g. for the DN gels as discussed in

Section 3.3). Finally, it is important to note that GD in general

depends on the local failure process as well as the height H0 of

the PS specimen. This implies that dissipation can be influ-

enced by the specimen size. Additional assumptions are needed

to render GD independent of the specimen size, e.g. damage

and hysteresis only occur in a subset of the slab �H0 r Yr H0.

This will be illustrated in the next section.

3.3 Models of fracture toughness in DN gels

Two theoretical models connecting the toughening mechanism

of DN gels to fracture toughness were proposed independently

by Brown62 and Tanaka63 in 2007. These two models are very

similar. They both obtained expressions for the effective tough-

ness for steady state crack growth. The main difference is how

they estimate the size of the damage zone, and this leads to very

different scaling for the toughness. Here we review their

analyses in some detail.

Both Brown and Tanaka considered steady state propagation

in the PS configuration. For simplicity, the tensile behavior of

an unnotched sample is idealized as that shown in Fig. 8A.

Strictly speaking, in this tensile behavior the normal strain in

the X1 direction should be constrained to be compatible with

pure shear geometry. The DN gel is assumed to exhibit a

yielding behavior. When the stress is below a critical yield

stress sa, the gel is linear elastic with a Young’s modulus of

E1 that is mostly governed by the stiff network. When the stress

Fig. 8 (A) Idealized tensile stress–strain curve for the DN gels. (B) Damage

zone surrounding the crack in the deformed configuration. (C) Illustration

of the damage zone in the reference configuration. The thickness of the

damage is h. This means, according to our formulation, in the vertical slab

ahead of the crack tip only material points with �h/2 r Y r h/2 will be

damaged.
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reaches sa, the first stiff network is progressively damaged until a

maximum strain of ~lm � 1 where the first network is completely

broken. After that the gel again behaves as a linear elastic solid

but with a much smaller modulus E2 that is governed by the

second soft network. The critical stress sa was identified to be

approximately the necking stress of DN gels in a tensile test of an

unnotched specimen. Brown62 estimated sa to be B0.3 MPa for

DN gels which is close to the experimentally measured value

(B0.2 MPa84 or 0.7 MPa57). The maximum strain ~lm� 1 depends

on the relative volume ratio of the first network, and is taken as a

material parameter. In Brown62 and Tanaka,63 this maximum

strain is estimated to be B10 based on the experimental

observation.

With this simplified bulk material behavior for the DN gels,

both Brown62 and Tanaka63 envisioned that during crack

propagation a damage zone surrounding the crack will be

formed where the first stiff network is completely broken.

Within this damage zone, every material point has experienced

the maximum strain ~lm � 1 and hence behaves as a linear solid

with Young’s modulus E2. While outside the damage zone, the

material is assumed to be undamaged with modulus E1. The

damage zone was assumed to be in the shape of a strip

surrounding the crack surface with a width of h in the reference

configuration. According to Fig. 8C, the material elements

inside �h/2r Yr h/2 are subjected to damage. This definition

is consistent with that in Brown.62 In Tanaka,63 the definition

of h is not as clear. It appears to denote half of the damage zone

width in the deformed state in Fig. 1 and 2 of Tanaka,63 but

then h seems to represent the full damage zone width when the

dissipation energy is estimated (see eqn (1) of Tanaka63).

Based on the assumptions above, the following expression

for the effective energy release rate was derived.

G E sa(~lm � 1)h. (3.11)

To place this result into our theoretical framework described in

Section 3.2, specifically eqn (3.10), we first note that for DN

gels, G c Gtip and thus

G � GD ¼ 2

ðH0

0

U lmðYÞð ÞdY : (3.12)

Outside the damage zone (i.e. h/2 o Y r H0 and �H0 r

Y o �h/2), there is no bulk material dissipation which implies

U(lm(Y)) = 0. Within the damage zone (�h/2 r Y r h/2), lm(Y)

is uniform and is equal to ~lm. In addition, we neglect
Ð 0

lm
S�dl

in comparison to
Ð lm
0
Sþdl when computing U(lm(Y)) in light of

Fig. 8A. Therefore, we have

G ¼ 2

ðh=2

0

U ~lm

	 


dY � h

ð~lm

0

Sþdl � sa ~lm � 1
	 


h: (3.13)

