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ABSTRACT: The classical truss model (or strut-and-tie model) for shear failure of reinforced concrete beams 
is modified to describe fracture phenomena during failure. The failure is assumed to be caused by propagation 
of a compression fracture across the concrete strut during the portion of the loading history in which the 
maximum load is reached. The compression fracture may consist of a band of splitting cracks that later inter
connect to form a shear crack or a shear fracture band inclined to the strut. The width of the fracture band is 
assumed to occupy only a portion of the strut length and to represent a fixed material property independent of 
the beam depth. The energy release from the truss is calculated using two alternative approximate methods: (1) 

using the potential energy change deduced from the concept of stress relief zones; and (2) using the comple
mentary energy change due to stress redistribution caused by propagation of the fracture band across the com
pressed concrete strut. Both approaches show that a size effect on the nominal strength of shear failure must 
exist and that it should approximately follow the size effect law proposed by BaZant in 1984. The physical 
mechanism of the size effect is also explained in a clear and simple intuitive manner. Finally, it is shown that 
the applied nominal shear stress that causes large initial diagonal cracks to form also exhibits a size effect. 

INTRODUCTION 

Although much has been learned about the shear failure of 
reinforced concrete beams during this century, the physical 
mechanism is still not adequately understood. The shear failure 
in a quasi-brittle material such as concrete involves progres
sive evolution of distributed damage and its localization into 
fracture, which causes a size effect. This is a major problem 
of the mechanics of solids today. It is a problem of great dif
ficulty, in which simplified mathematical formulations are at 
this time inevitable. 

The classical approaches to shear design of reinforced con
crete beams are of two types: (1) empirical equations based 
on the concept of strength, which have been used for a long 
time in the ACI Code 318 (Building 1985) as well as other 
codes [CEB-FIP 1990 (Model 1993), Eurocode EC2, 1991 
(Design 1991)]; or (2) formulations based on the lower bound 
theorem of the theory of plasticity. These approaches exhibit 
no size effect, i.e., the nominal strength of the beam at failure 
is predicted as independent of the beam size when geometri
cally similar beams are considered. 

In the literature, there exist over 470 experimental studies 
of the shear failure of reinforced concrete beams. Among 
them, there exist only 10 studies, most of them recent, that 
include the beam size as a variable parameter and provide a 
direct evidence of size effect; see Leonhardt and Walter 
(1962a,b), Rusch (1962), Kani (1967), Bahl (1968), Taylor 
(1972), Walraven (1978, 1981), Chana (1981), Iguro et al. 
(1985) [also Shioya et al. (1989); Shioya and Akiayama 
(1994)], BaZant and Kazemi (1991), Khorasgany (1994), and 
Walraven and Lehwalter (1994). Furthermore, there are very 
recent large-size test data by Gopalaratnam at University of 
Missouri, Columbia, orally presented at the ACI Convention 
in Denver in 1996. 

Kani's (1967) study was the first that provided unequivocal 
evidence of a strong size effect. All the test data available in 
the literature in the mid 1980s, which included several hundred 
test series, were statistically analyzed for the evidence of size 
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effect by Bazant and Kim (1984, 1985), BaZant and Sun 
(1987) and BaZant and Cao (1986). Because test data for one 
beam size from one laboratory had to be compared to test data 
for another beam size from another laboratory, and because 
most studies varied simultaneously several parameters and did 
not adhere to geometrical scaling, it came as no surprise that the 
scatter was very high. Nevertheless, a size effect was clearly 
discernible. With the recent data, the existence of a strong size 
effect [e.g., Mihashi et al. (1994), BaZant et al. (1994)] is now 
clear and has become widely accepted, contrary to the situation 
a decade ago. The problem is how to explain it and model it. 

To explain the size effect, three theories have been pro
posed: (1) a Weibull-type theory of random strength; (2) the 
theory of fracture energy release [based on BaZant (1983, 
1984)]; and (3) the theory of fractal character of crack surfaces 
or microcrack distributions (Carpinteri et al. 1994, 1995a,b). 

Weibull's theory (1939) [which underlies the power law 
used in the Japanese code for shear failure of beams (Design 
1986; Standard 1991; Okamura and Maekawa 1994)] is the 
classical explanation of size effect. But it applies only to struc
tures that fail at the initiation of macroscopic fracture from a 
microscopic flaw, for example, brittle metallic structures. This 
theory has been shown (Bazant et al. 1991; Bazant and Xi 
1991) to be inapplicable to structures that fail after large stable 
growth of damage or fracture, which is the case for concrete. 
The fractal theory is not viable because it was shown that the 
mathematical consequences disagree with the experimental ev
idence, and the fractal hypothesis does not match the known 
physical mechanism (BaZant 1995a,b, 1996, 1997). That 
leaves the energy release theory. 

There are several clues indicating that the energy release 
theory ought to apply. It is now well understood that whenever 
the load-deflection diagram of a structure exhibits postpeak 
softening (Fig. 1) and the softening is not caused by overall 
buckling of the structure, damage localization must be taking 
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FIG. 1. Dependence of Effective Stress-Strain Diagram of 
Compression Strut on Beam Size 



place and must cause a size effect. As shown by dimensional 
analysis and the theory of similitude, when the criterion of 
failure of a material is expressed solely in terms of a critical 
stress or critical strain, no size effect can exist, but when the 
material failure criterion is expressed in terms of energy, as in 
fracture mechanics, the size effect must occur (Bazant 1994). 
An asymptotic analysis of the general failure conditions ac
cording to quasi-brittle fracture mechanics independently again 
shows that a size effect must exist, and application of the tech
nique of asymptotic matching yields a formula for the size 
effect (Bazant 1995a,b, 1996, 1997a). The nonlocal finite el
ement models and nonlinear fracture mechanics provide fur
ther support (Bazant et al. 1994). 

For the diagonal shear failure in particular, a fourth type of 
explanation was proposed by Reineck (1991), Collins and 
Mitchell (1991), and Collins et al. (1996). The hypothesis was 
that (1) the width of the major cracks at failure is approxi
mately proportional to the beam depth (size); (2) the failure 
load depends on the transfer of shear stress across the cracks 
due to friction and aggregate interlock; and (3) the increase of 
crack opening reduces the shear stress transfer capability. Of 
course, whenever there is any dependence of the stress on the 
displacement (rather than the strain), in this case the crack 
opening, a size effect is engendered. However, there are four 
arguments indicating that the foregoing hypothesis cannot ex
plain the main source of the observed size effect: 

1. The crack width is not proportional to the beam depth 
and is governed mainly by the spacing and size of re
inforcing bars (Hsu and Zheng 1996). 

2. The main cracks at the moment of failure run predomi
nantly in the direction of the compressive principal 
stress, which is the essential assumption of the truss 
model or strut-and-tie model [e.g., Schlaich et al. 
(1987)], and so the major cracks (Fig. 2) transmit no 
significant shear stresses that would matter. (Considering 
transmission of significant shear and normal stresses 
across the diagonal cracks would be tantamount to re
jecting the truss model, or strut-and-tie model.) 

3. The opening of the diagonal shear crack at failure of a 
simply supported beam is the widest at the bottom of the 
beam while the failure of the material occurs in the com
pression zone near the top of the beam. 

4. The crack opening width, anyway, does not control the 
maximum load (it controls the cracking load), and con
sequently, because a widely opened diagonal crack forms 
before the maximum load, the opening width of this 
crack must be relevant to the cracking load rather than 
the failure load. 

Applying the condition of energy balance, BaZant and Kim 
(1984) introduced the size effect law as a correction of a 
strength-based formula for the nominal shear strength and 
showed that it allows a distinctly better statistical agreement 
with the existing test results. This study was extended by Ba
zant and Sun (1987). For prestressed concrete and for punch
ing of slabs, it is further extended by Bazant and Cao (1986, 
1987). However, a simple, intuitively clear physical explana
tion of the mechanism of size effect in shear failure has not 
been given. To offer such an explanation is the objective' of 
the present study. However, the objective is not to propose 
definitive design formulas and procedures. This will require 
extensive comparisons with the existing test data and with 
other design formulas. The goal of the present study is to elu
cidate in the simplest possible manner the physical mechanism 
of size effect by using fracture mechanics. Fracture mechanics 
is a theory in which it is recognized that, if the strength limit 
of the material has been attained, a break of the material will 
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FIG. 2. Various Types of Localized Fracture of Compression 
Struts and Stress Relief Zones (Unshaded) 

occur if and only if the structure-load system can supply the 
energy required to cause the break. 

The analysis that follows exploits the classical truss model, 
which was proposed by Ritter (1899) and Morsch in 1902 
(Morsch 1922) and was experimentally further verified by 
Whithey (1907, 1908), Talbot (1909), and others. In this 
model, approximately straight and parallel cracks are assumed 
to form in the direction of the compressive principal stress 
before the maximum load is reached (Fig. 2). As is now well 
understood, the principal tensile stress does not get reduced to 
zero, since the cracks are cohesive cracks capable of trans
mitting crack-bridging tensile stresses. However, the crack
bridging stresses are certain to be much smaller than the tensile 
strength of concrete, while the magnitude of the compressive 
stresses in the compressed struts of concrete between the par
allel cracks must be at or near the compression strength limit, 
which is about 10 times higher than the tensile strength. It 
follows that the crack-bridging stresses, while nonzero, must 
be negligible in comparison to the compressive stresses. This 
fact justifies the truss model, recently often called the strut
and-tie model. 

