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ABSTRACT 
Test case generation is a path to identify the solution in 

software testing. Adaptive random testing is an enhancement 

of random testing to improve the quality of fault-revealing. 

The research focuses on software adaptive random testing 

based on Matrix called Partitioned Block based Adaptive 

Random Testing. It compares the performance of PBART 

with the existing Adaptive random testing using random 

samples of test cases which are drawn from blocks of distinct 

partitions. Partition testing defines as a block of test cases 

partitioned into set of all test cases. Thereby it has prompted 

to investigate the performance of random testing that can be 

improved by taking the patterns of failure-causing inputs 

which utilizes the prior knowledge and the information of the 

test cases. The proposed algorithm PB –ART performs the 

testing of program structure and load the source code to 

matrix with scenarios, method flows and data values. In 

numerical experiments, the approach examines effectiveness 

of PB-ART with ordinary adaptive random testing. There 

exist three measures for evaluating the effectiveness of a 

testing technique namely P-measure, E-measure and F-

measure. Moreover F-measure is intuitively more appealing to 

testers and more realistic and informative from a practical 

point of view. Therefore, F-measure is chosen for measuring 

testing techniques in this research work. 
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1. INTRODUCTION 
Software testing proves the various effective ways to ensure 

the software quality. Consequently it is necessary to realize 

the automation of testing activity to improve the efficiency. 

Software testing is the process of finding errors [1]. Instead 

testing generates test suites to maximize the probability of 

fault detection [10].Test case generation is a process of 

selecting the data from input domain of the program. A 

successful test case might reveal the presence of failure [2]. 

 

The main merits of random testing [3] include the 

accessibility of efficient algorithms to generate test cases and 

infer the reliability with statistical measures. In all random 

testing, the rate of failure-causing inputs is used in the 

measurement of effectiveness. The test cases may be 

randomly chosen by uniform distribution or according to the 

operational problem [14].  

 

Random Testing does not use information about the program 

under test [8, 9]. Therefore, Adaptive Random Testing has 

been proposed for common failure patterns in terms of test 

cases to detect the failure. However, in recent study [4] it has 

been found that the performance of a partition testing strategy 

depends not only on the failure rate, it also on the geometric 

pattern of the failure-causing inputs. The new type of random 

testing is developed as adaptive random testing which shows 

that the effectiveness of random testing also it can be 

improved without incurring significant overheads rather than 

ordinary random testing.  

 

The test effort refers to complete set of testing is required for 

software development. The initial process carried out for 

writing test cases. It specifies functional specification, where 

the test manager creates a test plan. The test challenge can be 

divided into three categories namely test case generation, test 

execution and test evaluation. 

 

The chances of hitting failure patterns depend solely on the 

magnitude of the failure rate in random testing [7]. In order to 

inspect the non-point patterns both the strip and block 

patterns, the failure detection capability can be improved by 

minimum modification of the ordinary random testing 

technique using the proposed Partitioned Block ART. 
 

2. RELATED WORK 
New Adaptive Random Testing [3, 13] which is an alternative 

method for random testing to improve the failure detection 

through failure patterns. ART is based on empirical analysis 

which shows many program faults in failure contiguous areas. 

Towards the failure pattern identification by failure based 

testing results in 50% of the performance improvement.  

 

Adaptive Random testing through Dynamic Partitioning [11] 

is also to reduce the fixed cost of computations. DP-ART is 

inspired by partitioning testing, which incrementally divides 

the input domain to identify the sparsely populated partitions 

to serve as test case generation region, the two partitioning 

schemes, namely ART by Random Partitioning and ART by 

Bisection (B-ART).  

 

The approach [5] tries to construct test data such that a 

selected criterion, all-nodes-s criterion, gets satisfied. In 

contrast to that, particular values of fields in parts of the data 

structure that processes by corresponding tasks in a task tree 

cannot influence the order of execution. The order of 

execution of individual tasks is solely restricted by the task 

tree structure. Another difference between Structural testing 
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criteria for message-passing parallel programs and the 

definition of paths in matrix does not have a tree structure. It 

defines two kinds of paths, namely intra-process and inter-

process paths, whereas the proposed work defines a path in a 

matrix state with element positions.  