The next step is to estimate the damage zone size, h. Since

the damage zone is assumed to be a long strip with modulus E2,

it is modeled as a pure shear specimen with a traction free

crack. Failure occurs when the crack grows in this strip, that is,

when the local energy release rate Gtip is equal to Gintrinsic,

which is taken to be the fracture toughness of the second

network (soft). It is the calculation of this energy release rate

Gtip that the two models depart from each other. Specifically,

Brown62 imposed a displacement condition on the boundary of

the damage zone (�h/2 r Y r h/2) whereas Tanaka63 imposed

a traction condition of sa on this boundary. The local energy

release rate in Brown’s model was calculated to be

GBrown
tip = E2(~lm � 1)2h/2. (3.14)

The macroscopic crack grows when the second network is

fractured, at which h reaches the maximum value hmax governed

by GBrown
tip = Gintrinsic. Using eqn (3.14), hmax is

hmax ¼
2Gintrinsic

E2
~lm � 1

	 
2
: (3.15)

Note that in Brown’s model, the traction acting on the boundary

of the damaged strip (i.e. at Y = �h/2) is E2(~lm � 1) and not sa. At

first glance, this seems to contradict the fact that sa is needed to

maintain the damaged material in equilibrium with the material

outside the damage zone. However, if E2(~lm � 1) = sa, then

eqn (3.13) and (3.15) imply that

G = 2Gintrinsic, (3.16)

and the toughening due to damage of the first network is lost.

In fact, toughening is due to E2(~lm � 1) { sa. This means that

the strip must suddenly unload from sa to E2(~lm � 1) once l

reaches lm. In Brown’s model,62 this sudden unloading pro-

vides the energy to drive fracture, and he envisions that the

material unloads immediately as the crack grows, as illustrated

by the red dotted line in Fig. 9A. The area of the orange triangle

is the energy release rate given by eqn (3.14). In contrast, in

Tanaka’s model, sa is prescribed on the strip; the energy

available for fracture is due to elastic unloading with slope

Eu, i.e.,

GTanaka
tip ¼ sa

2h

2Eu

; (3.17)

where GTanaka
tip is the area of triangle highlighted in blue (see

Fig. 9B). Similarly, by setting GTanaka
tip = Gintrinsic, the thickness of

the damage zone is obtained as follows

hmax �
2EuGintrinsic

sa2
: (3.18)

Substituting eqn (3.15) and (3.18) into eqn (3.13), we obtain

the ratio of the effective fracture toughness of the composite

network, Gc, to the fracture toughness of the second network,

Gintrinsic:

Gc

Gintrinsic

¼

2sa

E2
~lm � 1

	 
 Brown62

2Eu
~lm � 1

	 


sa
Tanaka63

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

: (3.19)

The amplification ratios in eqn (3.19) were estimated to be

B40 in Brown62 and B10 in Tanaka,63 which can be considered

to be consistent on the order of magnitude. Note that the ratios
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given in eqn (3.19) are large. Therefore, a small increase in

Gintrinsic can lead to a large increase in effective toughness Gc.

Although both predictions are in reasonable agreement with

experimental data, the scaling is clearly different. For example,

the amplification ratio in Brown’s model increases with sa

whereas the opposite is true for Tanaka’s model.

One way of reconciling this difference is to note that the

actual unloading curve is better represented by the one shown

in Fig. 9C. Therefore, a more consistent estimate of Gtip can be

calculated by summing the areas of the two triangles adopted

by Brown62 and Tanaka63 (see Fig. 9C) and then multiplying by

h, that is,

Gtip ¼ sa
2

2Eu

þ
E2

~lm � 1
	 
2

2

2

6

4

3

7

5
h; (3.20)

where Eu is the unloading modulus (which could be different

from E1 due to hardening, see Tanaka63). Enforcing the fracture

condition, Gtip = Gintrinsic, we have

hmax ¼
2EuGintrinsic

sa2 þ EuE2
~lm � 1

	 
2
: (3.21)

Therefore, eqn (3.19) becomes:

Gc

Gintrinsic

¼
2Eusa ~lm � 1

	 


sa2 þ EuE2
~lm � 1

	 
2
: (3.22)

The result of Brown62 is recovered when Eu - N, while the

result of Tanaka63 is recovered when E2- 0.

