
Fragility and compressibility at the glass transition

U. Buchenau* and A. Wischnewski
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany
(Received 7 January 2004; revised manuscript received 22 March 2004; published 9 September 2004)

Isothermal compressibilities and Brillouin sound velocities from the literature allow us to separate the
compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part.
Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering, though the data bend
away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show
that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems
to stem from the relaxational part. The physical meaning of this finding is discussed.
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Very recently, Scopignoet al.1 compiled x-ray Brillouin
data in glasses, comparing the integrated Brillouin line inten-
sity to the intensity of the central line. They found a linear
relation between this ratio and the fragilitym
=] log h /]sTg/Td, defined in terms of the steep rise of the
viscosityh towards the glass temperatureTg with decreasing
temperature in the supercooled liquid.

This striking result poses two questions. The first is a
more technical point: Does the momentum transfer range of
the x-ray Brillouin technique still reflect the long-wavelength
limit? The second is more fundamental: Is the fragility re-
lated to the Brillouin intensity or to the central line intensity?
Scopignoet al.only demonstrate a linear relation to theratio
of these two quantities. The present paper intends to address
these two questions by a comparison to literature data on the
long-wavelength limit.

The total scattering of a supercooled liquid at low-
momentum transfer is given by its isothermal compressibility
xT:

lim
Q→0

SsQd = r
kT

M
xT, s1d

where r is the density andM is the average atomic mass.
Equation(1) has been found to be valid for several molecular
and polymeric supercooled liquids2 on the nm length scale of
the x-ray Brillouin technique.

The x-ray Brillouin experiment splits the total scattering
SsQd into an apparently elastic central componentSISsQd and
two Brillouin lines of summed intensitySBrill sQd. The longi-
tudinal sound velocityvl` at the Brillouin line defines a high-
frequency Brillouin compressibilityxBrill =1/rvl`

2 . The ratio
ascatt=SBrill sQd /SISsQd at the glass temperatureTg reported
by Scopignoet al.1 should equal the ratioax between vibra-
tional and relaxational compressibility:

axsTgd =
xBrill sTgd

xTsTgd − xBrill sTgd
. s2d

.
Table I compiles literature data of the isothermal com-

pressibility and the Brillouin sound velocity. Most of the
Brillouin sound velocities in Table I were obtained by light
scattering; at the glass transition, light and x-ray scattering
sound velocities still agree.10,14,18

As shown in Fig. 1(a), the general tendency is the same
and the three common cases of glycerol, OTP, and Se agree

TABLE I. Isothermal and Brillouin compressibility at the glass
transition. Abbreviations: PIB5polyisobutylene, PB
5polybutadiene, PET5polyethylenteraphtalate, OTP
5orthoterphenyl, CKN=K3Ca2sNO3d7, PVAC5polyvinylacetate,
BPA-PC5polycarbonate, PS5polystyrene, PMMA5polymethyl-
methacrylate, and PVC5polyvinylchloride.

Substance Tg r vl` vt` xBrill xT

sKd skg/m3d sm/sd sm/sd sGPa−1d sGPa−1d

BeF2 598a 1900c 4570c 0.0252

SiO2 1450a 2200d 6480d 3988d 0.0108

B2O3 550e 1792e 3600f 1933f 0.0431 0.39e

PIB 201b 939g 2994h 0.119

Glycerol 187i 1332i 3583i 1858j 0.0586 0.287k

Salol 218a 1268l 2382l 0.139

1,4-PB 180a 940g 2500m 0.170

PET 342a 1350g 2309n 0.139 0.324o

OTP 241a 1124p 2550q 0.137 0.39p

Se 308a 4262r 2000s 0.0587 0.16r

CKN 343b 2186e 3190f 1497f 0.0450 0.132e

PVAC 304e 1186e 2492t 0.136 0.498e

BPA-PC 418b 1180u 2176v 938v 0.179 0.511o

PS 375b 1028u 2219w 0.198 0.558o

PMMA 379b 1161u 2500x 1278w 0.138 0.473o

PVC 347x 1372u 2198x 0.151 0.385o

aReference 1.
bReference 3.
cReference 4.
dReference 5.
eReference 6.
fReference 7.
gReference 8.
hReference 9.

