
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

11

Fragment Analysis and Test Case Generation using F-

Measure for Adaptive Random Testing and Partitioned

Block based Adaptive Random Testing

D. Indhumathi
Research Scholar

Department of Information Technology
Bharathiar University

Coimbatore, India

S. Sarala, Ph. D

Assistant Professor
Department of Information Technology

Bharathiar University
Coimbatore, India

ABSTRACT
Test case generation is a path to identify the solution in

software testing. Adaptive random testing is an enhancement

of random testing to improve the quality of fault-revealing.

The research focuses on software adaptive random testing

based on Matrix called Partitioned Block based Adaptive

Random Testing. It compares the performance of PBART

with the existing Adaptive random testing using random

samples of test cases which are drawn from blocks of distinct

partitions. Partition testing defines as a block of test cases

partitioned into set of all test cases. Thereby it has prompted

to investigate the performance of random testing that can be

improved by taking the patterns of failure-causing inputs

which utilizes the prior knowledge and the information of the

test cases. The proposed algorithm PB –ART performs the

testing of program structure and load the source code to

matrix with scenarios, method flows and data values. In

numerical experiments, the approach examines effectiveness

of PB-ART with ordinary adaptive random testing. There

exist three measures for evaluating the effectiveness of a

testing technique namely P-measure, E-measure and F-

measure. Moreover F-measure is intuitively more appealing to

testers and more realistic and informative from a practical

point of view. Therefore, F-measure is chosen for measuring

testing techniques in this research work.

KEYWORDS
Adaptive random testing, Partition testing, Test case

generation, failure pattern, fault detection.

1. INTRODUCTION
Software testing proves the various effective ways to ensure

the software quality. Consequently it is necessary to realize

the automation of testing activity to improve the efficiency.

Software testing is the process of finding errors [1]. Instead

testing generates test suites to maximize the probability of

fault detection [10].Test case generation is a process of

selecting the data from input domain of the program. A

successful test case might reveal the presence of failure [2].

The main merits of random testing [3] include the

accessibility of efficient algorithms to generate test cases and

infer the reliability with statistical measures. In all random

testing, the rate of failure-causing inputs is used in the

measurement of effectiveness. The test cases may be

randomly chosen by uniform distribution or according to the

operational problem [14].

Random Testing does not use information about the program

under test [8, 9]. Therefore, Adaptive Random Testing has

been proposed for common failure patterns in terms of test

cases to detect the failure. However, in recent study [4] it has

been found that the performance of a partition testing strategy

depends not only on the failure rate, it also on the geometric

pattern of the failure-causing inputs. The new type of random

testing is developed as adaptive random testing which shows

that the effectiveness of random testing also it can be

improved without incurring significant overheads rather than

ordinary random testing.

The test effort refers to complete set of testing is required for

software development. The initial process carried out for

writing test cases. It specifies functional specification, where

the test manager creates a test plan. The test challenge can be

divided into three categories namely test case generation, test

execution and test evaluation.

The chances of hitting failure patterns depend solely on the

magnitude of the failure rate in random testing [7]. In order to

inspect the non-point patterns both the strip and block

patterns, the failure detection capability can be improved by

minimum modification of the ordinary random testing

technique using the proposed Partitioned Block ART.

2. RELATED WORK
New Adaptive Random Testing [3, 13] which is an alternative

method for random testing to improve the failure detection

through failure patterns. ART is based on empirical analysis

which shows many program faults in failure contiguous areas.

Towards the failure pattern identification by failure based

testing results in 50% of the performance improvement.

Adaptive Random testing through Dynamic Partitioning [11]

is also to reduce the fixed cost of computations. DP-ART is

inspired by partitioning testing, which incrementally divides

the input domain to identify the sparsely populated partitions

to serve as test case generation region, the two partitioning

schemes, namely ART by Random Partitioning and ART by

Bisection (B-ART).