These two models captured the qualitative toughening

mechanism of DN gels. However, a more detailed analysis is

needed for accurate quantitative prediction of the fracture

toughness. This was achieved in a recent work reported by

Zhang et al.64 They considered steady-state crack propagation

under PS configuration and derived the following scaling rela-

tion between the effective and local energy release rates:

G ¼ Gtip

1� aRmax

; (3.23)

where a is an unknown positive coefficient and was determined

from finite element simulation. The factor 1/(1 � aRmax) 4 1

represents the amplification ratio of Gtip, where Rmax is the

maximum value of the hysteresis ratio Rm defined as

Rm ¼
Ð lm
0
Sþdlþ

Ð 0

lm
S�dl

Ð lm
0
Sþdl

; (3.24)

i.e. the ratio of dissipated energy versus the total stress work

done on a material element in a loading–unloading cycle. The

hysteresis ratio Rm (0r Rm o 1) is a function of the peak stretch

lm that a material element has experienced. Rmax in eqn (3.23) is

the value of Rm associated with the maximum stretch lmax

experienced by all material elements in the slab (�H0r YrH0).

To make a connection between eqn (3.23) and the frame-

work outlined in Section 3.2, we first write eqn (3.10) in the

following form using the definition of Rm:

Gtip ¼ G� GD

¼ 2H0

ðls

1

Sþdl� 2

ðH0

0

Rm

ðlm

1

Sþdl

� �

dY : (3.25)

Although lm is a function of Y and lmax = max(lm)|�H0rYrH0
,

scaling-wise we can write eqn (3.25) as

Gtip ¼ G� GD � 2H0

ðls

1

Sþdl� ZRmax

ðlmax

1

Sþdl

� �

; (3.26)

where 0 o Z o 1 is a parameter accounting for the variation of

lm(Y) where lmax is the maximum stretch experienced by all

points in the slab (�H0 r Y r H0). This maximum stretch

should occur at material elements close to Y = 0 due to stress

concentration at the crack tip. To drive the additional loading

of the material elements around Y = 0 as they are translated

from X1 = N to X1 = �N, stress work is needed which comes

from strain energy released by unloading the material elements

closer to Y = �H0. In other words, the level of maximum stretch

lmax is set by the external load ls. If we can assume lmax and ls

are related such that
Ð lmax

1
Sþdl is proportional to

Ð ls
1
Sþdl, i.e.,

ðlmax

1

Sþdl ¼ b

ðls

1

Sþdl; (3.27)

then eqn (3.26) can be reduced to:

Gtip ¼ 1� ZbRmaxð Þ2H0

ðls

1

S22dl ¼ 1� ZbRmaxð ÞG; (3.28)

Fig. 9 (A) The method of Brown62 to estimate Gtip. The red arrow indicates a sudden unloading from sa to E2(~lm � 1). (B) The method of Tanaka63 to

estimate Gtip. (C) The two models of Brown and Tanaka can be reconciled by calculating the area underneath the entire unloading curve, which is

approximately the sum of the areas of the two triangles adopted by Brown62 and Tanaka.63
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which reproduces the result in Zhang et al.64 (see eqn (3.23)) if Z

and b are combined into a single parameter a. Our derivation of

eqn (3.28) relies on eqn (3.27) whichmakes a strong assumption on

how deformation is distributed in the PS specimen. To verify its

validity, a detailed solution of the deformation fields during steady-

state crack propagation is needed, which can be achieved by finite

element simulations. This was carried out by Zhang et al.64 using

the neo-Hookean material with a modified Ogden–Roxburgh

model86 to capture damage. It would be useful to test the validity

of eqn (3.27) for other damage models, e.g. the pseudo-elastic

model by Wang and Hong.29 Nevertheless, the scaling law given

by eqn (3.23) was shown to successfully predict the critical load for

steady-state propagation in a hybrid polyacrylamide–alginate tough

hydrogel44 under the PS configuration.64

We emphasize that the scaling analysis in Zhang et al.64 is for

steady state crack propagation. It may not be applied to crack

initiation where the energetic approach is not applicable for

inelastic materials. Indeed, Zhang et al.64 made an excellent point

on the difference between crack initiation and propagation. Using a

finite element model, they showed that for inelastic materials with

strong loading–unloading hysteresis, the critical stretch to achieve

steady-state crack propagation is much larger than that needed for

crack initiation, whereas for elastic materials the critical stretch for

crack propagation and initiation is approximately the same. This is

consistent with the points we made in Section 3.1.

It should be noted that the results of Brown62 and Tanaka63

(eqn (3.19)) are stated in terms of the fracture toughness Gc and

Gintrinsic. The amount of energy dissipation is mainly deter-

mined by when the second network fractures, i.e., by Gintrinsic.