This simple but powerful model was improved by introduc
tion of rational criteria for determining the angle of the dom
inant diagonal cracks. These criteria were based first on energy 
minimization (Kupfer 1964) and later on Mitchell and Col
lins's (1981) adaptation of Wagner's (1929) condition (for web 
buckling in steel girders) stating that the average strains in the 
stirrups, longitudinal steel bars, and diagonal compressions 
struts must be compatible [this was called the compression 
field theory; see also Collins (1978) and Vecchio and Collins 
(1986)]. Another version of the truss model extending Kani's 
concept of shear transmitting teeth was presented by Reineck 
(1991). 

JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997/1277 



ThOrlimann (1976) and Nielssen and Braestrup (1975) pre
sented a strict plasticity formulation of the truss model based 
on the normality rule, yield surfaces exhibiting slip with di
latancy, and the lower bound theorem of the theory of plastic
ity [see also Marti (1980, 1985a,b)]. Concrete, however, is not 
a plastic material. The plastic limit analysis does not apply to 
concrete, since concrete exhibits strain softening, which is a 
phenomenon describable only by the energetic failure concept 
of fracture mechanics. Therefore, the plastic limit analysis can
not capture the effect of structure size. This classical approach 
implies the failure to occur simultaneously along the entire 
failure surface (as a single-degree-of-freedom mechanism), 
which is a basic (but usually unstated) hypothesis of plastic 
limit analysis. In reality, the failure occurs progressively, the 
more so the larger the structure. This calls for a fracture me
chanics approach. 

In particular, a diagonal compression strut cannot fail si
multaneously along the entire length and width. Instead, it fails 
by progressive fracture of concrete within a certain critical 
zone occupying only a portion of the length and width of the 
strut. How large a portion depends on the beam size. Further
more, the crushed zone propagates across the strut while the 
rest of the strut is getting unloaded, releasing its energy and 
thus driving the failure. Hence, the apparent compression 
strength of the strut cannot be constant but must decrease with 
an increasing length of the strut (or the beam depth). 

Fortunately, however, the truss model need not be discarded. 
It suffices to modify it by introducing the energetic concept of 
fracture mechanics. How to do this in a simple manner is the 
idea of the approximate analysis that follows. This analysis 
avoids a rigorous solution of the nonlinear boundary value 
problem, which can be accomplished only numerically, e.g., 
by finite elements. Such a "brute-force" numerical solution is 
appropriate for checking a design but can provide neither in
sight into the failure mechanism nor simple formulas suitable 
for design. 

BASIC DEFINITIONS AND HYPOTHESES 

The size effect represents the size dependence of the nom
inal shear strength of a beam, which is defined as 

Vu = VJbd (1) 

where Vu = value of the applied shear force V at the ultimate 
(maximum) load; d = depth of the longitudinal reinforcement 
below the top face of the beam (Figs. 2 and 3); and b = width 
of the rectangular cross section of the beam. For the sake of 
simplicity, the beam is considered to have a rectangular cross 
section, although a generalization to flanged cross sections 
would not be difficult. To separate the size effect from other 
effects, one must compare beams of different sizes that are 
geometrically similar. 

The shear span a is defined in Fig. 3(b) for a simply sup
ported beam with two symmetric concentrated loads. When a 
uniform load is present, the shear span may be defined as a = 
MIV, where M is the bending moment in the critical cross 
section, leaving the analysis that follows unchanged. 

Hypothesis I. The truss model, which simplifies the problem 
by making the stresses statically determinate and easy to cal
culate, is assumed to be a valid approximation. 

If the truss model is valid, the failure can occur only by 
ductile failure (i.e., yielding) of the steel ties or longitudinal 
bars, or by brittle failure of the compression struts. The former 
type of failure is well understood, and we are interested only 
in the latter. Assuming the compression struts to be straight is 
a simplification (if the shear force V varies, it would be more 
accurate, but more complicated, to consider a compression 
arch). 

If a yield or strength criterion were applicable, the concrete 

1278/ JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997 

(a) 

~T 

(b) 

h, c/d = 

constants 

B
Crushing 
band 
(area - d 2

) 

R - Stress 
relief strip 
(area - d 2) 

FIG. 3. (a) Compression Strut in Beam without Stirrups and 
Fracture Zone Propagating across Compression Strut during 
Failure; (b) Stress Relief Zones Caused by Fracture Band Prop
agating across Compression Strut in Beams of Different Sizes 

would fail simultaneously everywhere in the strut. However, 
because concrete is brittle and exhibits postpeak strain soft
ening in compression, the failure of concrete must localize into 
a fracture zone. The size of this localized zone is independent 
of the beam size and is decided mainly by the size and spacing 
of material heterogeneities (especially the large aggregate 
pieces) and by the value of Irwin's characteristic length of the 
material, I = EG1I(f:)2 (introduced for concrete by Hillerborg), 
where E = Young's modulus, G1 = fracture energy, and f: = 

tensile strength. So, the following, essential, hypothesis is rea
sonable. 

Hypothesis II. The compression strut fails only within a por
tion of its area, and the depth of the localized failure zone is 
independent of the beam size (Fig. 2). 

Hypothesis III. The failure modes (or failure surfaces) at 
maximum load of beams of different sizes are geometrically 
similar. 

Hypothesis III means that, for example, the shear span a 
[Fig. 3(b)] and the length c of the material failure zone or 
fracture zone at maximum load are geometrically similar. In 
other words, the ratios aid and (for large enough sizes) c/d are 
assumed to be constant. This hypothesis is of course applicable 
only within a certain range of sizes. However, experience from 
testing as well as finite element analysis indicates that this 
range covers the size range of practical interest. 

The localized failure of compression strut, postulated in hy
pothesis II, may occur in various ways (Fig. 2). Most likely, 
the failure zone at maximum load consists of a band of split
ting cracks in the strut direction, propagating laterally (Bazant 
and Xiang 1996), which is what is considered in the following. 
This band may be located anywhere along the strut length 
[Figs. 2(a,c,d)]. The location of this band within the strut is 
immaterial for the analysis that follows, although we will pic
ture the location on top [Fig. 2(a)], which seems most likely. 
In postpeak deflection, the splitting cracks either interconnect 
and produce a failure that looks like a shear failure [Figs. 
2(b-d)], although the failure did not start by shear, or they 
lead to onset of compression crushing of concrete [at the end 
of the test; however, after the load has been reduced to zero, 



compression crushing is observed only in T-beams; Leonhardt 
(1977)]. Alternatively, a propagating shear fracture, inclined 
with respect to the strut [Figs. 2(b,c)], may already exist.at the 
maximum load. Which of these detailed fracture modes takes 
place is immaterial for the simplified analysis based on the 
truss model. They all lead to mathematically equivalent results. 

Denying that at maximum load the concrete is fracturing 
due to compression in the struts would be tantamount to de
nying the validity of the truss model (strut-and-tie model) it
self. If this model is valid, then (1) diagonal tensile cracks 
must form before the maximum load; (2) only negligible ten
sile and shear stresses can exist on the planes of these cracks; 
and (3) the compression struts between these cracks must be 
aligned in the direction of the compressive principal stress in 
concrete. Only under these conditions can the concrete, stir
rups, and longitudinal bars be treated as a truss. 

The energy release due to fracture propagation can be cal
culated in two ways: (1) from the change of the potential en
ergy of the structure-load system at constant displacement; or 
(2) from the change of the complementary energy of the struc
ture at constant load [see, e.g., Bazant and Cedolin (1991)]. 
We will examine both approaches in a simplified manner and 
show that they give approximately the same results. 

ANALYSIS BASED ON STRESS RELIEF ZONE AND 
POTENTIAL ENERGY 

Longitudinally Reinforced Concrete Beam without 
Stirrups 

The typical pattern of cracks forming during the failure of 
a simply supported beam is seen in Fig. 3(a) (which shows 
the left-end portion of the beam only). Although, after the 
failure, only one final diagonal crack emerges, cracks of var
ious orientations form during the loading process. The first 
cracks caused by shear loading are tensile cracks of inclina
tions of approximately 45°. On approach to the maximum 
load, these cracks interconnect and form a larger crack running 
approximately along the line connecting the application points 
of the load P and the reaction V in Fig. 3(a). This major crack 
is free of shear stresses and has approximately the direction 
of the maximum principal compression stress (Tn. 

According to the truss model (or strut-and-tie model), we 
may imagine that most of the load is transferred through the 
shaded zone called the compression strut (in the case of dis
tributed load it would be more accurate to consider a com
pressed arch). The normal stress in the direction orthogonal to 
the strut is essentially zero, and the material can expand freely 
in that direction. 

