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The Fragile X Syndrome (FXS) is a neurodevelopmental disorder due to the silencing of Fragile X
Mental Retardation 1 (FMR1; Maurin et al., 2014). Patients are affected by intellectual disability
of variable severity and they can also display a wide array of behavioral alterations such as
hyperactivity, attention deficit, anxiety, deficit of language and epilepsy. Interestingly, FXS patients
show several Autism Spectrum Disorder (ASD)-like symptoms, including social dysfunction,
hyperactivity, stereotypic movements, hand-flapping and hand-biting, speech delay, and a relative
lack of expressive language ability. Overall, ∼30% of patients with FXS meet the full diagnostic
criteria for ASD (Harris et al., 2008), while over 90% of individuals with FXS display some
ASD symptoms (Hernandez et al., 2009). Indeed, FXS is considered a form of ASD (https://
www.spectrumnews.org/news/fragile-x-syndromes-link-autism-explained/) and so are themurine
models of this disease (Melancia and Trezza, 2018). The FMR1 gene encodes the Fragile X Mental
Retardation Protein, that harbors three canonical RNA-binding domains (KH1, KH2 and RGG-
Box) in addition to a Nuclear Localization Signal (NLS) and a Nuclear Export Signal (NES;
Bardoni et al., 1997). The protein is mainly localized in the cytoplasm where it is a component
of Ribonucleoprotein complexes (RNPs) associated with polyribosomes (Maurin et al., 2014). In
neurons, FMRP is associated to synaptic polyribosomes and is a component of RNA granules,
the RNP complexes transporting mRNAs along dendrites and axons (Khayachi et al., 2018). The
presence of FMRP in nucleus and in nucleolus has been documented (Okray et al., 2015), even if
it is not clear if this participates to some neuronal functions other than nuclear export of mRNAs,
as part of specific mRNPs shuttling between nucleus and cytoplasm (Bardoni et al., 2006; Maurin
et al., 2014). Furthermore, FMRP is often considered a multifunctional protein not only due to its
implication in various steps of RNAmetabolism but also because of its interactionwith cytoskeleton
components (Abekhoukh and Bardoni, 2014; Maurin et al., 2014) and ion channels (Ferron, 2016;
Castagnola et al., 2018). Overall, these findings suggest that FMRP may coordinate the various
steps of RNAmetabolism with other cellular functions. However, in a general manner, translational
regulation is the function of FMRP that researcher in the field have mainly studied. In this regard,
the recent manuscript “Fragile X mental retardation 1 gene enhances the translation of large
autism-related proteins” by Greenblatt and Spradling (Greenblatt and Spradling, 2018) renews the
dilemma concerning the function of FMRP (Maurin et al., 2014; Dahlhaus, 2018). Although the
dogma “FMRP is a translational repressor” exists, an increasing amount of data published during
the last 18 years indicate a more complex implication of this protein in translational control (see
Maurin et al., 2014 for review). Indeed:

1. A subset of proteins – encoded by FMRP RNA targets – have been shown to escape FMRP-
dependent translational repression inmouse and human brain, such as SAPAP, UNC13, KIAA1091,
TP63, casein kinase 1 gamma 2, NAP-22 (Brown et al., 2001); Sod1 (Miyashiro et al., 2003; Bechara
et al., 2009), Ascl1 (Fähling et al., 2009), Kv4.2 (Gross et al., 2011), NOS1 (Kwan et al., 2012), and
Dgkk (Tabet et al., 2016);
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2. The ability of FMRP to specifically bind the mRNA of Sod1
and its reduced association to polyribosomes in mouse Fmr1-
KO cells was further confirmed in vivo (Bechara et al., 2009;
Davidovic et al., 2011; Nolze et al., 2013) and in silico (Cirillo
et al., 2013) after a first observation (Miyashiro et al., 2003).
This led to the identification of a fragment in the Sod1 mRNA,
named SoSLIP (Sod1 Stem Loops Interacting with FMRP) that
is specifically bound by FMRP. Remarkably, SoSLIP is able to
increase the translation level of a reporter protein, being an
enhancer of translation per se, a property that is potentiated by
the presence of FMRP (Bechara et al., 2009). This suggests that
various components of the same ribonucleoproteic complex are
important to define the FMRP molecular role;

