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Abstract

Background: A number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have

been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such

class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule

disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the b-unit of tubulin

close to the interface with the a unit. We modelled the human tubulin b unit (chain D) protein and performed

docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity

enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated

statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as

the template and their activities were predicted.

Results: The G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation

coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness

of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI

(predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human

tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI.

Conclusions: The study provides an insight into the crucial structural requirements and the necessary chemical

substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The

two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent

leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic

candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and

microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.

Background
Tubulin inhibition has been considered a viable avenue for
drug development in cancer management for a very long
time [1-4]. It plays a major role in the formation of

microtubule assembly. Microtubules are polar cytoskeletal
filaments that either takes part in the formation of mitotic
spindle and interphase networks or more complex forma-
tions like ciliary axoneme, centrioles and basal bodies
[5-7]. Their disorientation, either through inhibition of
tubulin polymerization or by blocking microtubule assem-
bly, leads to metaphase arrest of cell division [8-10]. Col-
chicine, the most commonly used metaphase arrest agent,
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has a similar mode of action [11]. Apart from these, com-
bretastatin A-4 and the Catharanthus alkaloids vincristine
and vinblastine are also tubulin assembly inhibitors
[12,13]. Combretastatin A-4 phosphate was found to block
blood flow in capillaries supporting cancerous cells by
completely disrupting the endothelial cell integrity leading
to rapid tumor cell death [14,15]. These inhibitors lead to
microtubule disorganization and renders cell apoptosis
[16]. However, the use of these previously identified tubu-
lin inhibitors were restricted on account of excessive toxi-
city, drug resistance and scarce bioavailability [17-20].
Thus, development of novel tubulin assembly inhibitors is
the need of the hour.
A variety of chemical compounds are known to bind to

the a-b interfacial site of tubulin. These chemical com-
pounds can be grouped under following classes (a) group
targeting the lumenal site of a subunit i.e. taxol (b) group
stabilizing microtubule polymerization i.e. vinblastine and
(c) group targeting a-b interfacial site of tubulin that leads
to cell apoptosis i.e. colchicine [21-23]. We are interested
in the colchicine-like group of compounds for cancer
management. The present study is based on a class of
tubulin-inhibitors known as arylthioindoles that bind to
the colchicine-binding site of b-tubulin close to the inter-
face with a-tubulin. All the previous studies undertaken in
this respect involved Bos taurus tubulin protein assembly
comprising of chains A, B, C, D and E of which A and C
belong to the a unit and B and D belong to the b unit
[24,25]. Many previously known tubulin inhibitors con-
sisted of the indole nucleus in the core structure and
hence are touted to be one of the most potent compounds
against tubulin polymerization [17,26]. Arylthioindoles
were also found to be potent inhibitors of the growth of
MCF-7 human breast carcinoma cells [19].
Development of accurate and time effective drug dis-

covery techniques is the need of the hour to propagate
search for novel anti-tumorals. Exploiting one of the
recent and innovative approaches known as fragment
based group quantitative structure activity relationship
(G-QSAR) [27], the relationship between different mole-
cular fragments and their biological activity can be cor-
related and studied in detail giving site-specific clues for
modification [28]. Such modifications in terms of substi-
tuents added or removed lead to activity enhancement.
The knowledge of such modifications is based on var-
ious molecular descriptors calculated and used for G
QSAR model construction. Various such studies have
been reported and have proved to be very useful
[29-31], many of them to discover cancer therapeutics
[32]. These descriptors are calculated for various frag-
ments defined by the user. The optimal subset of
descriptors is chosen by any one of the variable selec-
tion methods which are most likely to describe all the
physicochemical properties of the congeneric series

required for their biological activity. Thus, it gives a bet-
ter idea about which substitution site should be popu-
lated with which particular substituent for activity
enhancement [33].
In this study, we search for tubulin inhibitors having a

similar binding mode as that of colchicine at the a-b inter-
facial site. Arylthioindole moiety is known to be a potent
anti-tubulin agent and has been studied very often for its
anti-cancer properties but drug toxicity and less bioavail-
ability were the problems encountered [34]. In order to
exploit this avenue further, we created a robust, accurate
and predictive G-QSAR model to enhance our under-
standing of arylthioindole derivatives as anti-cancer com-
pounds in terms of structural requirements needed for
drug development. Based on the G-QSAR model, we iden-
tified novel therapeutic compounds with improved tubulin
assembly inhibition and potent anticancer activities. The
compounds were validated for their interactive properties
with the colchicine binding site of tubulin by docking ana-
lysis. The resultant top two compounds were also evalu-
ated for their absorption, distribution, metabolism,
excretion and toxicity (ADMET) properties.

