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ABSTRACT
Dynamic binary translation (DBT) has been used to achieve

numerous goals (e.g., better performance) for general-purpose

computers. Recently, DBT has also attracted attention for embed-

ded systems. However, a challenge to DBT in this domain is strin-

gent constraints on memory and performance. The translated code

buffer used by DBT may occupy too much memory space. This

paper proposes novel schemes to manage this buffer with scratch-

pad memory. We use footprint reduction to minimize the space

needed by the translated code, victim compression to reduce the

cost of retranslating previously seen code, and fragment pinning to

avoid evicting needed code. We comprehensively evaluate our

techniques to demonstrate their effectiveness.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and

Application-Based Systems - Real-time and Embedded Systems.

D.3.4 [Programming Languages]: Processors - Code Generation,

Compilers, Incremental Compilers, Interpreters, Optimization,

Run-time Environments. 

General Terms
Algorithms, Measurement, Performance, Design, Languages. 

Keywords
Dynamic Binary Translation, Embedded Systems, Scratchpad. 

1. INTRODUCTION
Dynamic binary translation (DBT) has gained much attention as a

powerful technique for constructing adaptive software [2, 3, 6, 21,

24]. DBT has led to new software capabilities, such as resource

virtualization, intrusion detection, performance improvement, and

instruction set migration. Although DBT has been widely applied

to general-purpose systems, recent work has shown several uses of

DBT for embedded systems, including power management [26],

security [17, 22], software caches [19], instruction set translation

[6] and memory management [23, 27]. 

While DBT is beneficial in embedded systems, the use of the tech-

nology has been limited in this domain due to tight constraints on

memory and performance. In particular, DBT systems typically

employ a software-managed memory buffer, called a fragment

cache (F$), to hold blocks of dynamically translated instructions

(called fragments). To ensure low runtime overhead, the fragment

cache is relatively large to hold an application’s translated code

working set, which avoids unnecessarily re-translating previously

seen code. A typical F$ can be several megabytes in size, which

may not fit in an embedded system’s limited memory resources. 

Many embedded systems, particularly those based on a system-on-

a-chip (SoC), have a small on-chip scratchpad memory (SPM).

The SPM may hold data, or possibly instructions. The advantage to

the scratchpad over external memory is its fast access time and low

power consumption. A typical SoC also employs Flash memory as

permanent storage to hold application code. The Flash memory is

unfortunately often quite slow and power hungry. When a program

is executed, it is loaded into external main memory to minimize

the costs associated with the Flash memory. 

Due to its fast access and low power consumption, the scratchpad

is potentially an appropriate resource to hold translated code in a

DBT system (i.e., the fragment cache). However, the scratchpad is

much smaller than the amount of space normally allocated to the

fragment cache. If the F$ size is simply set to the scratchpad size,

then the working set of the translated application code is unlikely

to fit. As a result, there will be many off-chip accesses to re-trans-

late previously encountered instructions. The high cost of these

accesses negates the benefit of the scratchpad’s fast access (and

low power consumption) for the fragment cache. 

In this paper, we propose a new approach to managing the F$ for

embedded systems with SPM, external memory and Flash storage.

The approach applies three novel management strategies to mini-

mize the number of off-chip accesses to fetch and translate the pro-

gram. First, the approach uses footprint reduction to minimize the

amount of code that is generated by the dynamic translator to

remain in control of the application. Next, the approach uses victim

compression to reduce the cost of re-translating application code

that may be evicted when the working set does not fit in the F$.

Lastly, the approach uses fragment pinning to avoid evicting fre-

quently executed fragments. We show that our techniques are

effective and allow the fragment cache to fit in the scratchpad. 
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This paper makes several contributions, including: 

• Footprint reduction to minimize code expansion from the 

dynamic translator;

• Victim compression to bypass re-fetching and re-translat-

ing the code when it is needed again;

• Fragment pinning to avoid unnecessarily evicting impor-

tant and often needed code; and, 

• A thorough evaluation of our techniques in a simulated 

SoC with scratchpad, SDRAM and Flash memories. 

The paper is organized as follows. Section 2 describes the systems

targeted by our techniques and Section 3 investigates how the F$

affects performance. Section 4 presents our techniques for the F$

and Section 5 gives the overall improvement with these tech-

niques. Section 6 describes related work and Section 7 concludes. 