3. Translational repression by FMRP in brain seems to be
associated to development, as shown comparing the expression
level of synaptic proteins at 17 PND and 45 PND in Fmr1-null
mouse brain vs. wild type (Tang et al., 2015). Indeed, in cortex
synaptosomal preparation the expression of those proteins is
highly deregulated in mouse Fmr1-KO compared with controls
only at 17PND. Furthermore, in some regions of the brain
of adult FXS patients, translation rate is not different when
compared with controls (Qin et al., 2013; Tomasi et al., 2018).
Collectively, these findings suggest a spatio-temporal-dependent
function of FMRP, as also shown for the translational regulation
of Ascl1 that is enhanced in newborn mouse brain (Fähling et al.,
2009) but repressed in mouse embryonic stem cells (Khalfallah
et al., 2017). Another example of such a regulation is provided
by the regionalized regulation of GRK4 expression by FMRP
that is restricted to adult cerebellum (Maurin et al., 2015).
We recently published a large list of mRNAs modulated by
FMRP in specific brain regions of young mice (Maurin et al.,
2018a). Not surprisingly, the overlap is limited with FMRP targets
characterized in HEK cells (Ascano et al., 2012) while it is higher
with targets obtained from CLIP using total mouse brain extracts
(Darnell et al., 2011).

By using ribosome profiling, a recent study compared mRNAs
associated to translating polyribosomes in mouse adult neural
stem cells (aNSC) in the presence and in the absence of FMRP
(Liu et al., 2018). In Figure 1, we display the results of our analysis
of the overlap between the mRNAs that are found differentially
translated in Fmr1-KO aNSC with FMRP targets previously
found by HITS-CLIP (Darnell et al., 2011; Maurin et al., 2018a).
On one side, we observed that 199 mRNAs displayed reduced
translation in Fmr1-null cells (three of them are target of FMRP
according to Darnell et al., 2011 and Maurin et al., 2018a,
while seven were found only by Maurin et al., 2018a). On the
other side, 200 mRNAs displayed increased translation in Fmr1-
null cells [4 of them are targets of FMRP previously found
by Darnell et al., 2011, 21 of them found by Maurin et al.,
2018a and 26 were common to the two studies)] (Figure 1).
Considering old and new data, we can conclude that FMRP
is mainly a translational repressor, at least during mammalian
development. Now, Greenblatt & Spradling show that in oocytes
dFMR1 - the fly homolog of FMRP and of its two paralog FXR1P
and FXR2P, members of the Fragile X Related Protein family
(FXRP) (Drozd et al., 2018) - enhances rather than represses the
translation of a subset of mRNAs. Thus, how is it possible to

reconcile former data with the new findings? This is an important
issue due to the critical role that translational control has in
normal functioning of brain (Sossin and Costa-Mattioli, 2018).
It is worth to underline that fly dFMR1 has to achieve by itself
the function of all three mammalian FXS proteins even if it is
not possible to exclude that each mammalian FXR protein has
peculiar properties or tissue-specific functions, as it was shown
for FXR1P muscle isoforms (Bechara et al., 2007; Davidovic
et al., 2013; Herman et al., 2018). In addition, except FMRP,
the respective role of the other members of the FXR family
in translational regulation has not been studied in great details
so far (Bardoni et al., 2006; Maurin et al., 2014; Drozd et al.,
2018). Thus, for instance, it is possible that one of them (or
all) behaves as a translational enhancer in mammalian ovary.
Indeed, under certain stimulation conditions, FXR1P was already
shown to behave as a translational enhancer in monocytic cell
lines (Vasudevan and Steitz, 2007). Furthermore, in mammalian
cells we cannot exclude that the absence of a FXR member can
be compensated by the function of another protein belonging to
the same family. This cannot happen in fly due to the presence
of a single FXR gene. In conclusion, concerning the molecular
function of FMRP, several aspects should be studied to focus on
elements that could interfere with its function, in the future.