Materials and methods
Compound dataset for model development

In this study, a congeneric series of 42 tubulin inhibitors
belonging to the arylthioindole class of compounds
[20,35] were selected for G-QSAR model development.
Due to higher root-mean-square-deviation (RMSD)
values, 6 compounds (6b, 15, 20b, 24, 28 and 41b in
Additional file 1) were rejected and the model was built
using 36 arylthioindole derivatives. The 2D structures
were drawn using Marwin Sketch [36]. They were con-
verted to 3D by Vlife Engine platform of VLifeMDS and
later energy minimized using the force field batch mini-
mization utility with default parameters [37]. These opti-
mized compounds were finally used for G-QSAR model
development. The template is used as a structural moi-
ety common to all the compounds of the congeneric
dataset with the substitution sites marked by unknown
(dummy) atoms. In this case there were six substitution
sites, depicted by R1 to R6 in the template.

Computation of Molecular Descriptors

After selecting the congeneric set of molecules and the
template for model development, physicochemical
descriptors were calculated using the calculate descriptors
dialog of the G-QSAR module in VLife MDS. The soft-
ware provides a large number of molecular descriptors
belonging to the 2-dimensional and 3-dimensional classes.
In case of Group QSAR, 2D descriptors are selected. All
descriptors were chosen except dipole moment, electro-
static, semi-empirical and hydrophobicity as they are 3D
descriptors and Information Theory-based descriptors. In

Tyagi et al. BMC Genomics 2014, 15(Suppl 9):S3

http://www.biomedcentral.com/1471-2164/15/S9/S3

Page 2 of 12



G-QSAR, a variety of descriptors along with alignment
independent descriptors for the fragments were calculated.
Of the total 1027 descriptors calculated for all the six sub-
stitution sites, 298 were selected and the invariable
descriptors were removed. Invariable descriptors are those
which have same quantitative value for each data-point
and thus should be discarded for their inefficacy in G-
QSAR model development.

G-QSAR model development

For data selection using the advanced data selection

wizard, the training and test set compounds were chosen
after selecting the activity pIC50 as dependent variable
and all the calculated descriptors as independent variables.
The test set including the compounds 10, 14, 18, 21, 22,
27b, 29, 30, 31, 35b (available in Additional file 1) was
selected using random selection method with 80% com-
pounds in the training set. After calculating the unicolumn
statistics for the selected training and test set molecules,
the stepwise-forward variable selection method along with
PLS (Partial Least Square) [38] as the regression method
for building the model was chosen through the variable

selection and model building wizard. Keeping the cross-
correlation limit set at 0.5, Ftest In at 4.0, Ftest Out at 3.0,
term selection criteria being r2, variance cut-off at 0.1 with
auto-scaling, the model was built.

Model validation

Many statistical parameters like n (number of com-
pounds in regression), k (number of variables), degree of
freedom, optimum component (number of optimum
PLS components in the model), r2 (squared correlation
coefficient), F-test (Fischer’s value), q2 (cross-validated
correlation coefficient), pred_r2 (r2 for external test set),
Z score (randomisation test), best_ran_q2 (highest r2

value in the randomisation test) and best_ran_r2 (highest
r2 value in the randomisation test) need to be taken into
account to consider the model as a robust one. For a
model to be statistically significant, the following condi-
tions should be satisfied: r2, q2 > 0.6 and pred_r2 > 0.5.
Since, F-test gives an idea of the chances of failure of
the model, a value greater than 30 is considered to be
good. On the other hand, low standard error values
establish absolute quality of the model.

Internal and external validation

For internal validation using leave-one-out method, the
cross-validated coefficient, q2 is calculated using the
given equation:

q2 = 1 −

∑(yi−̂yi)
2

∑(yi−ymean)
2

where yi and ŷi are the actual and predicted activities
of the ith (i = 1-26 in Additional File 1) molecule in the
training set, respectively, and ymean is the average activity
of all the molecules in the training set.
For external validation, the pred_r2 value that gives an

account of the statistical correlation between predicted
and actual activities of the test set compounds was calcu-
lated as follows:

pred r2 = 1 −

∑(yi−̂yi)
2

∑(yi−ymean)
2

where yi and ŷi are the actual and predicted activities
of the ith molecule (i = 27-36 in Additional File 1) in
the test set, respectively, and ymean is the average activity
of all the molecules in the training set.
To avoid the risk of chance correlation, Y randomisa-

tion test was carried out by comparing the resultant lin-
ear model with those derived from random data set
[39]. Various models were built on random datasets
generated by rearranging the molecules in the training
set so as to compare them with the obtained G-QSAR
model on the basis of Z-score. A Z-score value is calcu-
lated by the following formula:

Z score =
(h − µ)

σ

where h is the q2 value calculated for the actual data
set, µis the average q2 and σ is the standard deviation
calculated for various models built on different random
data sets.

Combinatorial library generation

A combinatorial library was generated using the LeadGrow
module of VLife MDS using the template used before and
a list of substituent chemical groups to be added to only
three substitution sites R4, R5 and R6 based on the calcu-
lated descriptors. A library of 4257 compounds was cre-
ated by substituting electronegative and electropositive
atoms, alkyl groups, cyclic groups, aromatic rings and
other bulky groups. Their biological activities were pre-
dicted using the G-QSAR model obtained.