The approach [5] tries to construct test data such that a

selected criterion, all-nodes-s criterion, gets satisfied. In

contrast to that, particular values of fields in parts of the data

structure that processes by corresponding tasks in a task tree

cannot influence the order of execution. The order of

execution of individual tasks is solely restricted by the task

tree structure. Another difference between Structural testing

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

12

criteria for message-passing parallel programs and the

definition of paths in matrix does not have a tree structure. It

defines two kinds of paths, namely intra-process and inter-

process paths, whereas the proposed work defines a path in a

matrix state with element positions.

Under proportional allocation of tests to blocks, partition

testing will always perform at least a simple random testing,

in terms of variances of estimators and failure detection

probability [12]. Moreover, partition testing may outperform

adaptive random testing. Path-oriented test case generation is

a simplest testing technique which performs the testing at path

level [6]. The main goal of using PRT is to apply the principle

of uniform selection, to the collection of test data that all

trigger the same oath. The main challenge of PRT lies in its

ability to build efficiently such a test suite in order to

minimize the number of rejects.

An effective test case generation using Anti Random Testing

based on measurable distance technique for generating test

cases which improves the fault detection capabilities [15]. It

can be applied to all type of programs and it employs the

location of previously executed test cases. The method is used

to focus and apply on a program that has numerical input

values.

3. METHODOLOGY
The proposed algorithm PB –ART performs the testing from

the .NET Solution manifest file as shown in Fig1. Initially the

.net solution file is loaded then the manifest file is read to get

the internal program structure. With the program structure

read the source code then test cases are generated.

Figure 1. Segmental flow of activities of PB-ART

Test case generation is done by reading the manifest files

program structure and then by finding the method flows,

callbacks, data values which are used. Test cases are

generated with the findings and it is stored in the A matrix.

Then PB-ART process is carried out with partitioning the test

cases to n X m matrix along with tagging of the test execution

states.

4. IMPLEMENTATION
For performing the proposed PB-ART, the following steps are

included.

Figure 2. Implementation of PB-ART

4.1 Loading The .Net Solution File
Test cases choose the collection of code mostly from texts

related c# programs. Such texts not only tend to provide a

large body of code in a single location, but can also be

expected to use a wide range of the language features in the

process of explanation. It contrast with sample applications,

which provide attention to a subset of the language features,

either the concentration on a particular domain of application

or because of the coding method of various authors. Manifest

file of the c# solution file is read and the method can be

parsed through the manifest information.

4.2 Generating Test Cases
A test case is a set of possible inputs, conditions, expected

results are developed for specific objective to exercise the

program path and verify compliance with the respective

requirements. The purpose of generating test cases is to

identify and communicate conditions to implement in the test.

Test cases are necessary to verify successful and acceptable

implementation of the product requirements. It describes the

following four-step process for generating test cases from

detailed manifest file of the .NET Solution.

Figure 3. Algorithm1 for generating Test Cases

 .NET Solution File

Manifest File Reading

Testing Process

Test Results

Test Case Generation

 Get

Scenarios

Generate

Test Case

Matrix A

Partitioned Block ART

 Get test

cases

Generate

PA Matrix

1. Loading the .NET Solution Manifest file

2. For each manifest file, generate a full set

of test case scenarios.

3. For each scenario, recognize at least one

test case and the conditions that will make

it execute.

4. For each test case, identify the data values

with which to test.

5. Execute the test cases using PB-ART

Initialize matrix A, M, d=0

load the manifest file into M

for each method description d in M

GenTest(); // call the gentlest method

Output test cases returned into Matrix A

End for

GenTest()

get the test method

iftc>0

identify main and alternate flows of the function

get the scenarios

find data values

mark the test case

return the test case

end if

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

13

Step 1: Generate fragment Matrix

Read the manifest file as textual description and identify each

combination of main and alternate flows, the scenarios which

follows the creation of a fragment matrix. The Table 1

indicates the partial fragment matrix for the input file with

.Net Solution. This is a simple example to explain the PB-

ART.