Importantly, we and others showed that the basis of
FMRP/RNA interaction is the key to understand its function
(Darnell et al., 2001, 2011; Schaeffer et al., 2001; Bechara et al.,
2009; Ascano et al., 2012; Suhl et al., 2014; Maurin et al., 2015,
2018a; Anderson et al., 2016) (see also 1). The questions are which
RNAs are bound by FMRP in which tissues, at what time during
development and how? It is not clear how to explain the function
of FMRP and other RNA-binding proteins without knowing their
RNA binding specificity. A key point to understand themolecular
bases of the RNA/FMRP interaction is to establish whether
this protein recognizes a structure (Figures 2A–C), and/or a
sequence motif (Figures 2E,F). We have recently shown that
short sequences that are common to target mRNAs of FMRP are
recognized when in the context of a secondary RNA structure
(Maurin et al., 2018a) as we had previously hypothesized studying
the GRK4 RNA Interacting with FMRP (G4RIF) motif, bound
by FMRP in the GRK4 mRNA (G protein-coupled Receptor
Kinase 4; Maurin et al., 2015). We started from the structure-
seq dataset in mouse embryonic stem cells (ES; Guo, 2016) and
we assessed whether the motifs that we identified are engaged
in Watson-Crick pairing in vivo. To do so, we computed an
unpairing score for each base of each expressed transcript. We
derived a score for each motif bound by FMRP and we compared
the scores of motifs embedded in FMRP binding sites or present
elsewhere in the transcript. Our analysis clearly shows that the
CUGKA, GWRGA and UAY motifs present in regions bound by
FMRP are more accessible to DMS modification in vivo than the
unbound cognate motifs present in the same transcripts (Maurin
et al., 2018a). This shows that FMRP prevalently recognizes
motifs that are presented in single stranded regions or loop
sequences of stem loop structures. Also, clusters of the WGGA
motif identified by Ascano et al. (2012) were proposed to
form RNA G-quadruplex forming structure in targets of FMRP
(Suhl et al., 2014; Anderson et al., 2016). This finding is also
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FIGURE 1 | Translationally deregulated mRNA targets of FMRP. In the Venn

diagrams (on the left), we present the overlap between mRNAs differentially

associated to polyribosomes of WT and Fmr1-KO aNSC (Liu et al., 2018) with

FMRP targets previously identified in total brain (Darnell et al., 2011) or in brain

regions (Maurin et al., 2018b). To generate these data, we considered 10.716

transcripts that were found expressed in cells studied in all three works

(considering as “expressed” those mRNA whose Log2 input counts were

equal or greater than 0). Only 399/10.716 transcripts were observed as

translationally deregulated in Fmr1- null aNSC (Liu et al., 2018) and then

considered for the overlap with clipped mRNA (1236 from Maurin et al., 2018a

and 682 from Darnell et al., 2011). The table (on the right) displays the identity

of the translationally modulated mRNAs that have been already described as

direct targets of FMRP (Darnell et al., 2011; Maurin et al., 2018b). We

highlighted in red the target mRNAs found in the CLIP of Maurin et al., 2018a,

in blue those found by Darnell et al., 2011, and in yellow those transcripts

found in both studies.

supported by our results (Maurin et al., 2018a) showing an
enrichment of the G-quadruplex structure in target mRNAs
of FMRP. Collectively, these findings definitively suggest that
FMRP recognizes and binds structural motifs. For instance, it was
proposed that G-quadruplex forming structures can be stabilized
by FMRP and block the polyribosomes scanning when they are
located in the 5’UTR of a FMRP target mRNA (Melko and
Bardoni, 2010), thus explaining the role of FMRP as repressor
of translation. Furthermore, while FMRP recognizes structural
motifs, sequences harbored by them might be critical for its
translational action. Indeed, we and others (Anderson et al.,
2016; Maurin et al., 2018a) have shown that FMRP binding
sites located in mRNA coding regions are enriched for the GAC
codon. This remained an unexplained feature of FMRP binding
for a while but a recent report shines new light on this puzzling
observation. The GAC codon is decoded by the m38C_tRNA