The failure behavior is approximately idealized as shown in 
Fig. 3(b) for two geometrically similar beams of different 
sizes. Although for calculation purposes the compression strut 
is assumed to represent a one-dimensional bar connecting the 
points of application of P and V, it has a finite effective width, 
denoted as kd [Fig. 3(b)], where d is the depth to the rein
forcement and k is approximately a constant, independent of 
the beam size. 

As suggested by some experimental observations and sup
ported by finite-element results, the progression of failure at 
maximum load is caused by onset of compression failure of 
the concrete near the upper end of the compression strut, pro
vided that the longitudinal bar is anchored sufficiently so that 
it cannot slip against concrete near the beam support. Aside 
from the fact that the compression fracture occurs only within 
a portion of the length of the strut, the basic premise of the 
present analysis is that the width h of the fracture zone in the 
direction of the strut is, for a given concrete, approximately a 
constant (which is probably approximately proportional to the 

maximum aggregate size and also depends on other material 
characteristics). 

The fact that h, in contrast to the length and width of the 
stress-relieved strip in the strut [the white strip 56785 in Figs. 
3(b,c)], is not proportional to the beam size is the cause of the 
size effect. If and only if the depth h of the fracture band were 
proportional to the beam size, there would be no size effect. 
For calculation purposes, we will assume that the compression 
failure of the material consists of a fracture band 12341 [Fig. 
3(b)] growing vertically across the strut upward or downward, 
or both (which of these, is immaterial for the present analysis). 

Microscopically, the compression fracture may be regarded 
as internal buckling of an orthotropically damaged material 
(Bafant and Xiang 1996). The fracture process begins by for
mation of dense axial splitting microcracks in the direction of 
maximum compression, which reduces the transverse stiffness 
of the material, thus causing the microslabs of the material 
between the microcracks to buckle laterally. This idea, which 
is an adaptation to damaging materials of the idea proposed 
by Biot (1965) for elastic materials, has recently been pursued 
in detail elsewhere (Bafant and Xiang 1996). However, these 
details are not needed for the present analysis. Neither is it 
important that the fracture band is pictured propagating ver
tically. If it propagated across the strut in an inclined or hor
izontal direction, the calculation results would be equivalent. 

The growth of the fracture band, which causes the load
deflection curve to reach a maximum load and subsequently 
decline, relieves the compression stress from strip 56785 
shown in Fig. 3(b). The reason that the boundaries of the stress 
relief zone, that is, the lines 16, 25, 38, and 47, are parallel to 
the direction of the strut is that the material is heavily weak
ened by cracks parallel to the strut. Otherwise a more realistic 
assumption would be a triangular shape of the stress relief 
zone, as considered in the case of tensile failures (Bafant 
1984; Bazant and Cedolin 1991, chapter 13); see the expla
nation in Appendix I. 

Now, how to make the size effect intuitively clear with min
imum calculations? To this end, note that the area of stress 
relief zone 56785 in Fig. 3(b) is proportional to ca, where 
c is the length of the fracture band at failure. Since ca = 
(cld)(ald)d

2
, and cld and aid are constants independent of d, 

the area of stress relief zone is proportional to d 2
• Because the 

average strain energy density in the strut is proportional to the 
nominal shear stress at ultimate load u:, the total energy re
lease from the stress-relieved strip 56785 of the strut is pro
portional to U~d2. However, assuming that the energy dissi
pation per unit volume of the fracture band is constant, the 
energy dissipation in the entire fracture band is proportional 
to d, because the area of the fracture band is proportional to 
ch = (cld)hd. Therefore, varying the beam size d, U~d2 must 
be proportional to d, which means that u. must be proportional 
to ItVd. This represents a size effect, in fact a very strong 
size effect (corresponding to linear elastic fracture mechanics). 

In summary, the cause of the size effect is simply the fact 
that the energy release from the structure is approximately pro
portional to u:d2

, whereas the energy consumed by fracture is 
approximately proportional to d. 

Let us now do the calculations in detail. The condition that 
the entire shear force P must be transmitted by the compres
sion strut yields for the axial compression stress in the strut 
the following expression: 

(Te = b~ sin a :os a = T (~ + ~) (2) 

where e = inclination angle of the compression strut from the 
horizontal (note that tan e = d/a). The strain energy density in 
the strut is (T~/2Ee, where Ee = Young's modulus of concrete. 
The volume of the strut is abc (where b = beam width). There-
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fore, the loss of potential energy from the beam caused by 
stress relief during the formation of compression fracture band 
at constant load-point displacement is, approximately: 

2 2 ( )2 U'e Vu a d TI = -- abc = --- - + - abc 
e 2Ee 2Eee d a 

(3) 

The minus sign expresses the fact that this is an energy loss 
rather than gain. According to the principles of fracture me
chanics [see, e.g., Bazant and Cedolin (1991), section 12.1], 
the energy release rate due to the growth of the fracture band 
is obtained as 

<§ = _ [aTIe] = v~ab (~+ ~)2 
ac u 2Eee d a 

(4) 

The energy dissipated by the fracture band may be ex
pressed on the basis of the fracture energy Gf characterizing 
the axial splitting microcracks in the fracture band. The length 
of these cracks is h (width of the band), and their average 
spacing is denoted as Se. The number of axial splitting cracks 
in the band is else. Thus the total energy dissipated by the 
fracture band is Wf = (else)bhGf. Differentiating with respect 
to c, we find that the energy dissipation in the fracture band 
per unit length of the band, '!it, is 

(5) 

In this equation, however, it would be too simplistic to con
sider h as constant through the entire evolution of the com
pression fracture band. Naturally, the fracture band must ini
tiate from a small zone of axial splitting cracks. The length of 
these cracks first extends in the direction of the strut until they 
reach a certain characteristic length ho• Only then does the 
fracture band grow across the strut at roughly constant width 
h = ho [see the intuitive picture of the subsequent contours of 
the fracture zone in Fig. 3(a)]. Such behavior may be simply 
described by the equation 

c 
h = ho--

Wo + c 
(6) 

where ho, Wo = positive constants, ho representing the final 
width of the fracture band. Thus, strictly speaking, our hy
pothesis of a constant width of the fracture band (hypothesis 
II) means that the final width ho rather than h is a constant. 
Constant Wo will surely have different values for different con
cretes (e.g., it will probably increase with the maximum ag
gregate size da and with Irwin's characteristic length I = 
EGf lf:2, which necessitates further study). 

The increase of '!it with c, as described by (5) with (6), 
represents what is called the R-curve behavior [because '!it rep
resents the resistance to fracture; see, e.g., Bazant and Cedolin 
(1991), BaZant and Planas (1997)]. The R-curve behavior in 
tensile fracture is also caused by the growth of the fracture 
process zone size. Here, however, this growth is expressed 
indirectly in terms of the length of the axial splitting cracks 
in the fracture band. 

If, alternatively, the peaking of the load is caused by prop
agation of a shear crack of the kind shown in Fig. 2(b), one 
should introduce the fracture energy of the compression-shear 
crack r f and write the critical energy required for crack growth 
as 

R=rb-
c
-

f Wo + c 
(7) 

But this is equivalent to (5) with (6) if one sets r f = Gfholse. 
So, from now on we will consider that the peaking of the load 
is due to propagation of a band of splitting cracks, and the 
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FIG. 4. Size Effect In Shear Failure of Concrete Beam In Terms 
of Logarithm of Either Vu or Vu - v, 

solution for the case of peaking due to compression shear frac
ture will be automatically obtained by replacing holse with 
rflGf· 

The balance of energy during equilibrium propagation of 
the fracture band requires that 

(8) 

Substituting here the expressions in (4)-(6), one obtains the 
result 

(9) 

(lOa,b) 

(lla,b) 

Here the expression for Ke is that for the fracture toughness 
(the critical stress intensity factor) of the axial splitting micro
cracks. An important point is that, because of our assumptions 
(constant eld, aId), the values of do, VP' and cp are constant, 
independent of size d. The value Vp is the limiting (asymptotic) 
value of the nominal shear strength for very small size d. 

Eq. (9) represents the size effect law proposed by BaZant 
(1983, 1984). This law was introduced into the analysis of 
diagonal shear failure by Bazant and Kim (1984, 1985), how
ever, on the basis of a more general and less transparent ar
gument. 

By the same calculation procedure, it can also be easily 
shown that if, contrary to hypothesis II, the width h of the 
fracture band were proportional to d instead of obeying (6), 
there would be no size effect. But if h would vary with d other 
than proportionally, there would always be a size effect. 

If the constant Wo were taken as 0, one would have vp ex 

d- 1/2 which is the size effect of linear elastic fracture me
chanics (LEFM) , representing the strongest size effect possi
ble. However, most experimental data exhibit a weaker size 
effect, which implies that the constant Wo should be considered 
finite. 

The plot of the size effect curve given by (9) is shown in 
Fig. 4(a). This curve represents a smooth transition from a 
horizontal asymptote corresponding to the strength theory or 
plastic limit analysis to an inclined asymptote of slope -112, 
corresponding to LEFM. The approach to the horizontal as
ymptote means that the plasticity approach, that is, the truss 
model, can be used only for sufficiently small beam sizes d. 