2. TARGET SYSTEM
Figure 1 shows a canonical embedded system; this device is a sin-

gle chip with a processor, L1 instruction (I-cache) and data (D-

cache) caches, an application-specific integrated circuit (ASIC), a

scratchpad (implemented as SRAM), ROM (implemented as a

small on-device Flash memory), a controller for external Flash

memory, a controller for external main memory (implemented as

SDRAM) and off-chip I/O channels. The figure shows SDRAM

and Flash memories, which are external to the device. The

SDRAM is main memory and holds application code and data. The

Flash memory is managed by the operating system (OS); it holds

user files, including application binary images. 

Depending on the design, the boot-up and OS code may be in the

ROM. On power-up, this code is loaded into external main mem-

ory and executed. An user application is also loaded from Flash

memory into the external memory, where it will execute. Such

shadow memory is common due to the Flash memory’s high

latency and power cost. For example, Microsoft PocketPC com-

puters shadow applications. The Flash may have a raw access

latency of a hundred clock cycles or more (without OS overhead),

while the external memory may have an access latency of less than

ten clock cycles. The processor may also have L1 data and instruc-

tion caches to reduce the cost of accessing external memory. 

The SPM is part of the address space. It is typically small, say 16

to 64 kilobytes, because it is on-chip. As a result, it has a fast

access latency. For example, it might take one to three clock cycles

to fetch a word from the scratchpad. The scratchpad is managed by

software—e.g., one approach uses the compiler to allocate hot

code to it [7, 8, 20, 25]. In designs with scratchpads that have a sin-

gle clock cycle access latency, the L1 instruction cache may not be

included (i.e., its chip area is devoted to the scratchpad). 

Now, suppose we want to use DBT in this environment. The

dynamic translator can be kept in ROM as part of the system code,

from which it will be copied into main memory, along with the OS

at boot-up. The role of the DBT system is to translate the applica-

tion code for some purpose, such as security [17] or power man-

agement [26]. When an application is initiated, the translator

fetches the application code, one piece at a time, from Flash stor-

age. It will translate the code and put the translated code into the

fragment cache. The translated code executes from the F$. The

dynamic translator inherently does incremental loading. It brings

in pieces of code on-demand: The application is translated and

written into the F$, which effectively serves as shadow memory. 

The question is where to place the fragment cache: Should it be in

external main memory or the scratchpad? There is a trade off

between these choices. In the first one, the F$ is large with a slow

access time because it is in main memory, while in the second one,

the F$ is small with a fast access time because it is in scratchpad.

The advantage to a large fragment cache is that more of the appli-

cation’s code working set can be captured, and as a result, there

will be few, if any, evictions from the fragment cache. If the F$ is

allocated to scratchpad, it will have a faster access time but possi-

bly more evictions due to its small size. 

We investigate this trade off and develop techniques to minimize

the number of flushes and the penalty of fetching previously trans-

lated code (i.e., evicted code) into the F$. We aim to get the best of

both approaches: A F$ with an effectively large size and a small

access latency by executing translated code from the scratchpad. 

3. IMPACT OF MEMORY CONSTRAINT
To motivate our techniques, we first investigate how constraining

F$ size affects the performance. In particular, we study how pro-

gram performance is affected when the fragment cache is allocated

to the scratchpad, which limits its capacity to the SPM size. 

3.1 Experimental Methodology 
For this study, we use the DBT system, Strata [21], which we retar-

geted to SimpleScalar PISA [1]. Strata is a highly configurable and

retargetable binary translator. The techniques described in the

paper are implemented in Strata to accurately account for their

overhead and impact on performance. 

SimpleScalar was extended with Flash and SPM. It was configured

to model the Intel/Marvell 624 MHz XScale PXA-270 SoC, which

we augmented with SPM, SDRAM, and NOR Flash [14]. The

PXA-270 is used in devices such as the Dell Axim x50v PocketPC.

Details about the simulated processor, SPM, SDRAM, and Flash

memory are in Table 1. The parameters and values are SimpleSca-

lar’s configuration [1]. We use this setup throughout the paper. 