_Asp, a highly modified tRNA harboring a GUC anticodon
carrying a hyper modified Guanosine called Queuosine (Q). Q
is only provided through the microbiota or food and therefore
Q-tRNAmay confer nutritional control of protein translation. In
mammalian cells, Q deprivation stalls ribosomes at GAC codons
and to a smaller extent at near-cognate codons (Tuorto et al.,
2018). Collectively these findings lead to the speculation that the
ability of FMRP to stall polyribosomes—one of the mechanisms
proposed to explain the role of translational repressor of FMRP
(Darnell et al., 2011; Richter and Coller, 2015)—could be related
to m38C_tRNA _Asp metabolism. This could be achieved in
several ways, for instance, FMRP could modulate a rate-limiting
step of tRNA queuosinylation or, alternatively, may compete with
this tRNA for its P site occupancy in the elongating ribosome
(Chen et al., 2014). In this context, the percentage of GAC codons
in mRNA coding regions could define the role of repressor of
FMRP for them. Interestingly, with the exception of SoSLIP—
enhancing the translation—other RNA motifs have been so far
associated to the capacity of FMRP to repress translation (Darnell
et al., 2001, 2005; Schaeffer et al., 2001; Ascano et al., 2012;
Maurin et al., 2015, 2018a; Anderson et al., 2016). However,
until now this latter function was the main studied, thus it is
not surprising that the majority of motifs bound by FMRP are
associated to its role as a translation repressor. We can only
speculate that these molecular mechanisms are conserved in
drosophila, as such molecular studies have not been published
yet (Drozd et al., 2018; Greenblatt and Spradling, 2018).

The second key point that should be considered to explain the
double role of FMRP as repressor and enhancer of translation is
represented by the interactors of FMRP, which can have different
expression patterns (Bardoni et al., 2006; Bonaccorso et al., 2015).
These proteins can modify the RNA binding specificity of FMRP,
as for instance FXR1P in brain (Bechara et al., 2007) and this
may generate different mechanisms of action of this protein
(as discussed at point 3). It is then possible that- considering
the recent findings- the different function of dFMR1 in oocytes
compared to brain results from the presence of tissue- specific
FMRP interacting proteins. Furthermore, FMRP acts as a part
of a ribonucleoproteic complex and its function should be
considered in the context of RNPs having different roles in the
cells (export from nucleus, transport at the synapse, transport
between polyribosomes and stress granules or P-Bodies; Maurin
et al., 2014) and, likely, regulated by different stimuli, such as
mGlur5 stimulation in neurons (Khayachi et al., 2018). The
identification of interacting proteins of FMRP that are able to
modify its ability to recognize and bind mRNA can represent
a clue to understand the multiple functions of FMRP, since
in various subcellular compartments (e.g., nucleus, cytoplasm,
synapse) different proteins are present.

Another critical point is represented by the observation
that, in the absence of FMRP, a set of its mRNA targets
was shown to be less transported at the synapse (Dictenberg
et al., 2008), while it has been described that the dendritic
transport of two of its target mRNAs is enhanced (Vicario
et al., 2015; Maurin et al., 2018a). This suggests that, in the
absence of FMRP, the increased or decreased level of translation
could be due to an altered abundance of mRNA available to
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FIGURE 2 | RNA motifs bound by FMRP. Main structures and sequences that are bound by FMRP are listed. (A) The G-quadruplex (Schaeffer et al., 2001) structure

is represented and some targets of FMRP harboring a G-quadruplex are listed (Darnell et al., 2001; Schaeffer et al., 2001; Castets et al., 2005; Maurin et al., 2018a);