 

Under proportional allocation of tests to blocks, partition 

testing will always perform at least a simple random testing, 

in terms of variances of estimators and failure detection 

probability [12]. Moreover, partition testing may outperform 

adaptive random testing. Path-oriented test case generation is 

a simplest testing technique which performs the testing at path 

level [6]. The main goal of using PRT is to apply the principle 

of uniform selection, to the collection of test data that all 

trigger the same oath. The main challenge of PRT lies in its 

ability to build efficiently such a test suite in order to 

minimize the number of rejects. 

 

An effective test case generation using Anti Random Testing 

based on measurable distance technique for generating test 

cases which improves the fault detection capabilities [15]. It 

can be applied to all type of programs and it employs the 

location of previously executed test cases. The method is used 

to focus and apply on a program that has numerical input 

values.  
 

3. METHODOLOGY 
The proposed algorithm PB –ART performs the testing from 

the .NET Solution manifest file as shown in Fig1. Initially the 

.net solution file is loaded then the manifest file is read to get 

the internal program structure. With the program structure 

read the source code then test cases are generated. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Segmental flow of activities of PB-ART 

Test case generation is done by reading the manifest files 

program structure and then by finding the method flows, 

callbacks, data values which are used. Test cases are 

generated with the findings and it is stored in the A matrix. 

Then PB-ART process is carried out with partitioning the test 

cases to n X m matrix along with tagging of the test execution 

states. 

 

4. IMPLEMENTATION 
For performing the proposed PB-ART, the following steps are 

included. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Implementation of PB-ART 
 

4.1 Loading The .Net Solution File 
Test cases choose the collection of code mostly from texts 

related c# programs. Such texts not only tend to provide a 

large body of code in a single location, but can also be 

expected to use a wide range of the language features in the 

process of explanation. It contrast with sample applications, 

which provide attention to a subset of the language features, 

either the concentration on a particular domain of application 

or because of the coding method of various authors. Manifest 

file of the c# solution file is read and the method can be 

parsed through the manifest information. 
 

4.2 Generating Test Cases 
A test case is a set of possible inputs, conditions, expected 

results are developed for specific objective to exercise the 

program path and verify compliance with the respective 

requirements. The purpose of generating test cases is to 

identify and communicate conditions to implement in the test. 

Test cases are necessary to verify successful and acceptable 

implementation of the product requirements. It describes the 

following four-step process for generating test cases from 

detailed manifest file of the .NET Solution. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.  Algorithm1 for generating Test Cases 
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 Get test 

cases 

 

Generate 

PA  Matrix 

 

 

1. Loading the .NET Solution Manifest file 

2. For each manifest file, generate a full set 

of test case scenarios. 

3. For each scenario, recognize at least one 

test case and the conditions that will make 

it execute. 

4. For each test case, identify the data values 

with which to test. 

5. Execute the test cases using PB-ART 

 

 

 

Initialize matrix A, M, d=0 

load the manifest file into M 

for each method description d in  M 

GenTest(); // call the gentlest method 

Output test cases returned into Matrix A 

End for 

GenTest() 

get the test method 

iftc>0 

identify main and alternate flows of the function 

get the scenarios 

find data values 

mark the test case 

return the test case 

end if 
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Step 1: Generate fragment Matrix 

Read the manifest file as textual description and identify each 

combination of main and alternate flows, the scenarios which 

follows the creation of a fragment matrix. The Table 1 

indicates the partial fragment matrix for the input file with 

.Net Solution. This is a simple example to explain the PB-

ART. 

TABLE 1: Partial fragment Matrix for the Loaded 

.NET Solution 
Scenario 1 –Database insertion Basic Flow 

Scenario 2 –Session Creation Basic Flow  

Scenario 3 –Session Ending Basic Flow  

Scenario 4 –Bulk Database fetch Basic Flow  

Scenario 5 – Modify User Interface Basic Flow 

Scenario 6 – Connection Check Basic Flow  

Step 2: Identify Test Cases 
The possible sets of scenarios have been identified, followed 

by test cases are generated by analyzing the scenarios and 

reviewing the use cases of textual description. At least one 

test case is mandatory for each scenario, but there will 

probably be more. The textual description for an alternate 

flow is written as description like, 

Connection timeout, session failure and fetch dataset 
Thereby the additional test cases may be required to test all 

the possibilities. In addition add test cases to test boundary 

conditions. The test cases are to re-read the manifest file 

textual description and find as the conditions with data 

elements to execute the various scenarios.  