iReference 10.
jReference 11.
kReference 12.
lReference 13.
mReference 14.
nReference 15.
oReference 16.
pReference 17.

qReference 18.
rReference 19.
sReference 20.
tReference 21.
uReference 22.
vReference 23.
wReference 24.
xReference 25.
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reasonably well in both sets of data. The literature data go to
much higher fragility and thus reveal a bending away from
the postulated line: at higher fragilities, the compressibility
ratio becomes fragility independent. But even so, the answer
to our first question is clear: the relation discovered by x-ray
Brillouin scattering1 is a true property of the long-
wavelength limit.

In order to answer the second question—namely, whether
the Brillouin line or the central line provides the relation to
the fragility—one needs to compare the vibrational or relax-
ational compressibility of different glass formers. This re-
quires an appropriate normalization of the compressibility. It
is reasonable to define a dimensionless ratio between the
thermal energy at the glass transition and the vibrational and
relaxational compression energy, respectively, by

svib =
kBTgxBrill

v
, srel =

kBTgsxT − xBrill d
v

, s3d

wherev is an appropriate microscopic volume.
A priori, one would choose forv the atomic volume.

However, this choice is not justified, because glass formers
are complex solids, with a mixture of strong and weak
nearest-neighbor bonds.26,27For instance, a polymer owes its
material properties to a mixture of covalent and van der
Waals bonds, very different in strength. Therefore one must
take this difference in bonding strength into account.

Thus we definev=vat/ fs, wherevat is the atomic volume
and fs is the fraction of soft degrees of freedom in the sub-
stance. Thefs values in Table II were calculated assuming

the stretching of all covalent bonds(including the Be-F
bond) as well as the bond bending at boron, nitrogen, and
carbon to be hard. All other degrees of freedom were con-
sidered to be soft. The resultingsvib andsrel values are shown
in Fig. 1(b). Though the scatter of points is even worse than
in Fig. 1(a), one observes that the fragility rise is only
weakly correlated with the vibrational softening, but strongly
with a decrease of the relaxational compressibility.

The first part of this result is consistent with empirical
knowledge: The glass temperature tends to be about a factor
of 0.6 smaller than the melting temperatureTm, which in turn
follows the empirical Lindemann criterion.30 The Lindemann
criterion states a mean-square vibrational displacement of the
atoms in the crystal of 10% of the nearest-neighbor distance
at the melting point. On the basis of a Debye model and a
constant ratio of transverse and longitudinal sound velocity,
one then expects the same vibrational compressibility in all
glass formers atTg, independent of the fragilitym.

To quantify this Lindemann expectation, we assume a
nearest-neighbor distanced<vat

1/3 and an average ratio of
longitudinal to transverse sound velocity,vl` /vt`<1.8. The
Lindemann criterion in the form improved by Gilvarry31

reads

ku2lsTmd =
3kBTm

MvD
2 ; s0.083dd2. s4d

Here ku2l is the mean-square displacement inone direction
andvD is the Debye frequency

FIG. 1. (a) Comparison ofa values from x-ray Brillouin scat-
tering and from the long-wavelength limit.(b) Fragility dependence
of normalized vibrational and relaxational compressibilities.

TABLE II. Ratio of vibrational and relaxational compressibility
at the glass transition.