Protein modelling and ligand docking

In order to investigate the extent of interactions involved
between the most active compounds obtained from the
combinatorial library, these compounds were docked to
the homology modelled B-chain of tubulin protein using
Schrodinger’s Glide Module [40-42]. The homology model
was obtained using Modeller 9.11 [43-46] taking Bos

taurus tubulin B-chain [PDB ID: 1SA0] as the template
[12]. The resultant homology model was validated using
online PSVS suite [47] which comprises a number of
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software namely, DSSP [48,49], pdbStat (5.9), AutoAssign
[50], RPF Analysis [51,52], PDB validation server, Verify3D
(1.0) [53], ProsaII (2003) [54], PROCHECK (3.5.4) [55].
Along with these, Molprobity [56] programs and other
software are also present.
The tubulin homology model was optimized for docking

using Schrodinger’s protein preparation wizard [57]. A
total of 48 compounds were docked targeting the a-b
interfacial site of tubulin heterodimer. Glide works by
creating a cubic grid (20 Å side) around the user-specified
critical residues and directing the approaching ligand at
the specific site. Extra-precision (XP) docking was used to
screen compounds with high binding affinity for tubulin.
XP docking serves the purpose of correlating good poses
with good scores and discarding the false positives [58].
Screening of compounds by docking for potential candida-
ture as therapeutics has been a popular avenue in compu-
tational drug design [59-61]. The various interactions
involved between the highly active compounds were evalu-
ated using Ligplot [62].

Molecular Dynamics simulations of the modelled protein

and docked complexes

To obtain energetically stable conformation of the mod-
elled protein target and to get an insight into the stability
of protein-ligand complexes, molecular dynamic simula-
tions were carried out using Desmond Molecular
Dynamics module [63-65] of Schrodinger Maestro by
applying optimized Potentials for Liquid Simulations
(OPLS) all-atom force field 2005. Prepared protein-ligand
complexes were solvated with TI4P water model in a tri-
clinic periodic boundary box for MD simulations. To pre-
vent the direct interaction of protein complex with its own
periodic image a boundary box is created and distance
between protein complex and box wall is kept at 10 Å.
Steepest descent method was used to minimize the energy
of the prepared structures for a maximum of 5000 steps
till a threshold of 25 kcal/mol/Å is achieved, which was
then followed by Low-memory Broyden-Fletcher-Gold-
farb-Shanno quasi-Newtonian minimizer until a conver-
gence threshold of 1 kcal/mol/Å was met. Other
parameters were kept as default for system equilibration.
MD simulations were carried out for 10 ns at a constant
temperature of 300 K, pressure 1 atm and at time step of
2 femtoseconds (fs). Long range electrostatic interactions
were calculated using smooth particle mesh Ewald method
[66] which was occurring during the MD simulations and
coulombic short range interaction was calculated using a
cut-off scheme, with a cut-off radius of 9 Å for calculation.
The protein ligand complex was prepared for MD simula-
tions using the above mentioned parameters. MD Simula-
tion was then carried for a time period of 10 ns.
The root mean square deviation values (RMSD) for two

top scoring ligands were calculated for the entire

simulations trajectory with reference to their respective
first frames. Radius of gyration (ROG) analyses was carried
out for all the frames MD simulation of IkB kinase beta
and ligand complex.

Calculation of ADMET properties

The toxicity of final two compounds was evaluated using
the Quikprop module [67]of Schrodinger suite which pre-
dicts various molecular properties and also provides
ranges for comparing these properties with 95% of already
available drugs. The analysis was followed by a toxicity
analysis using an online webserver, admetSAR [68] which
reads the smiles format and results in a number of
ADMET values. AdmetSAR is a knowledge based tool
comprising of ADMET related properties taken from large
literatures which are further used to predict properties of
unknown compounds.

Results and discussion
G-QSAR model developed for arylthioindole derivatives

targeting a-b interfacial site of tubulin

We report a fragment based group QSAR model based on
a congeneric series of arylthioindole moiety as the tem-
plate targeting the a-b interfacial site of tubulin. Colchi-
cine is also known to bind at the same site, though
arylthioindoles were found to have much higher activity
than colchicine against tubulin polymerization. Inhibition
of tubulin polymerization can be a potent deterrent to cell
division and hence can be seen as an avenue in developing
cancer therapeutics. The tubulin D chain (b unit) structure
was modelled based on the close homologous protein
belonging to Bos taurus.
The G-QSAR model obtained can be represented by the

following linear equation:

pIC50 = (0.536788 × R4 − H Acceptor Count) + ( − 0.412083 × R6 − chi2) + (−0.538397 × R5 − slogp)