For very small beam sizes d, we may substitute in (2) 
U' e = f~ = compression strength of the strut, and replace Vu by 
plastic nominal strength vp' From this we can solve 

Vp = kf~ (~ + ~rl (12) 

which is equivalent to (10). Thus, the size effect law in (9) 
can be alternatively written as 



Vu = k/~ (~ + ~rl (1 + 1rm 

(l3) 

which shows also the effect of the relative shear span aid on 
the nominal shear strength. Note that/~ cannot be expected to 
represent the uniaxial compression strength /; of concrete, 
since the progressively fracturing concrete in the strut is under 
high transverse tensile strain in the other diagonal direction 
and has been orthotropically damaged by cracking due to pre
vious high transverse tensile stress (Hsu 1988, 1993). So /~ is 
a certain biaxial strength of concrete, depending both on the 
uniaxial compression strength/; and the direct tensile strength 
!:. This dependence needs to be calibrated by shear tests of 
beams. 

It is interesting to determine the ratio to the nominal 
strength for bending failure crt. The ultimate bending moment 
in the cross section under the load Pis Mu = Va = crt bad. 
From the moment equilibrium condition of the cross section 
under the load P we also have Mu = (h pbd)kbd, in which h 
is the yield strength of the longitudinal reinforcing bars, p is 
the reinforcement ratio (which means that pbd is the cross 
section area of the longitudinal reinforcing bars), and kbd rep
resents the arm of the internal force couple at the ultimate load. 
As is well known, kb is approximately constant. Equating the 
expressions for Mu, we obtain crt = Phkbdla. Considering now 
(13), we conclude that 

crt = Ph~b (1 + d:) ~1 + d 
Vu k/ c a do 

(14) 

This equation shown that the ratio of the nominal bending 
strength to the nominal shear strength of the beam decreases 
when the relative shear span. aid increases, which confirms a 
well-known fact. It means that slender beams, for which aid 
is large, fail by bending, while deep beams, for which aid is 
small, fail by shear. However, as is clear from (14), the relative 
shear span aid at the transition between the shear and bending 
failures is not constant but is larger for a larger beam size d. 
To express it precisely, we set 

(15) 

in (14). This furnishes a cubic equation for the transitional 
shear span aid, which will obviously exhibit a size effect. 

There is a question whether the progressive fracturing of 
concrete reduces the compression stress all the way to zero. It 
could be that the compression stress cr c is reduced to some 
small but finite residual strength cr r' However, this seems re
alistic only when we consider beams with stirrups, which pro
vide some degree of confinement. Without confinement, a fi
nite residual strength might not exist. If cr r were nonzero for 
the present case, it would have the effect of adding a constant 
term to the right-hand side of (9). 

The tensile strength of concrete!: has played no direct role 
in the foregoing analysis. The tensile strength is not a material 
parameter in LEFM, nor in the R-curve model of nonlinear 
fracture. It does appear in the cohesive (fictitious) crack model 
or the crack band model. However, those models are too com
plicated for achieving a simple analytical solution. The tensile 

8 C 

(b) 
II. At 

max. 
load 

(c) 

(d) 

III. After 
max. 
load 

T 
d 

1 

(e) 

Load 

(f) 

defl. 

FIG. 5. Evolution of Diagonal Cracks in Beam with Stirrups under Shear Loading: (a) Diagonal Crack Formation before Maximum 
Load; (b) Growth of Fracture Band Across Compression Strut during Failure at Maximum Load; (c) Beam at Maximum Load with 
Crushed and Stress-Relieved Part of Compression Strut Removed; (d) State of Beam without Crushed and Stress-Relieved Concrete 
after Collapse (I.e., Load Has Been Reduced to Small Value); and (e) Equilibrium of Forces in Stirrups and Struts 
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strength, of course, controls the initiation of the inclined shear 
cracks; however, their growth is governed by fracture energy. 
In the present analysis we take the view that the inclined 
cracks due to shear loading have already formed before the 
maximum load and thus no longer grow during failure. 

Does shear stress transmission across cracks due to friction 
and aggregate interlock play any role? It could, although ac
cording to the present analysis it cannot be significant. As 
shown in Fig. 3(a), only cracks rather curved within the area 
of the compression strut can be subjected to shear and normal 
loading. Their capability of shear stress transmission decreases 
with the crack width, and the crack width may be assumed to 
increase with an increasing beam size, which obviously would 
also introduce a size effect [this idea was proposed by Reineck 
(1991)]. The cracks are the most inclined to the compression 
strut direction and are opened the most widely at the bottom 
of the beam. However, the maximum load appears to be con
trolled by progression of compression fracture near the major 
crack at the top of the beam. For this reason, the effect of 
crack opening on the shear stress transmission across cracks 
can hardly playa major role in the size effect on the maximum 
load. 

Beam with Stirrups 

Consider now a beam with stirrups (Fig. 5). The stirrups 
cause the diagonal cracks due to shear to be more densely 
distributed. The first hairline cracks, shown by the thin dashed 
lines in Fig. 5(a), form near the neutral axis (with inclination 
about 45°) before the maximum load. These cracks later in
terconnect and form continuous major cracks at inclination 
angle e with the horizontal (Fig. 5). These cracks run in the 
direction of the maximum principal compressive stress (Tn, 

transmitting crack-bridging normal and shear stresses that are 
negligible compared to the compressive stresses in the struts 
between the cracks. This means that the resistance of concrete 
to diagonal tension may be neglected, (T! "'" O. This makes the 
truss statically determinate. It is this circumstance that makes 
the well-known simple analysis of the truss model possible. 

The failure at maximum load is assumed to be caused by 
the progressive fracture of concrete in the compression struts 
between the major inclined cracks. Similar to beams without 
stirrups, a fracture band that consists of dense axial splitting 
microcracks first widens to its full width h and then propagates 
sideways as shown in Fig. 5(b). For the case of a positive 
bending moment, this fracture band forms near the top of the 
beam and may be assumed to propagate horizontally, left or 
right, or both. The direction of the propagation of the fracture 

..,..k I~..,.. 
t 

band is actually not important for the present analysis, and the 
same results would be obtained if the band propagated at other 
inclinations to the compression strut. An important point, how
ever, is that the final length ho of the axial splitting cracks, 
that is, the final width ho of the band, is a material property, 
independent of the size of the beam. If the width ho of the 
band were proportional to beam depth d, there would be no 
size effect. Since it is less than proportional to d, there must 
be size effect. 

Thus, the cause of the size effect is the localization of the 
compression failure of the strut into a fracture band of a fixed 
width and the growth of this band across the strut. 

An important point is that the stirrups as well as the lon
gitudinal steel bars are not necessarily yielding during the fail
ure at maximum load. They might not have yielded before the 
fracturing of the strut began, or they may have yielded and 
unloaded. There is no reason why the yielding of steel should 
occur simultaneously with the progressive compression frac
ture. 

The formation of the fracture band 12341 [Fig. 5(b)] may 
again be assumed to relieve the compression stress from the 
entire length of the compression struts in the region 12561 
[Fig. 5(b)]. This causes a release of strain energy from the 
compression struts, which is then available to drive the prop
agation of the fracture band. This represents the mechanism 
of failure at maximum load. 

With the stress relieved from the aforementioned compres
sion struts, the beam acts essentially as shown in Fig. 5(c), as 
if there were a gap in concrete (provided the residual strength 
of crushed concrete is neglected). However, since the steel is 
not in general yielding, this does not represent a failure mech
anism. A failure mechanism can be created only when a suf
ficient number of compression struts are crushed as shown in 
Fig. 5(d), in which case even nonyielding bars permit free 
movement because the bending resistance of the bars is neg
ligible. However, this type of collapse mechanism corresponds 
to a state at which the load is already reduced to a very small 
value [such as state III in Fig. 5(e)]. Thus, the stress relief at 
maximum load does not imply the structure to become a mech
anism. 

First let us explain the size effect mechanism in the simplest 
possible terms. The area of the compression struts from which 
the compression is relieved, that is, area 12561 in Fig. 6, is 
proportional to cd, which is equal to (cld)d 2

• But since the 
failure is assumed to be geometrically similar for beams of 
different sizes (shown in Fig. 6), cld is a constant, and so the 
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FIG. 6. Stress Redistribution into Cross-Hatched Portion of Compression Strut Caused by Propagation of Fracture Band, for Beams 
of Different Sizes (Simply Supported) 
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FIG. 7. Compression Stress-Strain Diagram of Concrete with 
Unloading after Peak Stress and Area Representing the Strain 
Energy Release 

area of the stress relief zone is proportional to d 2
• The strain 

energy density before the stress relief is proportional to 
v~I2Ee, and so the total energy release is proportional to 
V~d2. The area of the fracture band is proportional to ch = 

(c/d)hd. Since both hand c/d are constant for beams of dif
ferent sizes, the area of the fracture band is proportional to d, 
and so is the energy dissipated in the fracture band. So, con
sidering the failures of geometrically similar beams of differ
ent sizes, V~d2 must be proportional to d, which means that 
Vu must be proportional to liv'd. Again, same as for the beam 
without stirrups, we thus obtain a size effect, and it is the 
strong size effect of LEFM. In practice, the size effect for 
smaller beam sizes is weaker because of the R-curve behavior 
of the fracture band 1234l. 