PISA uses a 64-bit instruction word (to facilitate experimentation);

however, embedded processors typically use a 16-bit or 32-bit

instruction. To account for PISA’s large instructions, we double the

data width and size of the instruction cache (including the instruc-

tion cache block size) and scratchpad. For example, to simulate a

Figure 1: Example target embedded system.
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64KB SPM, we set the size to 128KB. A 128KB scratchpad with

64-bit instructions is equivalent to a 64KB scratchpad with 32-bit

instructions. We refer to the smaller effective size (i.e., a 64KB). 

The dual-issue XScale PXA-270 has 32 sets, 32-byte block, and

32-way set associative data and instruction caches. We scale the

capacity of the I-cache to match the size of scratchpad memory.

Our configuration uses external SDRAM with a 96ns access

latency for the initial two words and a 19ns access latency for each

subsequent two words on an open page. These memory latencies

come from Intel documents about the XScale PXA-270 [14]. 

The SPM has a one cycle access; in experiments with a scratchpad,

there is no instruction cache. To get access times for the Flash

memory, we made measurements on a Dell Axim x50v PocketPC

with NOR Flash and a 8192-byte file buffer. On this device, it

takes the operating system (Windows Mobile Edition 5) 1.6ms to

initially fetch a block into the file buffer from Flash memory and

67,700ns per word to read from the block. 

Our experiments use the programs from MiBench [10] that our

experimental setup can execute. We use the large input data sets. 

3.2 Performance of Small Fragment Caches 
We consider three cases. The first case is a baseline. It has no

scratchpad, but it does have an L1 I-cache. Programs are run with-

out Strata. In the second case, programs are run with Strata using a

2MB F$ in external memory. The working set of all programs fits

in the 2MB F$. The third case uses SPM and there is no I-cache.

We vary the scratchpad size from 16KB to 64KB. The F$ can

occupy the whole SPM. In scratchpad configurations, Strata’s

instructions are fetched without the benefit of an I-cache (i.e., its

binary image is not cached). Strata’s data structures are in

SDRAM. The program binary is on Flash and loaded into the F$. 

Figure 2 shows the impact of F$ size. The graph reports speedup

normalized to executing a program with memory shadowing (i.e.,

without Strata). Some results do not show in the graph; these cases

have no speedup and can suffer large slowdowns. We discuss the

most interesting cases in the text. The first bar (“Mem-2MB”)

gives the speedup when the programs are run with Strata and the

2MB F$ is in SDRAM and the I-cache is 32KB. 

Programs can run faster with Strata, despite overhead imposed by

the translator. For example, jpeg.decode has 3.2 speedup with

Strata. This improvement is due to incremental loading because

only a small portion of the binary image is actually exercised. With

Strata, only the code that is executed is loaded into the F$, which

leads to fewer accesses to Flash memory. As a result, less time is

spent loading the program, which can be more easily amortized.

There are three programs, basicmath, fft, gsm.encode, where per-

formance suffers with Strata. basicmath has a 44.9% performance

degradation, fft has a 6% degradation, and gsm.encode has a 15.7%

degradation. Because these programs are small, their binary image

can be loaded quickly with memory shadowing. As a result, there

is less benefit from incremental loading. Also, memory shadowing

does not incur the overhead of dynamic translation. 

The remaining bars (“SP-64KB”, “SP-32KB”, and “SP-16KB”)

show the speedup when the F$ is in SPM. These results are nor-

malized to a baseline with an I-cache that has the same capacity as

the SPM. The results show that with SPM, when large enough

(e.g., SP-32KB), many programs (e.g., crc, gsm.decode, qsort, sha,

stringsearch, and susan.smoothing) have similar performance as

Mem-2MB. In this situation, the translated code’s working set fits

in SPM. In essence, the scratchpad serves the same role as the I-

cache. In a few cases, performance is improved. For example,

adpcm.decode goes from a 1.7 speedup with Mem-2MB to a 1.9

speedup with SP-64KB and SP-32KB. This improvement is due to

the faster effective access time with SPM and illustrates the benefit

of putting the fragment cache in SPM, rather than main memory. 