+(−0.365145 × R6 − NitrogensCount) + (0.00256203 × R6 − Molecular Weight) + 4.97922 (1)

where pIC50 is the negative logarithm of IC50 activity
values and was taken as the dependent variable in the
model development. A total of 6 substitution sites were
marked on the arylthioindole moiety which became the
basis of fragmenting the derivatives for model develop-
ment, of which 3 sites namely, R4, R5 and R6 were
taken into account. All 2D molecular descriptors are
calculated for each fragment generated. The five mole-
cular descriptors selected on which the model is based
are H Acceptor Count for the substitution site R4,
slogp for the site R5 and chi2, NitrogensCount and
Molecular Weight for the site R6. The multiplied
numerical terms associated with the descriptors are the
respective coefficients and the last numerical term is the
regression constant. Using the model generated, if the
values of these descriptors are known for novel com-
pounds, the biological activity in terms of pIC50 can be
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determined. Out of these, only R4-H Acceptor Count
and R6-Molecular Weight are positively contributing
to the biological activity and the rest are negatively
contributing. To determine the crucial structural fea-
tures required for good activity, these descriptors are
needed.
R4-H Acceptor Count: This descriptor signifies the

number of hydrogen bond acceptor atom and corre-
sponds to the R4 site which was originally substituted
by either hydrogen atom or oxymethyl (-OCH3) group
in the series taken for model development. As it is a
positive contributor, the presence of hydrogen bond
acceptor atoms renders high biological activity to the
molecule. The percentage of its contribution in enhan-
cing the biological activity was 33.877 %.
R6-chi2: In theoretical terms, this descriptor stands for

a retention index of second order which is derived
directly from gradient retention times. The retention
index of a chemical compound is the normalised reten-
tion time which is done to convert these into system
independent constants in chromatographic analysis. In
chromatography, retention time is the time required for
a solute to migrate or elute from the column and this
property depends upon the physical properties and
behaviour of the molecule. The descriptor was calcu-
lated for the substitution site R6 present on the indole
core and was mainly substituted by groups like hydro-
gen atom, halogens like Cl, I, Br, F and other groups
like NH2, NO2, CH3, OCH3, OCH2CH3, OCH(CH)3
etc. This descriptor contributed negatively to the biolo-
gical activity to an extent of 23.018 %.
R5-slogp: This descriptor also contributed negatively to

the biological activity up to an extent of 17.542% and cor-
responds to the substitution site R5. Slogp describes the
value of log of octanol/water partition coefficient (includ-
ing implicit hydrogens). It is an atomic property model
and calculates logP value from the correct protonation
state structure. The R5 site was mainly substituted with
hydrogen atoms or oxymethyl (-OCH3) groups.
R6-NitrogensCount: As the name suggests, this

descriptor stands for the number of nitrogen atoms pre-
sent in the compound. This physicochemical descriptor
contributes negatively to the activity of arylthioindole
derivatives by 15.952%. This suggests that a highly elec-
tronegative group, in this case, specifically nitrogen is
deterrent for the molecule’s activity if present at the R6
position. It should avoid a substitution involving nitro-
gen atoms.
R6-Molecular Weight: This descriptor signifies mole-

cular weight of the compound and is positively contri-
buting in the biological activities by 9.611%. This
indicates the importance of substituents with higher
molecular weight present at the R6 substitution site.

Model evaluation and validation of G-QSAR model

developed for arylthioindole derived compounds

Unicolumn statistics for the chosen training and test set

For model evaluation and validation the complete dataset
is divided into training set and test set. The developed
model is validated by predicting the inhibitory activity (in
terms of pIC50) of the training set (known as internal vali-
dation) and the test set (known as external validation).
The test set chosen can always be evaluated beforehand
using the unicolumn statistics (Table 1). The unicolumn
statistics can be interpreted in terms of the maximum and
minimum of training and test set. The min of test set
should be equal or more than the min of training set and
the max of the test set should be equal or less than the
max of training set. This data is in absolute compliance
with the conditions mentioned and shows that the test set
is interpolative (derived within the min-max range of the
training set). The relative difference of mean and point
density distribution (along mean) of the two sets can be
derived from the average and standard deviation. In this
case, as the average value in the test set is slightly higher
than the training set, the presence of relatively more active
molecules as compared to the inactive ones is indicated.
Also, a higher standard deviation for the training set indi-
cates that training set constitutes widely distributed activ-
ity of the molecules as compared to the test set.
Validation of the final G-QSAR model

The G-QSAR model is evaluated on the basis of certain
statistical parameters for both internal and external vali-
dation. The number of compounds in the training set
was specified by N which is 26. Considering the correla-
tion coefficient, r2 (0.8512), cross-validated correlation
coefficient q2 (0.7175), pred_r2 (0.8968), low standard
error value, r2_se (0.1363), q2_se (0.1878) and pred_r2_se
(0.1127), the model can be stated to be a robust one.
Along with this, a high F-test value (65.7699) implied
that the model is 99.999 % statistically valid with less
than 1 in 10000 chance of failure.
Also with this, the randomization test shows confidence

of 100% (Alpha Rand r2=0.00000) that the generated
model is not random and hence is chosen as the G-QSAR
model. Other important statistical parameters have been
determined and Z-score is highlighted to emphasize its
importance in QSAR model validation (Table 2). The
values of selected descriptors for each compound in the
dataset have been provided (Additional file 2). The Z score

Table 1 Unicolumn statistics for the training and test set

compounds.