In contrast, the scaling relation of Zhang et al.64 (eqn (3.23)) is

for the energy release rates G and Gtip. In this case, the energy

dissipation GD is determined by G, i.e., how large the external

loading is to drive the loading–unloading process and hence

dissipation. These two approaches can be reconciled if one

applies the fracture criterion: Gtip = Gintrinsic.

Finally, it is worth mentioning that Zhang et al.64 proposed that

Gintrinsic can be measured by preloading the gel before a crack is

introduced. In this way, the gel is already damaged before the

fracture test, and thus the dissipation term GD can be reduced or

even vanish. They measured the fracture toughness for an inter-

penetrating polyacrylamide–alginate gel using the PS geometry but

with different degrees of pre-stretch. It was found that the tough-

ness Gc converged to a value of 400 J m�2 for sufficiently large pre-

stretch. This was taken as the value of Gintrinsic. However, this value

is much larger than the values assumed by Brown62 and Tanaka63

(B10 J m�2). Note that the value of Gintrinsic B 10 J m�2 is

consistent with the prediction of the Lake–Thomas theory for

simple gels.43 Correspondingly, the amplification ratio found in

the experiment of Zhang et al.64 (B2.7) is much less than that

predicted by Brown62 (B40) and Tanaka63 (B10).

4. Rate dependent fracture of gels
4.1 Physical mechanisms of rate dependence

In practice, many gels exhibit rate dependent fracture

behaviors.36,77,87–92 Because of rate dependence, the onset of

crack growth in a crack initiation test can be sensitive to the

applied strain rate. In a crack propagation test, the effective

fracture toughness Gc depends on the crack propagation speed.

The physical mechanisms responsible for such a rate depen-

dence are complex and multi-faceted due to the rich mechan-

ical behaviors of gels. Here we summarize three main

mechanisms: (i) rate dependent crack-tip fracture process; (ii)

poroelasticity; and (iii) viscoelasticity.

Rate dependent crack tip fracture process. A representative

example for the rate dependent crack-tip fracture process is the

gelatin gel studied by Baumberger et al.32,33,68,90 Gelatin gels

consist of physically associated networks swollen by solvent

molecules (e.g. water) and exhibit much lower toughness (on

the order of 10 J m�2) than that of DN gels. The fracture

experiments of Baumberger et al.32,33 suggested that the frac-

ture process is localized in a small zone surrounding the crack

tip, in which chains creep due to viscoplastic disentanglement

until they are pulled out of the gel matrix. Outside this region

the gel is elastic. This chain pull-out process is resisted by the

viscous drag of solvents. For example, Baumberger et al.32,33,90

observed that their gelatin gels are toughened by increasing

solvent viscosity. In addition, the toughness can decrease

significantly if a small drop of the solvent is introduced to

wet the moving crack tip,32 indicating the effect of viscous flow

of the solvent on the crack tip fracture process. Wetting the

crack tip can also lead to crack branching instabilities.68

Recently Lefranc and Bouchaud91 show that the toughness

of agar gels (B1 J m�2) increases with crack speed, despite that

rheological tests suggest that the agar gels are mostly elastic

with rate-insensitive storage and loss modulus in a wide

frequency range (0.1–100 Hz). This rate-dependence of tough-

ness was also attributed to viscous chain pull-out or stress-

accelerated chain dynamics, both localized at the crack tip

region. Since these physical gels are quite brittle, the fracture

process is highly localized at the crack tip and the SSY condi-

tion is satisfied. Therefore, the full power of elastic fracture

mechanics can be used to understand the fracture of these

brittle gels.

Poroelastic effects. Poroelasticity refers to the coupling

between solvent diffusion in the polymer network and mechanical

stresses.23–26 Solvent diffusion can disturb the crack tip stress field

and local fracture mechanisms, thus altering the fracture condi-

tion. The rate of solvent diffusion is often characterized by an

effective diffusion coefficient D, which depends on the permeability

of the network, solvent viscosity and gel modulus. This allows one

to estimate a length scale Rp to characterize the size of a region

around the crack tip within which the poroelastic effect can be

important. For the crack initiation test with loading time te, this

length scale is estimated by Rp �
ffiffiffiffiffiffiffi

Dte
p

,38 whereas for steady state

crack propagation with speed V, Rp is estimated as D/V.93,94 If Rp is

small compared to the characteristic geometrical dimensions then

the poroelastic effect may be lumped into the intrinsic toughness

by appealing to the SSY condition. However, if Rp is large (e.g. due

to slow loading or slow crack propagation), poroelasticity needs to

be explicitly considered in the fracture formulation. Recently,

Bouklas et al.39 developed a theoretical framework that accounts
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for poroelasticity in gel fracture for a special case where the crack

growth is assumed to be much slower than the solvent diffusion.