However, when the translated code’s working set does not fit in

scratchpad, performance suffers. In rijndael.encode, the speedup

decreases from 1.9 (SP-64KB) to 1.7 (SP-32KB). This degradation

is more pronounced when going from SP-32KB to SP-16KB,

where SP-16KB has 81.5 slowdown. gsm.decode has particularly

dramatic behavior: Its performance goes from a 1.8 speedup (SP-

64KB) to a 491.2 slowdown (SP-16KB)! This benchmark thrashes

badly in small fragment caches. 

The reason some programs do worse with a small SPM is due to

the F$ eviction policy. A typical eviction strategy flushes the entire

F$ when its capacity is exceeded [2]. Too many flushes lead to

poor performance. Table 2 shows the number of flushes for each

SPM size. The programs usually have zero or one flush for SP-

64KB. When the scratchpad is 32KB or 16KB, there can be many

more flushes. For example, gsm.encode has one flush in SP-64KB,

10,862 flushes in SP-32KB, and 26,162 flushes in SP-16KB. 

These results show that flushing and subsequently filling the F$

can harm performance. There are two parts to this problem. First,

the cost of fetching an untranslated instruction is large due to the

Flash memory. Even with file buffers, the Flash memory has a high

effective access latency. Second, the number of flushes is impor-

tant, given the latency of reading instructions from Flash memory.

In Section 4, we describe three techniques to address these prob-

lems. We focus on SP-32KB to keep the results presented manage-

able. Since our techniques address programs that are sensitive to

F$ size, we consider only the programs from Table 2 where the

number of flushes is greater than zero. In Section 5, we report full

results on all programs and scratchpad configurations. 

4. IMPROVING F$ PERFORMANCE
The way to improve the performance of a small F$ is to reduce the

flushes and their cost. Reducing the number of flushes is similar to

Table 1: Simulation configuration.

SimpleScalar Configuration (XScale PXA-270 624MHz)

fetch:ifqsize 8 tlb:lat 30

decode:width 1 res:memport 1

commit:width 2 bpred bimod

issue:wrongpath true bpred:bimod 128

lsq:size 4 issue:width 2

cache:dl1 32:32:32:f issue:inorder true

cache:il1 (32KB) 32:64:32:f ruu:size 4

cache:dl1lat 1 res:ialu 1

cache:il1lat 1 res:fpmult 1

tlb:itlb 1:8192:32:f res:imult 1

tlb:dtlb 1:4096:32:f res:fpalu 1

mem:lat 60 12 mem:width 8
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minimizing the miss rate in traditional caches because a decrease

in flushes leads to fewer overall misses to request previously trans-

lated code. Likewise, the cost of refilling the F$ and loading code

from Flash is similar to the miss penalty. We use footprint reduc-

tion to minimize the amount of code generated by the dynamic

translator so that more of the working set can be captured. With a

small footprint, there will be fewer F$ flushes. Nevertheless, this

reduction does not guarantee that the working set will fit in the F$.

We minimize the penalty of translating previously evicted instruc-

tions by memoizing them with victim caching. The memoized

instructions can be accessed more quickly than the untranslated

ones on Flash. Lastly, fragment pinning avoids unnecessarily

evicting and memoizing needed code. Essentially, we reduce the

miss rate and the miss penalty of a small F$. In this way, the F$ can

be allocated to SPM to gain its advantages. 

4.1 Footprint Reduction
Footprint reduction minimizes code expansion due to control

transfer instructions. A DBT system typically generates extra

instructions at each application control transfer. These instructions

re-enter the translator when an untranslated application address is

encountered. For example, consider conditional branches. Assume

that a fragment is a basic block (it can be a general code region).

When a branch is translated whose taken and not-taken targets are

not in the F$, the translator generates a trampoline for each branch

direction. A not-taken trampoline is created to return control to the

translator when the not-taken direction is executed. Similarly, a

taken trampoline is created. Once the DBT system translates the

instructions at an application address, any trampolines for that

address can be rewritten (i.e., linked) to directly transfer control to

the corresponding fragment. Indirect branches have similar tram-

polines. However, an indirect branch’s target address can change

during subsequent executions of the branch. As a result, indirect

branches can not be linked to their target fragments because targets

are unknown until the branch executes.  

A trampoline instance may be generated for each translated

branch. By generating the trampolines in a specific context, their

Figure 2: Speedup with a 2MB F$ in SDRAM (Mem-2MB); and F$ in 64KB (SP-64KB), 32KB (SP-32KB), 16KB (SP-16KB) SPM. 

