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Abstract

Tungsten and tungsten alloys show the typical change in fracture behavior from brittle at low temperatures
to ductile at high temperatures. In order to improve the understanding of the effect of microstructure the
fracture toughness of pure tungsten, potassium doped tungsten, tungsten with 1wt% La2O3 and tungsten
rhenium alloys were investigated by means of 3-point bending -, double cantilever beam - and compact
tension specimens. All these materials show the expected increase in fracture toughness with increasing
temperature. The experiments demonstrate that the grain size, texture, chemical composition, grain bound-
ary segregation and dislocation density seem to have a large effect on fracture toughness below the DBTT.
These influences can be seen in the fracture behavior and morphology, where two kinds of fracture occur:
on one hand the transgranular and on the other hand the intergranular fracture. Therefor techniques like
electron backscatter diffraction, auger electron spectroscopy and x-ray line profile analysis were used to
improve the understanding of the parameters influencing fracture toughness.
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(a) 3PB-specimen (b) DCB-specimen (c) CT-specimen

Figure 1: Different specimen types manufactured out of tungsten rods. 3PB-specimen with crack direction in rolling
direction (a). DCB-specimen with crack direction in rolling direction (b). CT-specimen with crack direction in tangential
direction (c).
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Introduction

Most studies related to the ductility of tungsten and tungsten alloys were performed in the sixties and sev-
enties by e.g. Raffo et al. [1]. Since fracture mechanics was not well established at that time the studies on
fracture toughness were scarce. Riedle and Gumbsch [2, 3] extensively studied the fracture toughness of
tungsten single crystals in the nineties. The effects of crystallographic orientation, crack growing direction,
loading rate and temperature were investigated. Compared to the single crystal, the fracture toughness of
polycrystalline tungsten is not well examined yet.
We started an extensive investigation of the fracture toughness of pure tungsten (W), potassium doped
tungsten (AKS-W), tungsten with 1wt% La2O3 (WL10) and tungsten-26wt%-rhenium (W26Re). The results
of few selected microstructures are presented in this paper. A very large effect of the microstructure es-
pecially below the ductile to brittle transition temperature was observed. The investigations indicate that
the change from transgranular to intergranular cleavage fracture plays an important role. Especially crys-
tallographic analysis are presented to improve the understanding of interaction of these fracture processes.

This paper is also submitted to the 12th International Conference on Fracture - July 12-17, 2009.

Experimental

The fracture toughness of W, AKS-W, WL10 and WRe were investigated by means of 3-point bending -
(3PB - fig.1-a), double-cantilever beam - (DCB - fig.1-b) and compact tension specimens (CT - fig.1-c).
All specimens were manufactured out of rods during different stages of the processing route. Figure 1
shows specimens for tests in rolling- (RD) and tangential direction (TD), additional ones were prepared to
investigate the materials in normal direction (ND). The experiments were performed in the range of -196◦C
to more than 1000◦C.
In order to examine the local variation of the fracture resistance DCB-specimen (fig. 2-a) with a length of
30mm, a height of 3.5mm and width of 7.5mm respectively CT-specimen with a length of 7.5mm, a height
of 3mm and a width of 6mm were manufactured out of W-, AKS-W-, and WRe-rods. The notches were
prepared with a diamond-saw, refined with a razor blade and fatigue-precracked under cyclic compression.
The areas in front of the crack-tips were scanned by electron backscatter diffraction (EBSD) after a heat
treatment of about 2000◦C for an hour in hydrogen atmosphere (fig. 2-b). Some specimens were then
loaded under tension within the range of stable crack growth (fig. 2-c). After that the previously scanned
areas were scanned again by EBSD (fig. 2-d) to quantify changes of the grain orientation in the obtained
orientation imaging maps (OIM).
The tests performed at room temperature were done with a microtensile-testing machine of the company
Kammrath & Weiss while the tests at elevated temperatures were done by use of a ZWICK universal-
testing machine. The analyses were made by use of a Zeiss 1525 scanning electron microscope equipped
with an EDAX EBSD system.

Figure 2: Experimental setup to investigate the local variation of the fracture resistance: Position of a DCB-specimen
in a AKS-W rod (a). Scanning the area in front of the crack-tip by EBSD (b). Apply a tensile load on the specimen
(c). Scanning the previously scanned area again (d).
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Figure 3: Fracture toughness KIC of W, AKS-W, WL10 (sintered) and W26Re (rolled) as a function of temperature T .