Average Max Min Standard Deviation Sum

Training 5.2573 5.7900 4.7200 0.3389 136.69

Test 5.5700 5.6900 5.3800 0.0968 55.77
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gives an idea about how far away is the observed value
from the mean. A Zscore_r2 of 6.48008, Zscore_q2 of
4.73992 and Zscore_pred_r2 of 1.70900 statistically vali-
dates the significance of the obtained G-QSAR model. In
order to get a better idea of the validity of the model, p
values were determined for each correlation coefficient
using the corresponding Z scores. The P value_r2 and P
value_q2 of less than 0.0001 tells that the hypothesis is sta-
tistically significant. The P value_pred_r2 of 0.0875 is
although, not quite statistically significant.
The robustness of the model is better understood

through the linear graphical representation between
actual and predicted activities of the 36 compounds
along with the contribution plot for each descriptor
(Figure 1). The linear graphical representation shows the
extent of variation between the actual and predicted
activities of the congeneric set. The larger the distance
of training and test set points from the regression line,
more is the difference between the actual and the pre-
dicted activity values. The contribution of each descrip-
tor specifies the properties that should be present in the

drug lead for enhancing its inhibitory activity. Presence
of descriptors with positive contribution increases its
inhibitory activity while descriptors with negative contri-
bution decrease the same. Radar plots for training and
test sets are given (Figure 2). The radar graphs depict
the difference in the actual and predicted activities for
the training and the test sets separately by the extent of
overlap between blue (actual activity) and red (predicted
activity) lines. The radar plot for training set represents
a good r2 value if the two lines show a good overlap
while for the test set a good overlap represents high
pred_r2 value.

Activity prediction of combinatorial library generated

using arylthioindole moiety as template

A combinatorial library was constructed resulting in 4257
compounds after substituting the R4, R5 and R6 sites with
various chemical groups for which the descriptors were cal-
culated. The three sites R4, R5 and R6 were populated by
single atoms like N, C, O and halogens like Cl, F, Br and I,
by alkyl groups and aromatic rings like phenoxy, phenyl,
furan, pyrrole, pyridine, imidazole, 2-thiophene etc along
with alkenes, acids, aromatic rings, aliphatic rings and other
groups such as -O-CH3, -O-C2H5, amide, cyanide, cyanate,
isocyanate, -C=N, -N=C, azo, hydrazo, benz etc were also
added. The biological activities of these compounds were
predicted using the G-QSAR model. 48 arylthioindole deri-
vatives were further selected to obtain mechanistic insights
into their inhibitory properties based on high predicted
activity scores and extrapolation values. Ideally, the com-
pounds with extrapolation values being zero or close to
zero are considered good for further analysis. The com-
pound with the highest predicted activity score of 6.047,
temp0592 was substituted with an electronegative H-bond
acceptor NH2 group at the R4 site, a hydrogen atom at the
R5 site and a sulphur atom at the R6 site which has a mole-
cular weight of 32.065. It is heavier than CH2OH having a
molecular weight of 31.021 which was substituted at the
same site in temp0598 and has lower activity value of 6.042
as R6-Molecular Weight is a positively contributing
descriptor. Similarly, temp0596 goes further down on activ-
ity value as R6 site is substituted by the ethyl group and
hence having lesser molecular weight. The presence of H
bond Acceptor at the R4 site enhances the inhibitory activ-
ity of arylthioindole derivatives as in temp0592, temp1656,
temp2454 and many more. All these observations can be
summed up as the presence of an electronegative H bond
acceptor at the R4 site and a high molecular weight group

Table 2 The statistical parameters calculated for developed G-QSAR model.

Dep
Variable

ZScore
r2

ZScore
q2

Best Rand
r2

Best Rand
q2

Alpha Rand
r2

Alpha Rand
q2

Z Score Pred
r2

best Rand Pred
r2

alpha Rand Pred
r2

pIC50 6.4800 4.7399 0.3433 0.3414 0.00000 0.00003 1.7090 0.5865 0.05000

Figure 1 (a) Fitness Plot of the G-QSAR model obtained for actual

and predicted activities. (b) Contribution Plot of the selected

descriptors R4-H Acceptor Count, R6-chi2, R5-slogp, R6-

NitrogensCount and R6-Mol.Wt.
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at the R6 site enhances the activity of arylthioindoles. But
an increased slogp value at the R5 site, increased retention
index chi2 and nitrogen atom count at the R6 site decreases
the biological activity. These observations establish the
importance of such substituents at these sites to enhance
the tubulin inhibitory activity of arylthioindole derivatives.
The predicted activity values with respect to the three sub-
stitution sites R4, R5 and R6 have been provided for 20 top
scoring compounds (Table 3).