Table 2: Number of flushes for 64KB, 32KB, and 16KB F$ sizes.

Benchmark
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32KB

SP-

16KB Benchmark

SP-

64KB
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32KB

SP-

16KB Benchmark

SP-

64KB

SP-

32KB

SP-

16KB

basicmath 1 25323 1587066 tiff2bw 1 4 10 sha 0 1 2

bitcount 0 0 8 tiff2rgba 1 4 11 crc 0 0 2

qsort 0 1 4 tiffdither 3 67 6087 fft 0 262 131070

susan.corners 0 1 4 tiffmedian 2 5 21 fft.inverse 1 120 113908

susan.edges 0 2 5 dijkstra 0 1 201 adpcm.encode 0 0 1

susan.smoothing 0 1 4 ghostscript 437 1674 9626 adpcm.decode 0 0 1

jpeg.encode 2 8 92 stringsearch 0 0 34 gsm.encode 1 10862 26162

jpeg.decode 1 5 71 rijndael.encode 0 1 867 gsm.decode 0 2 7856

lame 178 4494 10757 rijndael.decode 0 1 855
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instruction count (IC) can be minimized. Reducing the IC is

important for an indirect branch because its trampoline will not be

removed and may be executed many times [12]. While this

approach minimizes IC, it causes code expansion. Indeed, once a

fragment is linked to another fragment, the F$ space occupied by

the trampoline can not be easily reclaimed. For example, Strata’s

not-taken and taken trampolines each take seven PISA instruc-

tions. When a trampoline is replaced by a link to a target fragment,

the link needs one instruction. The remaining six instructions from

the original trampoline are unused holes in the F$. They are too

small to hold a new fragment (including trampolines). 

To minimize footprint, we trade a trampoline’s IC for space. We

use a trampoline function so all conditional branches can share one

trampoline. A call is made to the function from the site of a condi-

tional branch. Although the trampoline function increases IC, the

call site needs only two instructions. The F$ space associated with

the call is better utilized when a fragment is linked, avoiding the

wasted space associated with per-branch trampolines. 

Indirect branches are handled similarly with an indirect trampoline

function. The indirect trampoline function turns Strata’s shared

indirect branch translation cache lookup into a function [12]. The

indirect trampoline function is allocated to the scratchpad to make

it as fast as possible. This function maps an indirect branch’s target

address to a fragment. If a target address is in the F$, then control

is directly transferred to the fragment. If the target is not in the F$,

then the DBT system is re-entered to translate the missing code. 

The policy used by the dynamic translator for handling uncondi-

tional branches and calls is also important to code expansion. One

common policy for unconditional branches and calls is to eliminate

them during code translation [13]. Unconditional branch elimina-

tion replaces an unconditional branch with the basic block at its

target address. Similarly, partial call inlining inserts the first basic

block from a called function. While these techniques reduce IC,

they cause code duplication and the increase in the code footprint

may not warrant the IC reduction in a small SPM. To avoid this sit-

uation, we simply disable all techniques that duplicate instructions. 

4.1.1 Experimental Results 
Using the setup from Section 3.1, we investigated how footprint

reduction improves performance. We report two results: The

reduction in F$ flushes and program speedup/slowdown. The num-

ber of F$ flushes is related to code expansion; with less code

expansion, there will be fewer flushes. The speedup is improved

by avoiding flushes. We examined three Strata configurations. The

first configuration, “No FR” (No Footprint Reduction), is the stan-

dard one used by Strata [13]. Configuration “NE” (Never Elide)

changes Strata’s standard configuration to disable eliding of

unconditional jumps and partial inlining of calls. “NE+TF” (Never

Elide and Trampoline Functions) is the NE configuration with

trampoline functions for direct and indirect branches. 

Table 3 shows the number of F$ flushes without and with footprint

reduction. The columns labeled “No FR” are the values from Table

2. Footprint reduction can reduce the flushes. For example, in

basicmath, NE decreases the flushes by a factor of five. With

NE+TF, basicmath has only one flush. The reason NE and NE+TF

are so effective in some programs is due to significant code expan-

sion. For example, basicmath is a series of loops that do not ini-

tially fit in the F$. With NE+TF, the loops fully fit. fft and

fft.inverse are similar. Although lame, ghostscript, and gsm.encode

have a decrease in flushes, they still experience a relatively high

flush rate. For example, ghostscript has 1,674 flushes without foot-

print reduction and 489 with NE+TF. 