Based on this assumption, Bouklas et al.39 found that the energy

release rate for a slowly propagating crack is given by the J-integral

in eqn (2.1) modified by an additional term to account for the

dissipation due to solvent diffusion.

Fracture in poroelastic solids is sensitive to the boundary condi-

tion for solvent transport at the crack surfaces, i.e. whether the crack

surfaces are immersed in a reservoir of solvents. Bouklas et al.39

showed that for a stationary crack under a fixed displacement

loading, the intensity of the crack tip field, as reflected by their

modified J-integral, increases with time if the crack surfaces are

exposed to air and thus have zero solvent flux. This is consistent with

a previous model by Wang and Hong95 to explain the delayed

fracture in gels.96 If the crack surfaces are immersed in solvents,

the crack tip field evolves differently and its intensity may even

decrease with time, a feature also found in other works.38,97

Viscoelastic effects. Viscoelasticity is an important time depen-

dent mechanism that can substantially enhance the toughness of

gels.98–100Here we focus on viscoelasticity due to reversible physical

bonds.19–22,101 These reversible bonds have been introduced into

gels as sacrificial bonds to enhance toughness and yet allow the

gels to heal after damage.44,49 Since physical bonds can reform after

breakage, upon unloading and resting the gels can partially or fully

recover to their original state depending on the resting period,

reminiscent of a classic viscoelastic solid. More importantly, the

viscoelastic behavior can be tuned using different types of physical

crosslinks. For example, Grindy et al.102 have recently demonstrated

how to tune the relaxation spectrum of a hydrogel by usingmultiple

kinetically distinct metal-ligand crosslinks. The hypothesis that

macroscopic viscoelastic behavior is controlled by bond breaking

and healing kinetics has been tested by comparing the mechanical

behavior of a poly(vinylalcohol) (PVA) dual crosslinked gel with a

theory capturing the bond kinetics.21,22 This theory can accurately

capture experimental data of uni-axial tension21,22 and torsion

tests103 subjected to complex loading histories. This dual-

crosslinked gel has a simple chemical structure, which is ideal as

amodel system to probe the connection betweenmicroscopic bond

kinetics and macroscopic viscoelasticity. However, the fracture

toughness of this gel is much lower than gels with more complex

molecular structures,49,104 and quantitative models for the rate-

dependent mechanical behavior of these tougher gels are yet to be

developed.

For rate-dependent gels, especially those toughened by a

large amount of viscoelasticity, it is difficult to design and

interpret fracture tests, since the material can undergo very

large deformation in addition to exhibiting hysteretic behaviors

that depend on the loading history and the local failure

process. Although there have been experiments studying crack

growth in viscoelastic gels with reversible physical bonds,49,77

researchers are still struggling to quantify the fracture behavior

of these gels. Here we outline some of these challenges.

4.2 Crack initiation for viscoelastic gels

Crack initiation tests involving viscoelastic gels are difficult to

interpret. First, the energy release rate is not well defined. Since

the amount of loading and unloading hysteresis depends on

the loading history, it is difficult to tally the work and energy

dissipation at every material point, similar to the discussion

in Section 3.1 for materials with rate-independent damage.

Second, although one can still measure an ‘‘initiation tough-

ness’’ Ginit
c following the procedures described in Section 3.1,

the J-integral based interpretation of the initiation toughness

Ginit
c (see Section 3.1) is no longer valid for viscoelastic materials

even if one assumes monotonic loading throughout the fracture

specimen. Indeed, for rate dependent materials, the J-integral is

not path independent. This is because at a given global loading

rate, e.g. _ls in the PS configuration, the local strain rates at

individual material points around the crack tip are amplified

non-uniformly. Such non-uniformity in local strain rates caused

by stress concentration may depend on the specimen geometry,

e.g. the size and shape of the specimen. Thus, the material

points in a fracture specimen follow different stress–strain

relations due to viscoelasticity. Therefore, it is in general not

possible to find a nonlinear elastic solid to reproduce the same

stress and strain fields in a viscoelastic fracture specimen.

Without the J-integral based interpretation, Ginit
c does not neces-

sarily reflect the intensity of crack tip fields in viscoelastic

materials, and should not be used as a criterion for crack

initiation. For example, such Ginit
c is likely to be dependent on

the loading history and specimen geometry.