To create a document for the test cases, a matrix format is 

iterated as the one in Table 2. The top column of the first 

column contains the test case ID, the second row has a brief 

description of the test case, including the scenario being tested 

and all other rows except the last one contain data elements 

that will be used in implementing the tests. The last row 

contains a description of expected output. 

In this matrix no data values have actually been entered. The 

cells of the table contain a V, I, or N/A. V indicates valid, I is 

for invalid, and N/A means that it is not necessary to supply a 

data value in this case. This specific matrix is a first-rate 

intermediate step it clearly shows what conditions are being 

tested for each test case. It is also very easy to determine by 

looking at the Vs and Is whether it identify a sufficient 

number of test cases. In addition to the executed scenarios in 

which everything works fine, each row in the matrix should 

have at least one I indicating an invalid condition being tested 

in the test case matrix. 

         Table 2: Test Cases with Results 
Test Case 

ID 
T1 T2 T3 T4 

Condition 
Button 

Click 

Session 

Creatio
n 

Fetch 

Data 

Sessio

n End 

User 

Selection 
V N/A I N/A 

Prerequis

ites 

Fulfilled 

V N/A N/A N/A 

UI Access V N/A V V 

Database 

Access 
V V N/A N/A 

Expected 

Result 

 

Load the 
User 

interface 

Fetch 
the 

Dataset 

Displa

y the 

Result 
in UI 

Return 

to 

login 
page 

 

Step 3: Identify Data Values to Test 

The test cases have been identified, reviewed and validated to 

ensure the accuracy and to identify redundant or missing test 

cases. Then, once they are approved, the final step is to 

substitute actual data values for the Is and Vs. Without test 

data, test cases it cannot be implemented or executed, they are 

just descriptions of conditions, scenarios, and paths. 

Therefore, it is necessary to identify actual values to be used 

in implementing the final tests. Load all the test cases in to 

matrix A. 

 

TEST METHODS A= {A1, 1, A1,2 …Ai,j}. 
 

4.3 Performing PB-Art Testing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Algorithm2   PB-Art Testing 

List partition of a set PA is a division of A into non-

overlapping and non-empty parts or blocks that cover all of 

PA. More formally, these blocks are both collectively 

exhaustive and mutually exclusive with respect to the set 

being partitioned. 

Given a PA set of testable methods, let be a matrix PAi,j where 

is a pre-test estimate of the probability of encountering a 

failure while executing the code to achieve transition from 

state-i to state-j, while traversing of (i,j) it may be used to 

automatically partition the test cases of all possible uses . 

TEST METHODS PA= {PA1, 1, PA1,2 … PAi,j} 

 

The list PA = {PA1, 1, PA1, 2 …… PAi,j} is made more 

precise for an n by m matrix M by partitioning n into a 

collection test block rowgroups, and then partitioning m into a 

collection test method colgroups. The original matrix is then 

considered as the total of the test method groups, in the sense 

that the (i,j) entry of the original matrix corresponds in a one 

to one and onto way to some (s,t) offset entry of some (x ,y), 

where x € colgroups and y € colgroups. 

 

1. Initialize matrix PA. 

2. for each test case in A 

3. generate test block in to row group  n 

4. partition row group n into column group m 

with test methods 

5. for each n X m groups  

6. mark each test methods with states i and j // 

i for non tested, j for tested method.  