With a decrease in the number of flushes, there is a performance

improvement, as shown in Table 4. Values without parentheses are

speedups and values with parentheses are slowdowns. For exam-

ple, dijkstra improves from a speedup of 1.9 without footprint

reduction to 2.3 with NE+TF. After applying NE+TF, there are no

F$ flushes. tiffdither is also an interesting case, where there is ini-

tially a slowdown. The number of flushes goes from 67 without

footprint reduction to 3 with NE+TF. Without footprint reduction,

it has a slowdown of 4 and with NE+TF, it has a speedup of 1.7. A

final example is fft, where the initial slowdown is 27.6 and when

Table 3: Number of flushes without and with footprint reduction.

Benchmark No FR NE NE+TF Benchmark No FR NE NE+TF Benchmark No FR NE NE+TF

basicmath 25323 4569 1 jpeg.decode 5 4 2 susan.corners 1 1 0

dijkstra 1 1 0 jpeg.encode 8 6 2 susan.edges 2 2 1

fft 262 12 1 lame 4495 3482 2324 susan.smoothing 1 1 0

fft.inverse 120 35 1 qsort 1 1 0 tiff2bw 4 4 1

ghostscript 1674 1514 489 rijndael.decode 1 1 0 tiff2rgba 4 3 1

gsm.decode 2 1 1 rijndael.encode 1 1 0 tiffdither 67 5 3

gsm.encode 10862 10862 88 sha 1 1 0 tiffmedian 5 4 2

Table 4: Speedup/slowdown without and with footprint reduction.

Benchmark No FR NE NE+TF Benchmark No FR NE NE+TF Benchmark No FR NE NE+TF

basicmath (554.3) (87.3) (1.5) jpeg.decode 2.2 2.3 3.1 susan.corners 3.3 3.4 3.9

dijkstra 1.9 2.0 2.3 jpeg.encode 1.2 1.6 2.1 susan.edges 2.4 2.5 2.9

fft (27.6) (1.9) (1.03) lame (259.9) (187.5) (185.6) susan.smoothing 2.3 2.4 2.5

fft.inverse (15.4) (4.5) (1.1) qsort 1.2 1.2 1.2 tiff2bw 2.4 2.7 3.3

ghostscript (16.3) (14.3) (8.4) rijndael.decode 1.6 1.7 2.0 tiff2rgba 2.4 2.9 3.1

gsm.decode 1.8 1.9 1.9 rijndael.encode 1.7 1.7 2.0 tiffdither (4.0) 1.7 1.7

gsm.encode (938.3) (928.3) (11.2) sha 2.5 2.6 2.6 tiffmedian 1.7 1.9 2.0
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NE+TF is used, it is only a 1.03. We conclude that footprint reduc-

tion is effective and can lead to a performance gain. 

Despite the benefit of NE+TF, some programs (e.g., lame, ghost-

script, and gsm.encode) still have many flushes and high slow-

downs. To address this situation, we use victim compression and

pinning. Since these techniques are only beneficial when there is at

least one flush, we further consider the programs from Table 3 with

one or more flushes under NE+TF.

4.2 Victim Compression
When the fragment cache becomes full, it is flushed when a new

fragment is created. Although more sophisticated eviction policies

are possible, flushing the F$ is a simple one that is used to mini-

mize the overhead of managing the F$ [5,11,27]. The problem with

this approach is that fragments which are soon needed can be

evicted, especially for a small F$. In the case of Flash storage, a

high access cost will be paid to re-translate these fragments. 

To address this problem, we introduce victim compression, which

is inspired by a hardware victim cache [15]. Our approach saves

the victims that are evicted when the fragment cache is flushed.

Because there are as many victims as fragments, we compress the

evicted code. Code compression minimizes the amount of space

needed for the victims. The compressor/decompressor is imple-

mented in software (part of Strata), without additional hardware. 