Even in special cases where one can apply the J-integral

interpretation for viscoelastic materials, the critical load at the

onset of crack growth, and hence Ginit
c , will still be sensitive to

the loading history. For example, take the simplest case of a

linear viscoelastic solid, and consider two different loading

histories. In history 1, the sample is subjected to very fast

loading rate so the material has no time to relax. In this case the

material behaves like a linear elastic solid with instantaneous

Young’s modulus E0. The J integral for this case is well-defined

(since material is linearly elastic)

J = KI
2/E0 (fast loading, plane stress). (4.1)

On the other hand, if the sample is loaded very slowly so

complete relaxation occurs throughout the sample (history 2),

then the material behaves like a linear elastic solid with the

long time Young’s modulus E
N
. For this case the J integral is

also well-defined and is given by

J = KI
2/E

N
(slow loading, plane stress). (4.2)

According to eqn (4.1) and (4.2), a crack initiation criterion

based on J = Ginit
c will lead to very different stress intensity

factors at initiation, for the fast loading (history 1), this is:

K fast
Ic ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0G
init
c

q

; (4.3)

whereas for the slow loading case,

Kslow
Ic ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1Ginit
c

q

: (4.4)

Since typically E0/EN c 1, the crack initiation criterion J =

Ginit
c leads to the physically unreasonable result that the crack tip

stress level at initiation is very different for fast and slow loading.

Soft Matter Review

Pu
bl

ish
ed

 o
n 

12
 S

ep
te

m
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
19

/0
6/

20
17

 1
7:

21
:2

7.
 

View Article Online

http://dx.doi.org/10.1039/c6sm01694d


8082 | Soft Matter, 2016, 12, 8069--8086 This journal is©The Royal Society of Chemistry 2016

Note that we have assumed a simple loading history above, i.e.

monotonic loading with a constant strain rate _ls. One can

impose different loading histories such as cyclic loading, stress

relaxation under a fixed displacement, or creep under a fixed

force. The ‘‘toughness’’ or ‘‘Ginit
c ’’ measured at the onset of crack

growth is expected to vary depending on the loading history.

In summary, the concept of fracture toughness, either based

on the energetic or the J integral approach, is not well defined

for crack initiation tests involving viscoelastic materials, since

the onset of crack growth depends on the loading history, the

local failure process, as well as specimen geometry. More

studies are needed to establish a theoretically sound criterion

for crack initiation in viscoelastic materials.

4.3 Crack propagation for viscoelastic gels

The inapplicability of the J integral approach to characterize

crack initiation foreshadows the difficulty in quantifying crack

propagation. The concerns on the loading history dependence

discussed in Section 4.2 still remain. A way to bypass this

difficulty is to restrict discussion to steady state crack propaga-

tion. In this case, locally around the crack tip, the loading

histories and rates of material points are governed by the crack

speed. As long as steady state crack growth exists, the effective

energy release rate can be determined using the PS or SE

specimens reviewed in Section 2. The problem is that steady

state crack growth is difficult to achieve in practice since it

requires special specimen geometries and boundary conditions.

For example, in a PS specimen containing a rate independent

gel, a propagating crack will eventually reach the steady state if

the applied displacement D is held at some appropriate fixed

value. However, in a viscoelastic gel, a fixed displacement D will

cause the material far ahead of the crack tip to relax. Therefore,

to drive crack growth at a fixed speed, it is necessary to move the

grips apart at some unknown rate. This means that the strain far

away from the crack tip increases with time – violating transla-

tion invariance. A similar problem is encountered in the SE

specimen, where the arms can creep under a constant force F

during crack propagation. One possible way to achieve steady

state crack propagation is to have a sufficiently slow crack speed

V so that the material far ahead of the crack tip has achieved the

fully relaxed state, but this may be difficult to achieve in practice.