We assume the stirrups to be uniformly distributed 
(smeared). Equilibrium of the forces in the compression struts, 
ties, and longitudinal bars [Figs. 6 and 5(f)] requires that 

Fe = _ vubd _ __ 2v_u_ 

bd cos 9 sin 9 bd cos 9 
(16) 

sin 29 

where 9 = inclination of the compression struts; Fe = com
pression force in the strut; and (Je = compression stress trans
mitted by the strut (which in general is not equal to the stan
dard compression strength!; of concrete and depends on the 
size of the beam in a manner to be determined). Equilibrium 
on an inclined cross section of the beam parallel to the com
pression struts further requires that 

(J v = (VsIA"d)tan 9 = vusb tan 91A" (17) 

where Au = cross section of the stirrups; s = spacing of the 
stirrups; and (J u = tensile stress in the stirrups, which in general 
is not equal to the yield stress. The stress in the longitudinal 
bars is obtained from the moment equilibrium condition in a 
cross section and is (Js = MIAskbd, in which M = bending 
moment, As = cross section area of the longitudinal bars, and 
kbd = arm of the internal force couple in the cross section. It 
is assumed that the steel bars are designed strong enough to 
resist stresses (J e and (J u safely. 

We do not attempt to determine the angle 9 of the diagonal 
cracks and the struts by fracture analysis, since the diagonal 
cracks delineating the struts are assumed to be formed before 
the maximum load, and not during failure. Rather we adopt 
the method introduced into the truss model by Collins (1978) 
in his compression field theory, in which he used the compat
ibility condition for the average strains in the truss in a similar 
way as Wagner (1929) used the compatibility condition for 
approximate analysis of the shear buckling of the webs of steel 
beams (Collins and Mitchell 1981). The average strains of the 
truss are defined as the strains of a homogeneously deforming 
continuum that is attached to the joints of the truss at the nodes 
(tops and bottoms of the stirrups). According to the Mohr cir-

cle shown in Fig. 5(f) (in which £ denotes the strains, and £/ 

is the strain in the longitudinal bars), the overall compatibility 
of the average strains of the struts, the stirrups, and the lon
gitudinal bars requires that 

(I 8) 

Here the strains have been expressed in terms of the stresses 
assuming the steel not to be yielding and denoting bY!«Je) 
the stress-strain diagram of concrete. [For the precise method 
in which the strains entering (18) are calculated, see Collins 
(1978) and Collins and Mitchell (1981)]. The foregoing cal
culation, of course, requires that the diagonal cracks and the 
struts be aligned with the direction of the compressive prin
cipal strain, which coincides with the direction of the com
pressive principal stress. 

The fracture analysis begins by expressing the potential en
ergy change (Fig. 7) caused by the formation of the fracture 
band of length c at constant load-point displacement 

(19) 

The minus sign reflects the fact that this is an energy loss 
rather than gain. 

The stress (Jr in the foregoing equation represents the resid
ual compression strength of the fracture band in concrete. In 
this study the residual compression fracture strength (Jr is con
sidered an empirical property. However, it can be mathemati
cally expressed on the basis of the concept of internal buckling 
of a material heavily damaged by axial splitting microcracks, 
as proposed in Bazant and Xiang (1996). 

The energy release rate may be calculated as 

(20) 

The energy dissipation rate (fracture resistance) of the fracture 
band is again given by (5), i.e., m = Gfbhlse , in which the 
width of the fracture band may be assumed to evolve again 
according to (6), i.e., h = hoc/Cwo + c). 

Substituting now (16) and (17) into (20), and using the frac
ture propagation criterion, i.e., '!j = m as in (8), we obtain an 
equation that can be easily solved for Vu. This provides the 
result 

V = v (1 + !!..)-112 + V 
u P do r 

in which we introduced the notations 

sin 29 
vr =-2-(Jr; 

d 
do = Wo

c 

(21) 

(22) 

(23a,b) 

The size effect described by (21) is plotted in Fig. 4 in two 
ways, in terms of log Vu and of log(vu - vr). By virtue of the 
residual compression strength, the nominal shear strength of 
the beam tends at infinite size to a finite value. An equation 
of the form of (21) was proposed on the basis of general con
siderations in BaZant (1987). 

The question whether the confinement of concrete by stir
rups suffices to cause the residual compression strength (In and 
thus the residual nominal strength Vn to be nonzero needs to 
be studied further. 
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ANALYSIS BASED ON STRESS REDISTRIBUTION 
AND COMPLEMENTARY ENERGY 

The truss model also allows an easy alternative calculation 
of the energy release on the basis of complementary energy 
II:. For the sake of simplicity, we now consider the residual 
strength Vr = 0, although a generalization to finite Vr would be 
feasible. 

In the truss model, we isolate the representative cell limited 
by the shaded zone in Fig. 6. This cell must alone be capable 
to resist the applied shear force V. The fracturing of concrete 
in the band 12341 (Fig. 6) is considered to relieve the stress 
completely from the inclined strip 12561. If the applied shear 
force V is kept constant, the stress in the cell must redistribute 
such that all of the compression force in the inclined strut is 
carried by the remaining strips, shaded in Fig. 6. After that, 
all of the complementary energy in concrete in the cell is con
tained in the shaded strips and (upon noting the energy density 
given by the shaded area in Fig. 7) may be expressed as 
II: = (iJ'~I2EcYV in which 'V = b(d cos e - e sin e)d/sin e = 
volume of the shaded strips (Fig. 6), iJ'e = FJb(d cos e -
c sin e) = average normal stress in the direction of the strut, 
and Fe = Vlsin e = Vu bdlsin e = compression force transmitted 
by the strut. This yields, for the complementary energy after 
the stress redistribution at constant shear force V, the expres
sion 

II* = (3t!...)2 bd 
C sin e 2Ee(d cos e - c sin e)sin e 

(24) 

As is well known from fracture mechanics [e.g., Bazant and 
Cedolin (1991), section 12.1[, the energy release rate is ob
tained by differentiation of the complementary energy at con
stant load (or constant shear force V) 

~ _ [an:] _ v~bd3 
- ae v - 2Ee sin2e(d cos e - e sin ei 

(25) 

This must be equal to the energy dissipation rate, which is 
given by the following equations, same as before: 

(26a,b) 

There is now one difference from the previous approach. In 
(20), the energy release rate was constant, while in (25) it 
increases with c. This difference should not surprise since both 
solutions are approximate. In the case of variable ~, which is 
a typical case in fracture mechanics, the crack length at max
imum load, that is, at a loss of stability, need not be considered 
as empirical, as done in our previous calculation based on the 
potential energy change, but can be calculated from the sta
bility criterion. It is well known that, at the limit of stability, 
the curve of energy release rate at constant load must be tan
gent to the R-curve (Bazant and Cedolin 1991, chapter 12) 

a~ cRJi 

ae de 
(27) 

[This stability criterion could not be applied to the previous 
case with (20), because in that case, due to the approximations 
made, we had a<§lae = 0 and thus e was interdeterminate.] 
Because <§ = m, an equivalent condition is 

1 a~ 1 d'!ll. 
(28) 

~ ae '!II. de 

which is more convenient. We may now substitute here the 
expressions in (25) and (26), and carry out the differentiations. 
This leads to a quadratic equation for c/d, whose only real 
solution is 
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8d ) l+-cote 
9wo 

(29) 

This represents a theoretical expression for the length of the 
crushing band at maximum load (i.e., at stability loss). 

It may now be observed that c/d tends to zero as the size d 
~ 00. In that limiting case the stress relief region would be
come an infinitely narrow strip, which would not be a realistic 
model. Therefore, (29) is meaningful only for sufficiently 
small sizes. For this reason, and for the sake of simplicity, we 
consider the second term undeVhe square root in (29) to be 
small compared to 1. Because 1 + 2x ... 1 + x when x « 
1, (29) for small d yields the approximation: 

e cot e 
'd=-3- (30) 

Substituting this into the fracture propagation criterion <§ = m, 
along with (25) and (26), we obtain an equation whose solu
tion furnishes the simple result 

Vu = Vp (1 + ~rln (31) 

in which we have introduced the notations 

(32,33) 

The result we have obtained has the same form as (21), 
although the expressions for the size effect constants do and 
Vp are partly different. The differences reveal the degrees of 
uncertainty caused by the simplifications of analysis we made. 
The comparison of (21) and (31) indicates that the general 
form of the size effect we obtained ought to be realistic, al
though the coefficients do and vp cannot be fully predicted by 
the theory, but must be calibrated on the basis of experiments. 

SIZE EFFECT ON NOMINAL STRESS AT 
CRACKING LOAD 

It has been suggested that the size effect might not be of 
concern because the current ACI code [ACI 318; Building 
(1992)] and other codes are intended to provide safety against 
the cracking load at which large diagonal cracks form, rather 
than against the collapse load, which is considerably higher. 
However, the nominal stress corresponding to the cracking 
load also exhibits size effect. There are two possibilities to 
define the cracking load. 