7. Add to PA matrix 

8. Execute PerTest(PA) 

9. Output test cases with test patterns 

10. end for 

11. end for 

12. PerTest(PA) 

13. for each n X m groups  

14. get the mid value 

15. perform test for the test case  

16. if failure pattern return skip 

17. else return success 

18. end for 
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𝑷𝑨  =  

𝑷𝑨 (𝟏,𝟏) 𝑷𝑨(𝟏,𝟐) … … 𝑷𝑨(𝟏,𝒏)
𝑷𝑨(𝟐,𝟏) 𝑷𝑨(𝟐,𝟐) … … 𝑷𝑨(𝟏,𝒏 − 𝟏)

… … … … …
𝑷𝑨(𝒏 − 𝟏,𝟏) … … 𝑷𝑨(𝟐,𝟏) 𝑷𝑨(𝟐,𝟏)

  

 

4.4 Performance Evaluation  
The experiments are executed to investigate the failure-

detection capabilities as well as the cost effectiveness of PB-

ART on the continuous testing domain and compare them 

with other existing methods. 

 

The P-measure and the E-measure are most commonly used 

measures to evaluate testing effectiveness. The P-measure is 

defined as the probability that at least one failure is detected 

with a specified test set. The E-measure denotes the expected 

number of failures detected by the test set. Both measures are 

evaluated under the predefined set of test cases. When 

evaluating P-measure and E-measure, we need to prepare the 

set of test cases without any test execution. 

 

On the other hand, the dynamic testing strategies like ART 

and our methods utilize the test outcomes to generate 

subsequent test cases. In other words, we cannot make the set 

of test cases before executing test cases. 

 

Hence the P- and E-measures are not appropriate to compare 

dynamic testing strategies. The F-measure as an alternative 

measure to evaluate performance of dynamic testing 

strategies, which is defined as the number of test cases needed 

to detect the first failure. The research work also applies the F-

measure to compare our proposed methods with existing ART 

testing strategies. 
 

5. RESULT EVALUATION 
In this section, an empirical investigation was conducted to 

compare the performance between adaptive random testing 

and ordinary random testing, using the F-measure as the 

effectiveness metric, which is defined as the expected number 

of test cases required to detect the first failure. In the proposed 

work Fart and Fpbart are used to denote the F-measures for 

the adaptive random testing and Partitioned block random 

testing respectively.     

Table III: F-measure Values of Fart and Fpbart 
Program 

ID 
Functions 

Test 

cases 
A PA Fart Fpbart 

P1 15 15 
2*1

0 
2*10 557.96 538.43 

P2 24 24 3*8 3*8 636.19 612.83 

P3 32 32 4*5 4*5 661.78 640.23 

P4 43 43 9*3 9*3 802.17 792.62 

P5 56 56 6*9 6*9 1230.76 1218.94 

 
The empirical study uses a set of 5 error-seeded programs. 

They are all published programs which are written in C# with 

program sizes ranging from 30 to 200 statements Table 3 lists 

the details of the failure rate, type and number of seeded 

errors for each program. 

 

 
 

Figure 5. F-measure values of the ART and PB-ART 

Figure 5 shows the evaluation result of Adaptive random 

testing and partitioned block adaptive random testing 

techniques using F-measure. Experiment carried out using the 

example programs with test programs. Y axis shows the F-

measure numerical values and x axis shows the test programs 

used. Results show PB-ART outperforms ART technique in 

F-measure experimental values. 
 

6. CONCLUSION 
It is a critical problem in the field of software testing to 

generate test data with high fault-revealing capability. Chen et 

al proposed an improved strategy adaptive random testing to 

overcome this shortage. Besides, it can infer reliability and 

statistical estimates. Since random testing does not make use 

of any information to generate test cases, it may not be a 

powerful testing method and its performance is solely 

dependent on the magnitude of failure rates. 

 

Based on this intuition, the research work proposes a modified 

version of random testing called Partitioned Block based 

Adaptive Random Testing. An empirical analysis of 5 

published Programs has shown that Partitioned Block 

Adaptive Random Testing outperforms Adaptive Random 

Testing significantly for most of the cases. 

 

The experimental results have been providing evidences that 

the intuition of spreading test cases more evenly within the 

input space is potentially very useful. Nevertheless, there are a 

number of issues of Partitioned Block based Adaptive 

Random Testing that need to be considered, such as various 

criteria of evenly spreading of test cases  ways of defining the 

candidate sets. It anticipates that analysis of these issues 

would further improve the effectiveness of Partitioned Block 

based Adaptive Random Testing.   
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