The above discussion invariably raises the question about

the existence of steady state crack growth. Here we introduce

the concept of quasi-steady state crack growth. A crack is

undergoing quasi-steady state growth if the change in crack

speed V and applied loading D is small while the crack traverses

the damage zone ahead of it whose size is denoted by Rd. For a

PS specimen, this condition is:

max _V
�

�

�

�=V ; _D=D
� 

� Rd=V: (4.5)

While eqn (3.9) is still valid for quasi-steady state crack

growth, the amount of energy flow to the crack tip Gtip, and

hence the intrinsic energy Gintrinsic is in general a function of

crack speed V, that is, Gintrinsic(V). However, the energy dissi-

pated per unit crack extension, GD, is now not only a function of

crack speed, but also depend on the history of loading as well

as the specimen geometry. Indeed, for the same specimen,

different loading histories can lead to different crack growth

rates and different amounts of dissipation. As an example,

Mayumi et al.77 recently studied crack propagation in a viscoelastic

gel with reversible ionic bonds. Using the SEC configuration with

a fixed geometry (see Section 2.2.3), the crack achieved a

constant speed V for a range of applied strain rates, but the

computed effective energy release rate based on eqn (2.7) varied

drastically. This is inconsistent with the expectation that Gintrinsic

should be a constant for the same crack speed V. Besides the fact

that eqn (2.7) is approximate, it also includes both GD and

Gtip(V). Using an approximation procedure, Mayumi et al.77

subtracted the dissipation from the effective energy release rate

given by eqn (2.7), and found that the local energy release rate

Gtip(V) is approximately constant for the same crack speed V. We

emphasize that the estimate for dissipation in Mayumi et al.77 is

at best approximate. A more accurate calculation would require

the solution of the full deformation fields in the specimen

during crack propagation.

Finally, for gels where rate dependent material behavior is

confined to a small region surrounding the crack tip (SSY), it is

possible to lump the viscoelastic dissipation into an effective

critical energy release rate which depends only on the crack

speed V. The contribution of viscoelastic dissipation can be

calculated following the method outlined in Section 3.2. Of

course, in this case the hysteresis loop of material points

surrounding the crack tip depends on the crack speed V and

can be strongly coupled to the local failure mechanism. Persson

and Brener105 developed a model to estimate the energy dis-

sipation for crack propagation in viscoelastic solids, but their

formulation was based on the assumption of linear viscoelas-

ticity and small deformation. Analytical or numerical models

based on finite strain and nonlinear viscoelastic models, e.g. for

gels with reversible bonds,21,22 are not yet available.

5. Future challenges

We have discussed a number of concepts and theoretical

formulations for the characterization of fracture in tough

hydrogels. Many fundamental questions and challenges still

remain to be answered. In this section we list some of these

challenges.

5.1 Rate independent gels

Ideally the toughness Ginit
c for crack initiation that is defined

based on the J-integral approach should be independent of

specimen geometry, provided that the crack is loaded in the

same mode (e.g. plane stress and Mode-I loading). Sun et al.44

performed extensive tests to verify that the initiation toughness

Ginit
c for their alginate–polyacrylamide hybrid gel is insensitive

to the sample geometry. Specifically they tested PS specimens

with different heights 2H0, SE specimens and SEC specimens,

and obtained approximately consistent Ginit
c . Whether this is true

for other gels is yet to be tested with more experimental data.
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A more fundamental question is how to reconcile the field and

energy approaches for crack initiation. Is Ginit
c based on the critical

J-integral intrinsically related to the energy delivered to the crack tip

and the energy dissipation as the crack starts to grow?

For steady state crack propagation, the amount of dissipation

can depend on the specimen geometry even if the intrinsic

toughness Gintrinsic is a material constant. Therefore, Gintrinsic

appears to be a more important parameter for the prediction of

crack propagation condition compared to Gc. How can one

directly measure Gintrinsic in experiments? As mentioned in

Section 3.3, Zhang et al.64 developed an interesting method,

i.e. to impose pre-stretch to the material before the fracture test

so that the sacrificial network is already damaged. It would be

useful to apply this method to a variety of tough gels. However, it

should be noted that this method yielded a quite large Gintrinsic

(B400 J m�2)64 for an interpenetrating polyacrylamide–alginate

gel. This value is higher than the fracture toughness of the pure

polyacrylamide gel (B100–250 J m�2) or the pure alginate gel

(B10–35 J m�2) according to Sun et al.44 It is also much higher

than the theoretical prediction based on Lake–Thomas theory

(B10 J m�2).43 A possible explanation for this discrepancy is that

the damaged network can still play a significant role in resisting

the local fracture process. Further development of this and other

techniques to experimentally probe the link between the network

structure and the fracture process at the crack tip will be

extremely useful to understand the factors controlling Gintrinsic.

Theoretical and numerical modeling can shed light on some

of these issues. Numerical methods such as nonlinear finite

element methods can be used to study transition from crack

initiation to crack propagation in different specimens, which

may provide insights into possible physical relation between

the Gc values measured for crack propagation and the J integral

based Ginit
c for crack initiation.