Load-Causing Cracks of Given Relative Depth 

One possibility is to define the cracking load as the load 
that produces initial diagonal shear cracks of a depth d, rep
resenting a given percentage of beam depth d, i.e., such that 
the ratio d;ld is a given constant [Fig. 8(a)], say 0.5. We imag
ine an array of the initial cracks, as shown in Fig. 8(a). The 
formation of each initial crack causes stress redistribution in 
triangular zones 1321 and 1341, shaded in Fig. 8(a). (In con
trast to Fig. 6, the stress relief zones are not strips, nor elon
gated triangles, because the material is not orthotropically 
damaged before the initial cracks form.) For the sake of sim
plicity, these zones may be assumed to consist of triangles with 
angles roughly e = 45°, each two triangles making a square. 
The shape of these zones and the length of the initial cracks 
obviously determines their spacing. 

Before the initial diagonal cracks form, the vertical stress in 
the beam is 0, and so the stirrups have no stress, while shear 
force V is resisted by shear stresses in concrete taken approxi-



FIG. 8. (a) Stress Redistribution Zones for Initial Diagonal Shear Cracks; (b) Tensile Stress-Displacement Diagram for Opening of 
Cohesive Crack, Localization of Openings of Diagonal Cracks Into One Major Diagonal Crack In Beam with Stirrups, and Mohr Circle 
of Strains; (c) Localization of Openings of Diagonal Cracks into One Major Crack In Beam without Stirrups and Mohr Circle of Stresses 

mately as v = Vlbd. The strain energy initially contained in the 
shaded square cell in Fig. 8(a) is IT~ = (v 2/2Gc)b(c/ cos a)· 
(c/ sin a) = v 2(1 + v)bct sin a cos alEc where Gc = Ec/2(1 
+ v) = elastic shear modulus of concrete, v = Poisson ratio 
(v "" 0.18), and c/ is defined in Fig. 8(a). After the initial cracks 
form, the diagonal tensile stress in the shaded square zone is 
reduced to 0 and the applied shear stress v is then carried by 
truss action in the cell, i.e., by tensile stress (J'v in the vertical 
stirrups, given by (17), and by diagonal compressive stress (J'c, 
given by (16). So the strain energy contained in the cell after 
the initial cracks form is approximately calculated as ITT = 
(J'~/2Ec)b(c/ sin a)(c/ cos a) + «(J'~/2Es)A'(ctls) sin a cos a 
where (J'v = vbs tan alA", (J'c = -vlsin a cos a. For the sake of 
simplicity, we assume a = 45°. The complementary energy 
change per crack at constant V is aIT* = ITT - IT~, which 
yields 

all* = bctv
2 (1 - v + ~); n = Es 

Ec 2 4nAv Ec 
t34) 

Consider now the final infinitesimal crack length increment 
dc/, by which the crack size c/ is reached [the shaded square 
zone in Fig. 8(a) grows with c/, and at the end of this increment 
it touches the square zone corresponding to the adjacent 
crack]. During this increment, the change of complementary 
energy is [a(all*)lik;]dc/. This must be equal to the energy 
consumed and dissipated by the crack, which is bRdc/; R is 

the crack resistance, which represents the critical energy re
lease rate required for crack growth. In general R depends on 
c/, representing the so-called R-curve behavior. This depen
dence may be approximately described as 

c· 
R=Of--' -

Co + c/ 
(35) 

where Co = a positive constant. For large enough c/, R = Of = 
fracture energy of the material. The balance of energy during 
the crack length increment requires that 

a(all*) d - bR d 
c/- c/ 

aCt 
(36) 

Substituting here (34), we obtain an equation whose solution 
yields for the size effect on the applied nominal shear stress 
Vcr at initial cracking the following equation: 

( )

-112 

Vcr = Vcro 1 + d~o (37) 

in which the following constants have been introduced: 

(38a,b) 

Note that the ratio dlc/ is assumed to be a given constant by 
which the cracking load is defined. Eq. (37) shows that the 
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applied nominal shear stress at cracking follows the size effect 
law proposed by Bazant (1984). As a special case, this equa
tion applies to a beam without stirrups (Av = 0). 

Load-Causing Cracks of Given Opening Width 

Another possibility is to define the cracking load as the load 
that produces cracks of a given critical width Wer. Consider 
first the beams with stirrups. Under a certain load, a number 
of parallel diagonal cracks may initiate. The cracks are cohe
sive. This means that crack-bridging stresses are transmitted 
across the cracks (due to aggregate pullout and other phenom
ena). Reduction of the crack-bridging stress to zero requires a 
considerable opening displacement of the crack, as is clear 
from the typical stress-displacement diagram used in the co
hesive (fictitious) crack model; see Fig. 8(b). Furthermore, it 
is known that when many parallel cracks form, only one of 
them may open widely while the others unload and close. In 
fact, such a localization of crack openings into one among 
many parallel cracks is a necessity unless there is enough re
inforcement to ensure a stiffening rather than softening behav
ior [see chapter 12 in BaZant and Cedolin (1991)]. Thus, un
less the stirrups are extremely strong, the situation as shown 
in Fig. 8(b) must be expected. 

Since the reduction of the crack-bridging stress to zero re
quires a very large opening, we consider that the stress is re
duced only to a certain small but finite fraction k, of the tensile 
strength /: of concrete. Consider now the relative displace
ment between points 5 and 6 at the bottom and top of the 
beam, lying on a line normal to the cracks after one large crack 
forms. This displacement may be approximately expressed as 
AUf = (d/cos a)(k,f:lEe) + wen in which dJcos a is the length 
of the line segment 56, and Wer is a critical crack opening 
displacement at which the crack bridging stress is reduced 
from /: to k,f: [Fig. 8(b)]. Dividing this by the length of 
segment 56, we obtain the average normal strain in the direc
tion orthogonal to the diagonal cracks: 

_ t1UI k,f: _W.:::,cr--=C..:.o.:..s..:.a 
el =---=- + 

" d/cos 6 Ee d 
(39) 

Displacement .lUI or strain £1" must be compatible with the 
overall deformation of the truss. Imagining the nodes of the 
truss to be attached to a homogeneously deforming continuum, 
this condition means that strain £Ier must be tensorially com
patible with the normal strains ee in the inclined struts and Eb 
in the vertical stirrups, as well as with the principal direction 
angle a. This strain compatibility condition may be easil~e
duced from the Mohr circle in Fig. 8(b). Noting that 14 = 
(Ev - Ee)Cot a, R = 05 = 01 = 14/sin 2a = (Ev - ee)cot a/sin 
2a, £/ = Ee + 2R, we obtain the following expression for the 
average strain in the direction orthogonal to the diagonal 
cracks: 

e" - ec e" 2 
£1 = ee + ~ = ~ - ee cot 6 (40) 

smu smu 

In terms of the stresses, ev = crvlEs> ec = crJEe, in which E, = 
elastic modulus of steel and Ee = secant modulus for the com
pression strut at the moment the diagonal cracks form, which 
is less than the initial elastic modulus but larger than the secant 
modulus for the peak stress point of the compression stress
strain diagram. Here, the stresses may be expressed from the 
equilibrium conditions of the truss: crv = versb tan a/Av, cre = 
-2ver /sin 2a where Av = cross section area of one stirrup, and 
Vcr = Vcr/bd = nominal stress corresponding to the shear force 
at the moment of formation of large diagonal cracks. Substi
tuting these expressions into (40), we obtain 

2 (Sb COe6) 
£/ = sin 26 AvE, + E~ec Vcr 

(41) 
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Setting this expression equal to (39), we obtain an equation 
for Vcr> the solution of which furnishes the result 

Wcr 

Vcr = v'" + Vo d 

Here we introduced the notations 

. ( sb coea)-I 
Vo = sm 6 cos2 6 -- + -- ; 

AvE, E':' 

(42) 

(43a,b) 

Eq. (42) describes a size effect that is an alternative to (37). 
The asymptotic constant value Voo exists because we assume 
that the critical crack opening Wer corresponds to nonzero crack 
bridging stress k,f:; if this stress were neglected, we would 
obtain v'" = o. 