TABLE 1: Partial fragment Matrix for the Loaded

.NET Solution
Scenario 1 –Database insertion Basic Flow

Scenario 2 –Session Creation Basic Flow

Scenario 3 –Session Ending Basic Flow

Scenario 4 –Bulk Database fetch Basic Flow

Scenario 5 – Modify User Interface Basic Flow

Scenario 6 – Connection Check Basic Flow

Step 2: Identify Test Cases
The possible sets of scenarios have been identified, followed

by test cases are generated by analyzing the scenarios and

reviewing the use cases of textual description. At least one

test case is mandatory for each scenario, but there will

probably be more. The textual description for an alternate

flow is written as description like,

Connection timeout, session failure and fetch dataset
Thereby the additional test cases may be required to test all

the possibilities. In addition add test cases to test boundary

conditions. The test cases are to re-read the manifest file

textual description and find as the conditions with data

elements to execute the various scenarios.

To create a document for the test cases, a matrix format is

iterated as the one in Table 2. The top column of the first

column contains the test case ID, the second row has a brief

description of the test case, including the scenario being tested

and all other rows except the last one contain data elements

that will be used in implementing the tests. The last row

contains a description of expected output.

In this matrix no data values have actually been entered. The

cells of the table contain a V, I, or N/A. V indicates valid, I is

for invalid, and N/A means that it is not necessary to supply a

data value in this case. This specific matrix is a first-rate

intermediate step it clearly shows what conditions are being

tested for each test case. It is also very easy to determine by

looking at the Vs and Is whether it identify a sufficient

number of test cases. In addition to the executed scenarios in

which everything works fine, each row in the matrix should

have at least one I indicating an invalid condition being tested

in the test case matrix.

 Table 2: Test Cases with Results
Test Case

ID
T1 T2 T3 T4

Condition
Button

Click

Session

Creatio
n

Fetch

Data

Sessio

n End

User

Selection
V N/A I N/A

Prerequis

ites

Fulfilled

V N/A N/A N/A

UI Access V N/A V V

Database

Access
V V N/A N/A

Expected

Result

Load the
User

interface

Fetch
the

Dataset

Displa

y the

Result
in UI

Return

to

login
page

Step 3: Identify Data Values to Test

The test cases have been identified, reviewed and validated to

ensure the accuracy and to identify redundant or missing test

cases. Then, once they are approved, the final step is to

substitute actual data values for the Is and Vs. Without test

data, test cases it cannot be implemented or executed, they are

just descriptions of conditions, scenarios, and paths.

Therefore, it is necessary to identify actual values to be used

in implementing the final tests. Load all the test cases in to

matrix A.

TEST METHODS A= {A1, 1, A1,2 …Ai,j}.

4.3 Performing PB-Art Testing

Figure 4. Algorithm2 PB-Art Testing

List partition of a set PA is a division of A into non-

overlapping and non-empty parts or blocks that cover all of

PA. More formally, these blocks are both collectively

exhaustive and mutually exclusive with respect to the set

being partitioned.

Given a PA set of testable methods, let be a matrix PAi,j where

is a pre-test estimate of the probability of encountering a

failure while executing the code to achieve transition from

state-i to state-j, while traversing of (i,j) it may be used to

automatically partition the test cases of all possible uses .

TEST METHODS PA= {PA1, 1, PA1,2 … PAi,j}

The list PA = {PA1, 1, PA1, 2 …… PAi,j} is made more

precise for an n by m matrix M by partitioning n into a

collection test block rowgroups, and then partitioning m into a

collection test method colgroups. The original matrix is then

considered as the total of the test method groups, in the sense

that the (i,j) entry of the original matrix corresponds in a one

to one and onto way to some (s,t) offset entry of some (x ,y),

where x € colgroups and y € colgroups.

1. Initialize matrix PA.

2. for each test case in A

3. generate test block in to row group n

4. partition row group n into column group m

with test methods

5. for each n X m groups

6. mark each test methods with states i and j //

i for non tested, j for tested method.