5.2 Rate dependent gels

For rate dependent gels, e.g. viscoelastic gels with a mixture of

chemical and reversible physical bonds,21,22 rigorous theory

and appropriate experimental configurations to define fracture

resistance for crack initiation and propagation are yet to be

developed. The concept of toughness, either based on the

energy release rate or the J-integral, in theory cannot be applied

to characterize fracture of viscoelastic gels. As yet there is no

replacement for these concepts, a different line of attack is to

use the field approach instead of the energy approach. In this

approach, a unique relation is sought between the crack

propagation speed and some appropriate crack tip parameters

that reflects the intensity of the crack-tip stress and strain

fields. Similar approaches have been used to characterize creep

crack growth in high temperature materials.106 However, this

approach requires a multi-axial time dependent constitutive

model for the gel, which is not readily available in the literature

except for some special cases.21,22,103

5.3 Fatigue of tough gels

Fatigue refers to the failure of materials under cyclic loading. So

far very little has been known about the fatigue properties of

tough gels. It is not clear what physical mechanisms determine

the fatigue resistance of tough gels and how energy dissipation

plays a role here, especially for cyclic loadings with low ampli-

tudes. Intuitively, one would expect the early versions of DN

gels to have low fatigue resistance, since they can be perma-

nently damaged when irreversible breakage of covalent bonds

in the stiff network occurs. But this hypothesis remains to be

verified by experimental data. On the other hand, gels with

reversible bonds have demonstrated the capability to self-heal

after damage.21,49 It would be very interesting to study how

such bond reversibility affects the fatigue resistance. However,

fatigue test data for such self-healing gels are currently lacking.

The theoretical framework to define an appropriate fatigue

crack propagation criterion for gels is yet to be developed.

Extensive experimental tests and theoretical analysis will be

needed for this still primitive area. A particular important

component is the measurement and modeling of breaking

and reforming kinetics of the reversible bonds. Recently a

model for a poly(vinylalcohol) (PVA) gel with reversible bonds

has been shown to well capture experimental data.21,22 This

model should be extended for gels with more complex mole-

cular structures and kinetic mechanisms, e.g. stress-dependent

bond breaking kinetics. At this time, there is a lack of experi-

mental data on how physical bonds break and reform in such

gel networks, especially near the crack tip where the high

stresses there can affect these kinetic processes.

5.4 Structure–property relation for gel fracture

Ultimately the goal is to understand how the molecular struc-

ture of tough gels, e.g. chain lengths and the relative ratio of

different networks, is related to the energy dissipation around

the crack tip. Efforts to link the molecular structure and

toughness have been made for the DN gels.107–109 It is useful

to extend such efforts to a general class of tough gels with

similar physical structures, which will provide important

insights for further improvement of the toughness. For exam-

ple, how is the intrinsic toughness Gintrinsic related to the

network structure? How does the coupling between the stiff

and soft networks affect the formation of a crack tip dissipation

zone? Modeling and simulations can play an important role in

this area of study.

6. Summary

This article focuses on the emerging area of fracture mechanics

of tough hydrogels. We start by reviewing key concepts in

elastic fracture mechanics and draw attention to their limita-

tions. For gels that are rate insensitive, we argue that the

fracture toughness at crack initiation Ginit
c is characterized by

the J integral. However, characterizing crack propagation is

more complicated since it involves unloading. Hence we limit

the discussion to steady state crack propagation. For this case,

the energy release rate can be separated into a dissipative part

and a part that is responsible for energy flow to the crack tip.

We note that fracture toughness for crack growth in tough gels
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can be specimen dependent, and give examples to illustrate

that the intrinsic fracture toughness controls the amount of

dissipation, even though it is usually much smaller. We also

make connection to previous models explaining the toughening

mechanism of DN gels.

The toughness concept is difficult to apply for viscoelastic

gels, especially those with reversible physical bonds. For this

case it is not possible to define a unique fracture toughness for

crack initiation since the stress and strain states in a fracture

specimen depend on the entire loading history and specimen

geometry. For crack propagation, we suggest the idea that the

crack propagation speed should be correlated with the local

energy release rate Gtip, which can be very difficult to compute.

Finally, we emphasize that the concept of rate-independence

is relative. Gels are inherently rate dependent (e.g. due to

poroelasticity). Rate independence in this work refers to the

length and time scale where the mechanical behavior and

fracture resistance of gels are insensitive to rate-dependent

mechanisms.
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