Evaluation of screened compounds docked against a-b

interfacial site of tubulin heterodimer

1. Validation of homology based model of human tubulin

The homology based protein structure of human tubu-
lin was validated using PSVS validation suite. The con-
formational shifts in the protein model encountered
after molecular dynamic simulations has been depicted
(Figure 3A). After obtaining the MD simulated struc-
ture, Ramchandran plot analysis was carried out to
find the percentage of amino acid residues falling in
the sterically allowed and disallowed regions. Accord-
ing to PROCHECK analysis, 90.4 % residues fall under
the most favoured regions and no residues in the disal-
lowed regions. Of the 431 residues, 34 were glycine

and 20 were proline and were analysed separately. A
model having over 90% residues falling in the favoured
region can be considered to be good one on account
of the analysis of 118 structures of resolution 2.0 Å.
Thus, the human tubulin model is a good one and can
be considered for further analysis. The Ramchandran
plot analysis using PROCHECK has been depicted
(Figure 3B). According Richardson’s Lab molprobity
analysis, 97 % of the residues fall under the favoured
regions and 0.2 % under the disallowed regions. Just
one outlier ASN347 was encountered. As Molprobity
analyses Glycine, Proline and pre-proline separately
owing to basic physicochemical differences in compari-
son to other amino acids, 4 different Ramchandran
plots are given (Figure 3C). The average PROCHECK
G factor value for phi-psi angles was -0.15 and for all
dihedral angles was -0.23. The G score is the log odds
score of observed distribution of torsion angles and
covalent geometries and quantifies the goodness of the
structure. The high the value of G score, better is that
dihedral angle in the structure in terms of falling
under the favourable regions in a Ramchandran plot.
As the average G score is negative, high number of
residues was seen having distortions in dihedral angles.
2. Screening of combinatorial library through docking and

evaluation of the top scoring compounds

The 48 compounds having high predicted activity values
chosen from the combinatorial library were docked
against the tubulin assembly targeting the a-b interfacial

Figure 2 Radar graphs plotting the predicted and actual activities

for (a) Training set and (b) Test set.

Table 3 Predicted activity values of the combinatorial

library with respect to R4, R5 and R6 site substitutions.

S. No. Compound R4 R5 R6 Predicted activity

1 temp0592 N O S 6.047

2 temp1656 OH O S 6.047

3 temp2454 phenoxy O S 6.047

4 temp3518 amine O S 6.047

5 temp1655 OH O P 6.047

6 temp2453 phenoxy O P 6.047

7 temp3783 -O-CH3 O P 6.047

8 temp0605 N O -O-CH3 6.042

9 temp1662 OH O OH 6.042

10 temp2467 phenoxy O -O-CH3 6.042

11 temp3531 amine O -O-CH3 6.042

12 temp3790 -O-CH3 O OH 6.042

13 temp4056 -O-C2H5 O OH 6.042

14 temp4063 -O-C2H5 O -O-CH3 6.042

15 temp3788 -O-CH3 O ethyl 6.037

16 temp4054 -O-C2H5 O ethyl 6.037

17 temp3521 amine O F 6.011

18 temp3787 -O-CH3 O F 6.011

19 temp4052 -O-C2H5 O O 6.006

20 temp3789 -O-CH3 O Methyl 6.001
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site of the homology based protein structure of tubulin
chain B. The top two compounds showing maximum
affinity for the colchicine binding site were selected.
Both the target-ligand complexes obtained were MD
simulated and their interactions observed. The first
compound with high affinity for tubulin, temp1662
named 5-(hydroxymethyl)-3-{[3-(hydroxymethyl) phenyl]

sulfanyl}-H-indol-2-ol (HPI) (Figure 4A) was involved in
both hydrogen and hydrophobic interactions. The O
atom of Pro243 formed a 2.72 Å long hydrogen atom
with O1 atom of HPI and the rest others like Phe242,
Gly244, Gln245, Leu246, Met323, Ala352, Val353,
Cys354 and Thr351 were found to be involved in hydro-
phobic interactions (Figure 5A). After performing MD
simulations in two slots of 10ns each, the stable average
structure was obtained from 10 to 20ns. New interaction
patterns could be seen post simulation with a 3.18 Å
long H bond formed between the S atom of HPI and N
atom of Gln245 which was involved in hydrophobic
interaction before MD simulations. HPI seemed to have
shifted from the earlier position owing to new hydro-
phobic interactions being formed including, Asn247,
Pro243, Thr238 and Cys239. Rest all interactions were

conserved with Leu246, gly244, Met323, Thr351,
Ala352, Val353 and Cys354 (Figure 5B).
The second compound temp3789 named 3-[(3-meth-

oxyphenyl) sulfanyl]-5-methyl-1H-indol-2-ol (MSI)