7. Add to PA matrix

8. Execute PerTest(PA)

9. Output test cases with test patterns

10. end for

11. end for

12. PerTest(PA)

13. for each n X m groups

14. get the mid value

15. perform test for the test case

16. if failure pattern return skip

17. else return success

18. end for

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

14

𝑷𝑨 =

𝑷𝑨 (𝟏,𝟏) 𝑷𝑨(𝟏,𝟐) … … 𝑷𝑨(𝟏,𝒏)
𝑷𝑨(𝟐,𝟏) 𝑷𝑨(𝟐,𝟐) … … 𝑷𝑨(𝟏,𝒏 − 𝟏)

… … … … …
𝑷𝑨(𝒏 − 𝟏,𝟏) … … 𝑷𝑨(𝟐,𝟏) 𝑷𝑨(𝟐,𝟏)

4.4 Performance Evaluation
The experiments are executed to investigate the failure-

detection capabilities as well as the cost effectiveness of PB-

ART on the continuous testing domain and compare them

with other existing methods.

The P-measure and the E-measure are most commonly used

measures to evaluate testing effectiveness. The P-measure is

defined as the probability that at least one failure is detected

with a specified test set. The E-measure denotes the expected

number of failures detected by the test set. Both measures are

evaluated under the predefined set of test cases. When

evaluating P-measure and E-measure, we need to prepare the

set of test cases without any test execution.

On the other hand, the dynamic testing strategies like ART

and our methods utilize the test outcomes to generate

subsequent test cases. In other words, we cannot make the set

of test cases before executing test cases.

Hence the P- and E-measures are not appropriate to compare

dynamic testing strategies. The F-measure as an alternative

measure to evaluate performance of dynamic testing

strategies, which is defined as the number of test cases needed

to detect the first failure. The research work also applies the F-

measure to compare our proposed methods with existing ART

testing strategies.

5. RESULT EVALUATION
In this section, an empirical investigation was conducted to

compare the performance between adaptive random testing

and ordinary random testing, using the F-measure as the

effectiveness metric, which is defined as the expected number

of test cases required to detect the first failure. In the proposed

work Fart and Fpbart are used to denote the F-measures for

the adaptive random testing and Partitioned block random

testing respectively.

Table III: F-measure Values of Fart and Fpbart
Program

ID
Functions

Test

cases
A PA Fart Fpbart

P1 15 15
2*1

0
2*10 557.96 538.43

P2 24 24 3*8 3*8 636.19 612.83

P3 32 32 4*5 4*5 661.78 640.23

P4 43 43 9*3 9*3 802.17 792.62

P5 56 56 6*9 6*9 1230.76 1218.94

The empirical study uses a set of 5 error-seeded programs.

They are all published programs which are written in C# with

program sizes ranging from 30 to 200 statements Table 3 lists

the details of the failure rate, type and number of seeded

errors for each program.

Figure 5. F-measure values of the ART and PB-ART

Figure 5 shows the evaluation result of Adaptive random

testing and partitioned block adaptive random testing

techniques using F-measure. Experiment carried out using the

example programs with test programs. Y axis shows the F-

measure numerical values and x axis shows the test programs

used. Results show PB-ART outperforms ART technique in

F-measure experimental values.

6. CONCLUSION
It is a critical problem in the field of software testing to

generate test data with high fault-revealing capability. Chen et

al proposed an improved strategy adaptive random testing to

overcome this shortage. Besides, it can infer reliability and

statistical estimates. Since random testing does not make use

of any information to generate test cases, it may not be a

powerful testing method and its performance is solely

dependent on the magnitude of failure rates.

Based on this intuition, the research work proposes a modified

version of random testing called Partitioned Block based

Adaptive Random Testing. An empirical analysis of 5

published Programs has shown that Partitioned Block

Adaptive Random Testing outperforms Adaptive Random

Testing significantly for most of the cases.