Consider now a beam without stirrups. This problem is 
more complicated because there is no truss model that could 
give the value of the average strain along line 2-3 in Fig. 8(c). 
Other simplifications are therefore needed to obtain a simple 
result. We will assume that the normal strains along the line 
segment 2-3 in Fig. 8(c) may be approximated according to 
the beam theory. The shear stress in the vertical plane is dis
tributed parabolically, and so at point 1 at middepth of the 
beam (neutral axis) it has the value 1'1 = 1.5ver• From the Mohr 
circle in Fig. 8(c), we then obtain the normal stress cr l in the 
direction 2-3 at point 1 and the corresponding strain: EI = 
1.5ver sin 2a/Ee. The normal strain in the direction 2-3 may 
also be assumed distributed parabolically, in which case the 
average normal strain along this line is £1 = Vcr sin 2a/Ee• 

Multiplying this by the length of segment 2-3, we obtain the 
relative displacement between points 2 and 3 in the direction 
2-3: 

A - d Vcr. d 
U.U 2_3 = el --n = - sm 26 --

cos u Ee cos 6 
(44) 

At the same time, in analogy to (39), 

d k,f: 
t1U2_3 = --a -- + Wer 

cos Ee 
(45) 

Equating the last two expressions, we obtain the same equation 
as (43), that is, Vcr = v'" + vo(wJd), in which we now make 
the notations 

2k,f: 

v"" = 3 sin 2a; 

CONCLUSIONS 

(46a,b) 

The classical, widely used, truss model (or strut-and-tie 
model) for the shear failure of reinforced concrete beams can 
be modified to capture the fracture behavior characterized by 
an energy release and localization of damage into a fracture 
band within a portion of the compressed concrete strut. 

If the analysis of the maximum load based on the truss 
model is valid, the concrete strut must, during the portion of 
loading history in which the maximum load is reached, un
dergo compression softening in a propagating fracture band 
(consisting of splitting cracks or shear crack inclined to the 
strut). 

Analysis of the energy release into the fracture band shows 
that a size effect on the nominal strength at shear failure of a 
reinforced concrete beam must occur and that it should ap
proximately follow the size effect law proposed by BaZant 
(1983, 1984, 1987). Conversely, the fracture behavior of the 
truss model (strut-and-tie model), particularly the damage lo
calization with energy release, provides an explanation of the 
size effect widely observed in many tests, beginning with those 
of Kani (1967). 



The applied nominal shear stress that causes the initial large 
diagonal cracks also exhibits a size effect. The law of this size 
effect depends on how large diagonal cracks are defined. 

The size effect formulas derived here have not yet been 
calibrated and verified by the available test results for beams. 
The expressions for the coefficients in these formulas need to 
be studied further in order to develop a design procedure in
corporating the size effect. 
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APPENDIX I. SIZE EFFECT IN ORTHOTROPICALLY 
DAMAGED MATERIAL 

A clue to the shape of the stress relief zones considered in 
the preceding analysis may be obtained by comparing the 
stress relief zones in isotropic and highly orthotropic materials. 
For isotropic materials, the stress relief zone that gives a good 
approximation to the nominal strength erN is shown in Fig. 
9(a). For the case of highly orthotropic materials such as a 
composite with unidirectional fiber reinforcement, the stress 
relief zone becomes highly elongated and reaches to the end 
of a specimen. A similar situation arises in compression fail
ure, in which long and densely distributed axial splitting 
cracks form before failure [Fig. 9(c)]. Propagation of a fracture 
band transversely to the direction of compression releases 
stress from a zone that is so elongated that it may be approx
imately considered as a strip with parallel boundaries. 

In Fig. 9(a), the energy consumed by fracture is proportional 
to the crack length c, but because c/d is assumed constant 
when the specimen size dis varied, the energy release is also 
proportional to d. On the other hand, the energy release is 
proportional to the area of the stress relief zones, which is 
proportional to cd = (c/d)d2 or to d2, which means the energy 
release is proportional to er~d2. Thus, er~d2 must be propor
tional to d, which means that the nominal strength erN must be 
proportional to lIVd. The same is true for the situation in Fig. 
9(c). 

For the case of compression failure, the area of the fracture 

i i 
h 

l 
h 

l 

FIG. 9. Stress Relief Zones in (a) Isotropic Panel with Tensile 
Crack; (b) Highly Orthotropic Panel with Tensile Crack or Crack 
Band; and (c) Compressed Panel with Dense Axial Splitting 
Cracks and Compression Fracture Band 

band is proportional to c, and thus to d which characterizes 
energy dissipation. The area of the strip from which the stress 
is relieved is proportional to cd = (c/d)d2, that is, to d 2, which 
means that the energy release is proportional to er~d2. Since 
this must be proportional to d according to energy balance, 
the size effect is again such that erN is proportional to ll'V'd. 

In the full equation form, the energy relese is 

er1 
TI* =-bcd 

c 2Ec 
(47) 

while the energy consumed is 

(48) 

From the condition an: lac = aWflac one obtains the equation 
(er~/2EJbd = Gfbhlsc- Solving for the nominal strength, one 
obtains the size effect expression for the compression failure 

/2h:::l 
erN = y-;: EcGf y'd (49) 

This is of course a simplified formulation giving a size effect 
of LEFM type, In practice, due to R-curve behavior or other 
phenomena, an equation of the type of (21) may be derived 
in general for a panel failing in compression. 

APPENDIX II. REFERENCES 

Bahl, N. S. (1968). "Uber den Einfluss der BalkenhBhe auf Schubtrag
flihigeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbe
wehrung," Dissertation, Universitiit Stuttgart, Germany (in German). 

BaZant, Z. P. (1983). "Fracture in concrete and reinforced concrete." 
Preprints, IUTAM Prager Symp. on Mech. of Geomat.: Rocks, Con
cretes, Soil, Z. P. BaZant, ed., Northwestern University, Evanston, Ill., 
281-316. 

Balant, Z. P. (1984). "Size effect in blunt fracture: Concrete, rock, 
metal." 1. Engrg. Mech., ASCE, 110(4),518-535. 

Balant, Z. P. (1987). "Fracture energy of heterogeneous material and 
similitude." Preprints, SEM-RILEM Int. Conf. on Fracture of Concrete 
and Rock, S. P. Shah and S. E. Swartz, eds., Soc. for Exper. Mech., 
390-402. 

BaZant, Z. P. (1993). "Scaling laws in mechanics of failure." J. Engrg. 
Mech., ASCE, 119(9), 1828-1844. 

Bazant, Z. P. (1995a). "Scaling theories for quasibrittle fracture: Recent 
advances and new directions." Fracture Mechanics of Concrete Struc
tures, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg, Germany, 
515-534. 

Balant, Z. P. (1995b). "Scaling of quasibrittle fracture and the fractal 
question." J. Mat. and Technol., 177(Oct.), 361-367. 

BaZant, Z. P. (1997a). "Scaling of quasibrittle fracture: Asymptotic anal
ysis." Int. J. Fracture, 83(1), 19-40. 

Balant, Z. P. (1997b). "Scaling of quasibrittIe fracture: Hypotheses of 
invasive and lacunar fractality, their critique and Weibull connection." 
Int. J. Fracture, 83(1), 41-65. 

Bazant, Z. P., and Cao, Z. (1987). "Size effect in punching shear failure 
of slabs." ACI Struct. J., 84(1),44-53. 

BaZant, Z. P., and Cedolin, L. (1991). Stability of structures: elastic, in
elastic, fracture and damage theories. Oxford University Press, New 
York. 

Balant, Z. P., and Chen, E.-P (1997). "Scaling of structural failure." 
Appl. Mech. Rev., 50(10), 593-627. 

Balant, Z. P., and Kazemi, M. T. (1991). "Size effect on diagonal shear 
failure of beams without stirrups." ACI Struct. I., 88(3), 268-276. 

Balant, Z. P., and Kim, J.-K., (1984). "Size effect in shear failure of 
longitudinally reinforced beams." ACI J., 81,456-468; Disc. & Clo
sure 82 (1985), 579-583. 

Balant, Z. P., and Kim. J.-K. (1985). "Discussion and Closure of 'Size 
effect in shear failure of longitudinally reinforced beams:" ACI I., 
82, 579-583. 

Balant, Z. P., Ozbolt, J., and Eligehausen, R. (1994). "Fracture size ef
fect: Review of evidence for concrete structures." J. Struct. Engrg., 
ASCE, 120(8),2377-2398. 

Bazant, Z. P., and Planas, J. (1997). Fracture and size effect in concrete 
and other quasibrittle materials. CRC Press, Boca Raton, Fla. 

Bazant, Z. P., and Sun, H.-H. (1987). "Size effect in diagonal shear fail-

JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997/1287 



ure: Influence of aggregate size and stirrups." ACl Mat. J., 84(4), 
259-272. 

Bafant, Z. P., and Xi, Y. (1991). "Statistical size effect in quasi-brittle 
structures: II. Non local theory." J. Engrg. Mech., 117(11), 2623-
2640. 

Bafant, Z. P., Xi, Y., and Reid, S. G. (1991). "Statistical size effect in 
quasi-brittle structures: 1. Is Weibull theory applicable?" J. Engrg. 
Mech., ASCE, 117(11), 2609-2622. 

Bafant, Z. P., and Xiang, Y. (1996). "Size effect in compression fracture: 
splitting crack band propagation." J. Engrg. Mech., ASCE, 123(2), 
162-172. 

Biot, M.A. (1965). Mechanics of incremental deformations. John Wiley 
& Sons, New York. 

Building Code Requirements for Reinforced Concrete. (1992). ACI 318-
89 (Revised 1992), Am. Concrete Inst., Detroit, Mich. 

Carpinteri, A., Chiaia, B., and Ferro, G. (1994). "Multifractal scaling for 
the nominal strength variation of concrete structures." Size effect in 
concrete structures, H. Mihashi, H. Okamura, and Z. P. Bafant, eds., 
E & FN Spon, London, U.K., 193-206. 