(Figure 4B) was also found to be involved in both
hydrogen bonds as well as hydrophobic interactions
with the colchicine binding site in the modelled human
tubulin protein. Leu246 and Thr351 were involved in
forming hydrogen bonds of distances 2.97 and 3.29 Å
respectively with MSI and Gly244, Gln245, Met323,
Lys350, Ala352 and Val353 were involved in hydropho-
bic bonding. The hydrogen bonds were formed between
Nitrogen atom of Lys246 with the O1 atom and Nitro-
gen atom of Thr351 with O2 atom of MSI (Figure 5C).
After MD simulations of 10 ns, the interactions were
seen to be reduced to hydrophobic interaction with
Met323, Gln245 and Val353 (Figure 5D). The RMSD
graphs for depicting the course of three MD simulations
i.e. tubulin homology model (Figure 6A), ligand com-
plexes with HPI (Figure 6B) and MSI (Figure 6C) have
been given. When compared to the interactions involved
between the most active arylthioindole derivative and
tubulin, similar mode of action was discovered forming
a 2.86Å long H-bond between N atom of Lys246 with

Figure 3 (a) Diagrammatic representation of structural differences

between the pre MD and post MD simulated homology based

model of human tubulin. (b) Ramchandran plot analysis from PSVS

PROCHECK module. (c) Ramchandran plot analysis from Richardson

lab’s Molprobity module for glycine, proline and pre-proline

separately and rest of the residues.

Figure 4 The structures of the two reported compounds (a) HPI

and (b) MSI.
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O1 atom of the reference compound. Hydrophobic
interactions were found to exist involving a few but
same residues as those involved with HPI and MSI
including Gly244, Gln245, Lys350, Ala352 and Val353
(Table 4). Thus, the two reported compounds HPI and

MSI bind to the same colchicine binding site at the a-b
interfacial cavity of the tubulin assembly and show good
binding affinity (Figure 7). The predicted activities of
HPI and MSI were 6.042 and 6.001 based on the G-
QSAR model and thus, are in absolute concurrence with
the docking results in terms of high binding affinity
with the tubulin assembly having similar mode of action
as that of colchicine but with much higher biological
activity than the most active compound of the congene-
ric series taken for this study.

ADMET analysis of the two top compounds, HPI & MSI

A total of 50 ADME properties were calculated using the
Quikprop module. The first property #star depicts the
number of properties that fall out of the similarity criteria
of 95% of known drugs. The values for HPI and MSI were
0 and 1 respectively and signify that no molecular property
of HPI falls out of the similarity criteria while only one cri-
terion falls out for MSI. Another property CNS (central
nervous system activity) ranging from -2 (inactive) to 2
(active) resulted in a value of -2 for HPI and zero for MSI.
QPlogBB is the predicted brain/blood partition coefficient
which had a value of -1.416 and -0.218 for HPI and MSI
respectively. Descriptors including SASA (solvent accessi-
ble surface area), its hydrophobic component FOSA (satu-
rated carbon and attached hydrogen) and hydrophilic
component FISA (N, O and H on heteroatoms) were also
predicted within the recommended ranges for both com-
pounds. The compound HPI had a value of 81.27% and
MSI had a value of 100% for percent human oral absorp-
tion descriptor. The predicted skin permeability factor
QPlogkp resulted in a value of -3.342 and -1.635 for the
two compounds HPI and MSI respectively. Another set of
descriptors including QPlogPC16 (Free energy of solvation
in hexadecane), QPlogPoct (Free energy of solvation in
octanol), QPlogPw (Free energy of solvation in water) give
the distribution of compounds in the body. QPlogPo/w
(Predicted octanol/water partition coefficient) is the parti-
tion coefficient that gives an idea of the hydrophobic nat-
ure of the chemical compounds and resulted in high
values of 2.244 and 4.197 for MSI and HPI respectively
suggesting their easy absorption through the lipid bilayer.
It also finds out the number of various chemical groups
present in the test compounds for e.g. amide, acid etc. The
ionization potential and electron affinities (in electron
Volts) for both the compounds were also obtained being
8.489 and 0.349 for HPI and 8.504 and 0.392 for MSI
respectively. Lastly, it also evaluated the two compounds
on the basis of Lipinski Rule-of-five and Jorgensen Rule-
of-three violations which resulted in zero violations for
both, HPI and MSI.
Certain other ADMET properties calculated by the

online server admetSAR have also been evaluated. The
absorption factors for HPI can be summarised in terms of

Figure 5 Diagrammatic representation of residues involved in

various interactions with (a) HPI (shown in orange) forming

hydrogen bond with Pro243 (purple) and residues involved in

hydrophobic interactions (shown in green) (b) The post MD

interactions of HPI showing one H bond with Gln245. (c) MSI

(shown in blue) forming hydrogen bonds with Gly244 and Thr351

(purple) and residues involved in hydrophobic interactions are

shown in orange. (d) The post MD interaction of MSI having no

hydrogen bonds.