Results and Discussion

Fracture Toughness Investigations

All tested specimens showed the expected increase in fracture toughness with increasing temperature,
examples are shown in figure 3. At low temperatures the fracture toughness was determined by use
of linear elastic fracture mechanics whereas at temperatures above 600◦C the critical crack tip opening
displacement CTOD [4] was used to determine the critical stress intensity factor. The fracture toughness
determined by stereophotogrammetric techniques is then calculated by

KIC =
√
m · σy · E · CODC (1)

where σy represents the yield strength, E the Young’s modulus and m a coefficient which depends on the
work hardening factor m of the material. For low hardening m is about 0.5 [5].
Table 1 shows fracture toughness values of CT and 3PB specimens tested at room temperature. The two
letter code in the brackets describes the crack plane orientation of different specimens with respect to the
geometry of the manufactured material. The first letter designates the direction normal to the crack plane,
and the second letter the expected direction of crack propagation [6]. Due to the extreme differences of the
determined KIC values, the processing route seems to have a great influence on the results as well as the
direction the specimens have been manufactured out of the rods. Additionally it has to be mentioned that
different specimens from the same wires show sometimes large differences. This is probably an effect of
the location of the tested volume in the wire of the material as the texture changes from the center to the
edge of the wire and also becomes more pronounced the thinner the wires are.
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Table 1: KIC values of W and W-alloy specimens tested at room temperature
Material Condition Rod ∅ Tests performed KIC

mm MPa
√
m

W as sintered 23 CT 5.1
rolled 9 CT (C-R) 4.69
forged 25 3PB (L-R) 8.01
rolled 9 3PB (L-R) 9.08
rolled 4 3PB (L-R) 5.43
rolled and drawn 1 3PB (L-R) 35.09

WL as sintered 23 CT 4.72
rolled 9 CT (C-R) 5.99
forged 25 3PB (L-R) 16.56
rolled 9 3PB (L-R) 9.77
rolled 4 3PB (L-R) 9.74

AKS-W as sintered 23 CT 6.45
rolled 9 CT (C-R) 4.50
rolled 9 3PB (L-R) 32.07
rolled 4 3PB (L-R) 13.48
rolled and drawn 1 3PB (L-R) 32.06

WRe (26%) forged 25 3PB (L-R) 54.24

Examination of the local variation of fracture resistance

For a better understanding of the local variation of the fracture resistance the DCB-specimens were tested
with a microtensile-testing - or a universal-testing machine as mentioned earlier. The crack path was
recorded by EBSD. In the case of the potassium doped tungsten tested at RT the inverse polfigures (IPF)
and fracture surfaces show two types of fracture behavior (fig. 4), on one hand the crack propagates in-
tergranular (ig) and on the other hand also transgranular (tg) though the fraction of transgranular crack

(a) intergranular (b) transgranular

Figure 4: Intergranular (a) and transgranular (b) propagated crack of a DCB-specimen manufactured of AKS-W and
tested at RT .
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Figure 5: Small angle tilt boundary of geometrically necessary dislocations generated by the crack tip. The tilting of
the crystal in the crack-wake can be associated with a shear in the crack propagation direction.

propagation prevails. Orientation changes within single grains in the interior of an intergranular propagated
crack (fig. 4-a) as well as changes within grains in the case of a transgranular propagated crack (fig. 4-b)
were observed and are clearly viewable through the gradual change in color in both pictures of figure 4.
Such deformations are not frequently observable and are just very localized along the crack path of a RT -
tested specimen.
Figure 5 shows how to correlate the change in orientation with plastic deformation. A narrow band of ge-
ometrically necessary dislocations (GND)- generated by the crack tip - is arranged one after the next in a
small angle tilt boundary. The volume elements below the boundary are rotated with respect to the ele-
ments above. This rotation can be associated with a tilt of crystals which leads to a shear in the direction
of the crack propagation [7].
Measurements of the misorientation in the case of the intergranular propagated crack show a maximum
value of about 4 degrees whereas the transgranular propagated crack leads to a maximum orientation
change of about 5 degrees.
The DCB-specimens tested at elevated temperatures are shown in figure 6-b/6-c and compared with the
specimen tested at RT (fig. 6-a). It can be seen that the amount of plastically deformed areas within
single grains does not significantly increase from a RT -tested specimen to a 300◦C-tested specimen or
a 600◦C-tested specimen. Misorientation measurements within the grains also show that the values are

(a) RT (b) 300◦C (c) 600◦C

Figure 6: Plastically deformed areas along the crack paths of potassium doped tungsten DCB-specimens tested at
RT (a), 300◦C (b) and 600◦C (c).
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(a) RT (b) 300◦C (c) 600◦C

Figure 7: Plastically deformed areas along the crack paths of tungsten rhenium CT-specimens tested at RT (a),
300◦C (b) and 600◦C (c).

always in the range between 4 and 6 degrees. However the frequency of deformed grains is increasing
with increasing temperature. In the case of RT - and 300◦C-tested specimens the deformation was just
observed directly along the crack path whereas the 600◦C-tested specimen showed plastically deformed
areas also in a wider vicinity of the propagated crack.
The compact tension specimens manufactured of a W26Re alloy were fractured at room temperature and
at elevated temperatures. Figure 7 shows scans of all specimens after fracture. Compared to the AKS-
W-specimens these IPF show much more plastically deformed areas. Plastically deformed grains in the
direct vicinity of the propagated crack were just observed at the RT -tested specimen (fig. 7-a). The 300◦C-
and 600◦C-tested samples (fig. 7-b and fig. 7-c) show also plastification in the wider vicinity of the crack.
Measured misorientations of about 10 degrees at the 300◦C- and about 14 degrees at the 600◦C-tested
specimens are much higher than the values of the AKS-W-specimens.
In order to quantify the effect of local varying fracture resistances further investigations on different mi-
crostructures will be performed and described in a forthcoming paper.
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