Carpinteri, A., Chiaia, B., and Ferro, G. (1995). "Size effects on nominal 
tensile strength of concrete structures: Multifractality of material liga
ments and dimensional transition from order to disorder." Mat. and 
Struct., 28(7), 311-317. 

Carpinteri, A., Ferro, G., and Intervenizzi, S. (1995). Fracture mechanics 
of concrete structures, F. H. Wittmann, ed., Aedificatio Publishers, Frei
burg, Germany, 557 -570. 

Chana, P. S. (1981). "Some aspects of modelling the behaviour of rein
forced concrete under shear loading." Tech. Rep. No. 543, Cement and 
Concrete Association, Wexham Springs, U.K. 

Collins, M. P. (1978). "Towards a rational theory for RC members in 
shear." J. Struct. Div., ASCE, 104(4),396-408. 

Collins, M. P., and Mitchell, D. (1980). "Shear and torsion design of 
prestressed and non-prestressed concrete beams." J. Prestressed Con
crete lnst., 25(5), 32-100. 

Collins, M. P., and Mitchell, D. (1981). "Discussion of 'Shear and torsion 
design at prestressed and non-prestressed concrete beams.'" J. Pre
stressed Concrete Inst., 26(6), 96-118. 

Collins, M. P., and Mitchell, D. (1991). Prestressed concrete structures. 
Prentice Hall, Englewood Cliffs, N.J. 

Collins, M. P., Mitchell, D., Adebar, P., and Vecchio, F. J. (1996). "Gen
eral shear design method." ACI Struct J., 93(1), 36-45. 

Design of concrete structures, part I: General rules and rules for build
ings. (1991). Eurocode No.2. 

Design Specification of Concrete Structures. (1986). Japan Soc. of Civ. 
Engrs., Concrete Committee, Giho-do Co. Ltd., Tokyo, Japan. 

Hsu, T. T. C. (1988). "Softened truss model theory for shear and torsion." 
ACl Struct. J., 85(6), 624-635. 

Hsu, T. T. C. (1993). Unified theory of reinforced concrete. CRC Press, 
Boca Raton, Fla. 

Hsu, T. T. C., and Zhang, L.-X. (1996). "Tension stiffening in reinforced 
concrete membrane elements." ACI Struct. J., 93(1), 108-115. 

Iguro, M., Shioya, T., Nojiri, Y., and Akiayama, H. (1985). "Experimental 
studies on shear strength of large reinforced concrete beams under uni
formly distributed load." Concrete Library Int., Japan Soc. of Civ. 
Engrs., No.5, 137-154 (English translation of 1984 article in Proc., 
JSCE). 

Kani, G. N. J. (1967). "Basic facts concerning shear failure." ACI J., 
64(3),128-141. 

Khorasgany, M. G. (1994). "Size effect in the shear failure of normal 
and high strength reinforced concrete beams." PhD thesis, Univ. of 
Missouri, Columbia. 

Kupfer, H. (1964). "Erweiterung der Morch-schen Fachwerkanalogie mit 
Hilfe des Prinzips vom Minimum der Formanderungsarbeit." ("Gen
eralization of Morsch's truss analogy using the principle of minimum 
strain energy.") Bull. d'Information No. 40, Comite Euro-International 
du Beton, Paris, 44-52. 

Leonhardt, F. (1977). "Schub bei Stahlbeton und Spannbeton-Grund
lagen der neueren Schubbemessung." Beton- und Stahlbetonbau, Ber
lin, Germany, 72(11), 270-277 (in German). 

Leonhardt, F. (1977). "Schub bei Stahlbeton und Spannbeton-Grund
lagen der neueren Schubbemessung." Beton- und Stahlbetonbau, 
72(12), 295-392 (Figs. 24-26). 

1288/ JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997 

Leonhardt, F., and Walther, R. (1962). "Beitrage zur Behandlung der 
Schubprobleme in Stahlbetonbau." Beton- und Stahlbetonbau, Berlin, 
Germany, 57(3), 54-64. 

Leonhardt, R., and Walther, R. (1962). "Beitrage zur Behandlung der 
Schubprobleme in Stahlbetonbau." Beton- und Stahlbetonbau, Berlin, 
Germany, 57(6), 141-149 (in German). 

Marti, P. (1980). "Zur plastischen Berechnung von Stahlbeton." Bericht 
Nr. 104, Institute fiir Baustatik und Konstruktion, E.T.H. Ziirich, Swit
zerland (in German). 

Marti, P. (1985a). "Basic tools of reinforced concrete beam design." ACI 
J., 82(1),46-56. 

Mari, P. (185b). "Basic tools of reinforced concrete beam design." ACl 
J., 82(1), 46-56. 

Model Code 1990 (MC90). (1993). CEB-FIP, Thomas Telford, London, 
U.K. 

Morsch, E. (1922). Der Eisenbetonbau-Seine Theorie und Anwendung. 
(Reinforced concrete construction-Theory and application.) Wittwer, 
Stuttgart, Germany, 5th Ed., Vol. I, Part 1 (1920) and Part 2 (1922). 

Nielsen, M. P., and Braestrup, N. W. (1975). "Plastic shear strength of 
reinforced concrete beams." Tech. Rep. No.3, Bygningsstatiske Med
delesler, Vol. 46. 

Okamura, H., and Maekawa, K. (1994). "Experimental study of size ef
fect in concrete structures." Size effect in concrete structures, H. Mi
hashi, H. Okamura, and Z. P. Bafant, eds., E&FN Spon, London, U.K., 
3-24. 

Reineck, K.-H. (1991). "Model for structural concrete members without 
transverse reinforcement." Proc., lABSE Colloquium on Struct. Con
crete, IABSE, Stuttgart, Germany, Rep. Vol. 62, 643-648. 

Ritter, W. (1899). "Die Bauweise Hennebique." Schweizerische Bau
zeitung, Ziirich, Switzerland, 33(7), 59-61. 

Riisch, H., Haugli, F. R., and Mayer, H. (1962). "Schubversuch an Stahl
beton-Rechteckbalken mit gleichmassing verteilter Belastung." Bull. 
No. 145, Deutscher Ausschuss fiir Stahlbeton, Berlin, Germany, 4-30 
(in German). 

Schlaich, J., Schafer, K., and Jannewein, M. (1987). "Toward a consistent 
design for structural concrete." PCl J., 32(3), 75-150. 

Shioya, Y., and Akiayama, H. (1994). "Application to design of size 
effect in reinforced concrete structures." Size effect in concrete struc
tures, H. Mihashi, H. Okamura, and Z. P. Bafant, eds., E & FN Spon, 
London, U.K., 409-416. 

Shioya, T., Iguro, M., Nojiri, Y., Akiayama, H., and Okada, T. (1989). 
"Shear strength of large reinforced concrete beams." Fracture me
chanics: Application to concrete, SP-11B, Am. Concrete Inst., Detroit, 
Mich., 25-279. 

Standard Specification for Design and Construction of Concrete Struc
tures, Part I: Design. (1991). Japan Soc. of Civ. Engrs., Tokyo, Japan. 

Talbot, A. N. (1909). "Tests of reinforced concrete beams-resistance to 
web stresses." Bull. 29, Univ. of Il\inois Engrg. Experiment Station, 
Urbana, Ill. 

Taylor, H. P. J. (1972). "Shear strength of large beams." J. Struct. Engrg., 
ASCE, 98(11), 2473-2490. 

Thiirlimann, B. (1976). "Shear strength of reinforced and prestressed con
crete beams, CEB approach." Tech. Rep., E.T.H. Ziirich, Switzerland. 

Vecchio, F., and Collins, M. P. (1986). "The modified compression field 
theory for reinforced concrete elements subjected to shear." ACl J., 
83(2),219-231. 

Wagner, H. (1929). "Ebene Blechwandtrager mit sehr diinnem Steg
blech." Zeitschrift fUr Flugtechnik und Motorluftschifffahr, Berlin, 
Germany, 20, 8-12 (in German). 

Walraven, J. (1995). "Size effects: Their nature and their recognition in 
building codes." Studi e Ricerche, Politecnico di Milano, Italy, 16, 
113-134. 

Walraven, J., and Lehwalter, N. (1994). "Size effects in short beams 
loaded in shear." ACl Struct. J., 91(5), 585-593. 

Walraven, J. C. (1978). "The influence of depth on the shear strength of 
lightweight concrete beams without shear reinforcement." Stevin Lab. 
Rep. No. 5-7B.4, Delft University of Technology, The Netherlands. 

Withey, M. O. (1907). "Test of plain and reinforced concrete, series of 
1906." Bull., Engrg. Ser., 4(1), Univ. of Wisconsin, Madison, Wisc., 
Nov., 1-66. 

Withey, M.O. (1908). "Tests of plain and reinforced concrete, series of 
1907." Bull., Engrg. Ser., 4(2), Univ. of Wisconsin, Madison, Wisc., 
Nov., 1-66. 