Substance ax ascatt fs M s10−27kgd B/B0 m

BeF2 0.16a 5/9 26.0 20a

SiO2 0.191a 5/9 33.25 24b

B2O3 0.124 1/5 21.92 5.6 32b

PIB 0.182c 1/6 7.75 46b

Glycerol 0.253 0.32a 1/3 10.91 3.1 53a

Salol 0.64a 7/39 13.66 73b

1,4-PB 0.40a 1/6 8.96 60a

PET 0.751 13/66 14.49 80d

OTP 0.540 0.58a 1/12 11.93 81b

Se 0.579 0.7a 2/3 131.1 87b

CKN 0.516 19/33 31.76 2.1 93b

PVAC 0.375 1/4 11.9 95b

BPA-PC 0.539 14/99 12.78 2.1 132b

PS 0.548 5/48 10.97 139b

PMMA 0.411 2/9 11.07 2.2 145b

PVC 0.644 4/21 15.05 191b

aReference 1.
bReference 3.
cReference 28.
dReference 29.
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vD
3 =

18p2

vats1/vl
3 + 2/vt

3d
. s5d

With the above assumptions(including Tg<0.6Tm), one
finds

kBTg < 0.008
vat

xBrill
. s6d

This is the Lindemann line in Fig. 1(b), which is in reason-
able agreement with the data points for the vibrational com-
pressibility. Taking this Lindemann compressibility and the
linear relationa=m/135 of Scopignoet al. [the dashed line
in Fig. 1(a)], one getssrel=1.08/m, the dashed line in Fig.
1(b). We observe that this relation is only followed in the
lower half of the fragility region, consistent with the bending
away observed in Fig. 1(a).

The temperature dependence of the ratio between relax-
ational and vibrational compressibility 1/ax is shown in Fig.
2 for three of the glass formers of Table I. There is no strong
decrease of the ratio towardsTg, so the relaxational com-
pressibility is proportional neither to the free volume nor to
the excess entropy of the glass former.32 In the first case, it
should extrapolate to zero at the Vogel-Fulcher temperature,
in the second at the Kauzmann temperature(these two tem-
peratures tend to lie close to each other33–35).

To clarify the physical meaning of the compressibility ra-
tio, it is useful to rewrite it in terms of elastic moduli. LetB
andG be the infinite-frequency bulk and shear modulus, re-
spectively.xT=1/B0, where B0 is the zero-frequency bulk
modulus (the zero-frequency shear modulus is zero above
Tg). 1 /xBrill =B+4G/3<1.7B, where we used again the ap-
proximationvl` /vt`<1.8 mentioned in the derivation of the
Lindemann line. Thus

1/ax < 1.7
B

B0
− 1, s7d

so the ratio between relaxational and vibrational compress-
ibility is a measure for the ratio between high-frequency and
low-frequency bulk moduli. For strong glasses, this is high;
for fragile glasses, it is low. In fact, for the five glasses where
we know not only the isothermal compressibility, but also
both the longitudinal and the transverse Brillouin sound ve-
locity (see Table I), the calculated ratioB/B0 in Table II
decreases with increasing fragility(in those cases, it is pos-
sible to determineB/B0 directly from experiment without
any approximation).

The question is, what determines the ratioB/B0 between
long-time and short-time bulk moduli at the glass transition?
This question can be translated into another question: What
happens to the bulk modulus in the relaxation processes
which bring the shear modulus down to zero? There are two
extremes:(i) The bulk modulus is also brought down to zero.
(ii ) The bulk modulus is not affected at all. In the first case,
B/B0 is infinite andax=0; in the second case,B/B0=1 and
ax<1.43. However, these extremes are never reached; in
Table II,ax ranges from 0.124 to 0.751, soB/B0 ranges from
1.35 to 5.6.

The consideration helps to understand the weakness of the
temperature dependence in Fig. 2:B/B0 changes only slowly
with temperature(if it changes at all). One also understands
the physical meaning of the relation found by Scopignoet
al.1: In strong glass formers,B/B0 is large, in fragile ones
small. Strong glass formers show strong relaxational density
fluctuations on the scale of their vibrational compressibility,
a factor of 3–4 stronger than fragile ones.

Helpful discussions with Giancarlo Ruocco and Reiner
Zorn are gratefully acknowledged.
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