The experimental results have been providing evidences that

the intuition of spreading test cases more evenly within the

input space is potentially very useful. Nevertheless, there are a

number of issues of Partitioned Block based Adaptive

Random Testing that need to be considered, such as various

criteria of evenly spreading of test cases ways of defining the

candidate sets. It anticipates that analysis of these issues

would further improve the effectiveness of Partitioned Block

based Adaptive Random Testing.

7. REFERENCES
[1] S. Sarala, “Defects Detection in Imperative Language

and C# Applications– Towards Evaluation Approach”,

Proceedings of the International Multi Conference of

Engineers and Computer Scientists, Vol , pp. 940-944,

2008.

[2] S. Sarala, S.Valli, “A Tool to Automatically Detect

Defects in C++Programs”, 7th international conference

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

n
u

m
e
r
ic

a
l

v
a

lu
e

Test Programs

Failure Pattern Fmeasure for ART

and PB-ART

Fart

Fpbart

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

15

on information technology, Springer-Verlag, Vol. 3356,

pp. 302-314, 2005.

[3] T.Y. Chen, H. Leung, and I.K. Mak, “Adaptive Random

Testing”, Springer-Verlag, Vol. 3321, pp. 320–329,

2005.

[4] T. Y. Chen, D. H. Huang, and Z. Q. Zhou, “Adaptive

random testing through iterative partitioning”, in

Proceedings of the 11th Ada-Europe International

Conference on Reliable Software Technologies, pp. 155-

166, 2006.

[5] S.R.S. Souza, S.R. Vergilio, P.S.L. Souza, A.S. Simao,

A.C. Hausen,” Structural testing criteria for message-

passing parallel programs”, Journal of Concurrency and

Computation Practice and Experience, Elsevier

Publication, pp. 1893–1916, 2008.

[6] Arnaud Gotlieb, Matthieu Petit , “A uniform random test

data generator for path testing”, Journal of Systems and

Software, Elsevier Publication, Vol.83 , pp. 2618–

2626,2010.

[7] TsongYueh Chen, Fei-ChingKuoHuai Liu “Enhancing

Adaptive Random Testing through Partitioning by Edge

and Centre”, Proceedings of the 18th Australian Software

Engineering Conference IEEE, 2007.

[8] K.-K. Lau, R. Banach, “Adaptive Random Testing by

Bisection with Restriction”, 7th international conference

on formal engineering methods, Springer-Verlag, pp.

251–263, 2005.

[9] W. Grieskamp, C. Weise, “Adaptive Random Testing by

Bisection and Localization”, 5th international workshop

on Formal Approaches to Software Testing, Springer-

Verlag, pp. 72–86, 2006.

[10] Borislav Nikolik, “Test Diversity”, Journal of

Information and software Technology, Elsevier

Publications, Vol. 48, pp. 1038-1094, 2006.

[11] Korosh Koochekian Sabor, Mehran Mohsenzadeh,

“Adaptive Random Testing Through Dynamic

Partitioning By Localization with Distance and Enlarged

Input Domain”, International Journal of Innovative

Technology and Exploring Engineering, Elsevier

Publications, ISSN: 2278-3075, Volume-1, Issue-6,

2012.

[12] K. Sayre, J.H. Poore, “Partition testing with usage

models”, Journal of Information and Software

Technology, Elsevier Publications, Vol. 42, pp. 845–

850, 2000.

[13] M. Popovic , I. Basicevic, “Test case generation for the

task tree type of architecture”, Journal of Information

and Software Technology, Elsevier Publications Vol. 52,

pp. 697–706 , 2010.

[14] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen,

John Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark

Harman, Mary Jean Harrold, Phil McMinn, “An

orchestrated survey of methodologies for automated

software test case Generation”, Journal of Systems and

Software, Elsevier Publications, Vol. 86, pp. 1978-

2001, 2013.

[15] Kulvinder singh, rakesh kumar, “Effective Test Case

Generation Using Antirandom software Testing”,

International Journal of Engineering Science and

Technology, Elsevier Publications, Vol. 2, pp. 6016-

6021, 2010.

IJCATM : www.ijcaonline.org