(B) Kissing loop (Darnell et al., 2005). No natural mRNAs have been found so far harboring this structure. (C) SoSLIP was found in Sod1 mRNA and it spans the AUG

of this mRNAs, being also an IRES motif (Bechara et al., 2009). In yellow one of the short motifs identified by (Ascano et al., 2012) (see E) is indicated.; (D) G4RIF

found in GRK4 mRNA (Maurin et al., 2015). In yellow one of the short motifs identified by (Ascano et al., 2012) (see E) is indicated; (E) that were found by PAR-CLIP in

HEK cells (Ascano et al., 2012). (F) Sequences that we have identified as enriched in RNA fragment bound by FMRP and resulting from an analysis of HIT-CLIP in

various brain areas (Maurin et al., 2018a). The motif TAY was also indicated as main target of FMRP (Anderson et al., 2016) by comparing two previous CLIP assays

(Darnell et al., 2011; Ascano et al., 2012) that were performed in total brain extracts and HEK cells, respectively.

active translating ribosomes in soma and/or at the synapse
due to an altered turnover of mRNA transported between
nucleus and soma and (in neurons) between soma and synapses,
rather than caused by (or in addition to) other molecular
dysregulations. In our opinion, this element is also important
to understand the results of Greenblatt & Spradling since fly
oocytes are polarized cells in which mRNA distribution is

tightly regulated, similar to neurons (Martin and Ephrussi,
2009).

Last but not least, the post-translational modification of
FMRP can modify its function. For instance, sumoylation has
been shown to have a strong impact on the ability of FMRP to
interact with partners and generate complexes (Khayachi et al.,
2018) as it involves a domain that is critical for protein/protein
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interaction (Bardoni et al., 1999; Adinolfi et al., 2003; Ramos
et al., 2006).

In conclusion, it seems now the right time to renew the
research on the mechanisms of action of FMRP. It is indeed
remarkable that the study of Liu et al. (2018) (See Figure 1

legend) shows that the vast majority of FMRP mRNA targets
(75%: 625/830 of Darnell’s target dataset that are those associated
to polyribosomes) are not modulated in the absence of FMRP,
which in our opinion argues for a stronger implication of FMRP-
containing mRNPs in storage/transport of mRNAs rather than
in translational regulation. To date the role of FMRP was mainly
studied in translational regulation probably due to its association
to polyribosomes (Corbin et al., 1997; Khandjian et al., 2004)
and consistent with the link existing between translation and
mGluR-dependent Long TermDepression that has been reported
to be exaggerated in Fmr1-KO (Huber et al., 2002). Given the
particular role of FMRP at the synapse, it would be interesting to
reproduce this analysis in the synaptic compartment, by taking
advantage, for instance, of the single cell RNA technology to
study the implication of FMRP in intracellular RNA trafficking
or local translation (Pichon et al., 2018). It is easy to speculate
that while motifs bound by FMRP and located in coding regions
of mRNA are mainly associated to translational regulation, the
motifs present in 3’UTR regions—more than 30% of FMRP target
mRNA (Maurin et al., 2018a) harbor a motif in this region-
are involved in processes of precise sub cellular location and/or
maturation.

It is obvious that the function of this protein is
intimately linked to the identification of a therapy for
FXS, that, indeed, is still missing (Castagnola et al.,
2017). In this context, it is remarkable to notice the new
therapeutic target of FMRP, Phosphodiesterase 2A (PDE2A;

Androschuk et al., 2018; Maurin et al., 2018b) has been identified
by HITS-CLIP (Darnell et al., 2011; Maurin et al., 2018a) as well
as, in the past the APP through the immunoprecipitation of
FMRP RNP from mouse brain (Brown et al., 2001; Westmark
et al., 2016). Furthermore, a Phase 3 clinical trial is ongoing using
a combination of various anti-oxidants to treat FXS patients
(NCT02942498), as suggested the fact that SOD1 is less expressed
in mouse Fmr1-KO cells (Bechara et al., 2009) and, consequently,
markers of oxidative stress have been described in brain of infant
and adult Fmr1-null mice (El Bekay et al., 2007; de Diego-Otero
et al., 2009; Davidovic et al., 2011).
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