Figure 6 The graphical depiction of RMSD trajectory of (a)

homology based tubulin model (from 0-10 ns) (b) target-HPI

complex (from 10-20 ns) and (c) target-MSI complex (from 0-10 ns).
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blood brain barrier (BBB), human intestinal absorption
(HIA) and CaCo2 permeability and resulted in a positive
value (value above the prescribed threshold suggesting
good permeability) with high probabilities. A compound
with >30% HIA is absorbed easily. Similarly, CaCo2 perme-
ability is taken as the in vitro model of human small intest-
inal mucosa as it provides a physical and biochemical
barrier to ions and small molecules and hence must be
tested for orally administered drugs. Under the metabolism
category, HPI was found to be a non-substrate for CYP450
2C9 and 2D6, substrate for CYP450 3A4, inhibitor for 1A2
and 2C9 and non-inhibitor for 2C19 and 3A4 and thus,

having a high cytochrome inhibitory promiscuity. Under
the toxicity category, it was found to be non-carcinogenic
but toxic for Fish, Tetrahymena and Honey Bee.
Similarly, MSI was also evaluated which resulted in posi-

tive BBB and HIA permeability but no CaCo2 permeabil-
ity. Under the metabolism category, it was found to be a
non-substrate for CYP450 2C9, 2D6 and 3A4, an inhibitor
of 1A2, 2C9 and 2C19 and non-inhibitor of CYP450 2D6
and 3A4 and thus, showed high cytochrome inhibitory
promiscuity like HPI. Under the toxicity category, it was
found to be non toxic for AMES test thus a non-carcino-
gen while having high toxicity for fish and honey bee but
no toxicity for Tetrahymena. Thus, MSI can be selected
for further evaluation as the drug candidate having low
toxicity values as predicted.

Conclusions
In this study, we reported a novel fragment-based group
QSAR approach exploiting the disintegration of tubulin
assembly leading to interruption in cell division and even-
tually apoptosis as a potent avenue in cancer management.
Tubulin heterodimers when assembled form the major
building blocks of microtubules and hence have important
functional role in maintaining cell structural integrity,
motility and division in terms of spindle fibre formation.
Inhibition of the tubulin formation is seen as a viable
option for deterring the growth of cancerous cells. The
arylthioindole moiety has been considered to be a potential
anti-tubulin compound having similar mode of action as
other agents involved in cell division arrest like colchicine
and combretastatin. A G-QSAR model can provide signifi-
cant results in terms of the crucial chemical fragments
required for enhancing the activity of an already present
template compound known to be inhibitory to our target
of interest. A statistically robust G-QSAR model with the
test set comprising 10 compounds out of a total of 36 com-
pounds gave an insight into the contribution of various
substitutions at the three sites R4, R5 and R6 for which 5
descriptors were calculated namely, R4-H AcceptorCount,
R6-chi2, R5-slogp, R6-NitrogensCount, R6-Molecular
Weight. A combinatorial library was created by varying
substituents at these sites and their activity was predicted
based on the model. All compounds having an electrone-
gative H-bond acceptor at the R4 site and a substituent
with high molecular weight at the R6 site were found to
have high activities (pIC50) while the presence of nitrogen

Figure 7 (a) Depiction of the complete Bos taurus tubulin assembly

comprising chains A, B, C, D and E of which A and C belong to the

a chain (shown in orange); B and D belong to the b chain (shown

in yellow). The modelled human tubulin b-chain has been

compared (in red) and the ligand is shown in blue bound at the

a-b interfacial colchicine binding site. (b) Depiction of the binding

modes of HPI (in blue) and MSI (in green) compared to the most

active arylthioindole derivative (in red) taken as the reference

compound and important residues (in cyan).

Table 4 Tubulin residues that are involved in hydrogen and hydrophobic interactions with HPI and MSI respectively in

comparison with the reference compound.

Hydrogen bonding Hydrophobic interactions

Most active arylthioindole derivative (reference) Leu246 Gly244, Lys350, Ala352, Val353

HPI Pro243 Phe242, Gly244, Gln245, Leu246, Ala352, Val353, Cys354, Met323, Thr351

MSI Leu246, Thr351 Met323, Lys350, Gln245, Gly244, Ala352, Val353
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atom at R6 site resulted in decrease of biological activity of
the arylthioindole derivatives. All highly active compounds
were docked at the colchicine binding a-b interfacial site
of the homology-based human tubulin chain B. After final
analysis of the binding affinities and interactions involved,
we reported two compounds, HPI and MSI with predicted
activities of 6.042 and 6.001respectively in terms of pIC50.
Out of the two, the second compound MSI promises to be
the first choice for further evaluation as the drug candi-
date, being less toxic in comparison to HPI. The present
study elucidated the crucial structural requirements to
enhance the anti-tubulin activity of arylthioindole deriva-
tives. The study provides a better understanding of the
inhibitory roles of the identified compounds in microtu-
bule disassembly and paves way for consideration of these
compounds as potent anticancer leads.
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