A compressed version of the evicted code is kept in a region of the

F$, called the compressed fragment region (CFR). Whenever the

translator fetches an application address, it consults the CFR to see

whether a corresponding fragment has been translated. If so, the

fragment is fetched from the CFR and decompressed. The code

fetched from Flash or decompressed from the CFR is put into a F$

region called the executable fragment region (EFR). As long as the

cost of decompression is less than the cost of accessing Flash and

retranslating the fragment, then victim compression will reduce the

penalty of populating the F$ with previously seen fragments. 

There are many design choices for victim compression. We exam-

ine two important ones: 1) how to partition and manage the F$

among compressed and uncompressed fragments and 2) how to

include compression and decompression in the translator. We note

that a third design choice is where to place the compressed code; it

could be put in external memory. Our aim is to keep the translated

code footprint, including uncompressed and compressed code,

minimal. Thus, we allocate the compressed code to the F$ in SPM,

which ensures that the total space needed to store the translated

code is not increased beyond the original F$ size.

4.2.1 Victim Compression Strategy 
The first design question concerns how to partition the fragment

cache into compressed and uncompressed code. One possible

scheme is to statically partition the fragment cache’s space into

executable (EFR) and compressed code (CFR). However, this

scheme reduces the effective size of the F$ because only a fixed

portion of the F$ can hold executable, translated code. As a result,

it will lead to many more flushes and poor program performance. 

Rather than statically allocating a fixed amount of memory to the

EFR and CFR, we use a variable region partitioning scheme.This

scheme addresses the limitations of the fixed scheme because the

EFR and CFR dynamically change size. The translator fills the

EFR from Flash memory or the compressed fragment region. The

CFR starts at a high address, while the executable fragment region

starts at a low address. If the upper boundary of the EFR reaches

the lower boundary of the CFR, then the compressed fragments are

purged. The space occupied by the compressed code is freed and

can be used to hold executable code. If the EFR exceeds the capac-

ity of the whole fragment cache, it is flushed. In this case, the EFR

is compressed and a new CFR is allocated to hold the victims. 

Figure 3 illustrates the steps for variable region partitioning. In the

first step, there is no compressed code and the executable code

may occupy the whole fragment cache. In the second step, when

the EFR overflows, it is flushed. The evicted fragments are com-

pressed. In the third step, the CFR and Flash memory are used to

retrieve previous fragments and application code. In the fourth

step, when the EFR reaches the CFR, the compressed fragments

are purged. This space can be used to hold executable code. Any

new application addresses fetched by the translator will come from

Flash. These steps will repeat throughout program execution. 

The advantage to this scheme is that the EFR can occupy the entire

fragment cache when necessary, which may lead to fewer flushes.

Additionally, the CFR size can adapt to the compression ratio.

However, the disadvantage is that the CFR captures only the most

recent victims and does not persist across fragment cache flushes. 

4.2.2 Incorporating Compression/Decompression
The second design question is how to incorporate the code com-

pressor and decompressor into the dynamic translator. Figure 4

shows how we integrated compression and decompression into

Strata. Other dynamic translators operate similarly and compres-

sion/decompression can be incorporated in their fetch-translate-

execute loop. The shaded region in the upper right corner of the

figure is the compression loop. The loop is entered when the F$ is

flushed. The decompression loop is in the lower right corner. It is

entered when an application address is help as compressed code. 

The compression loop is entered when the EFR is flushed. On a

flush, the F$ is traversed to find code that was inserted by the

dynamic translator. These instructions are not compressed since

they can be regenerated when the fragment is decompressed. In

fact, branch addresses in these instructions depend on F$ layout.

The layout of fragments will change after a flush since it depends

on the order in which application addresses are requested. Next,

two dictionaries are constructed: one dictionary (csym), is used

for compression and the other (dsym) is used for decompression.

Figure 3: Steps for variable region partitioning.
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Once the dictionaries are constructed, the EFR is compressed. For

decompression, it is necessary to know which application

addresses are in the CFR. The compressor builds a fragment map

(cfMap) that relates application addresses to their corresponding

compressed fragments. csym is discarded after compression.

cfMap and dsym are persistent and stored in external SDRAM as

data. They are accessed during decompression. 

The decompression loop is entered when the translator fetches a

new application address. On a fetch, the translator checks whether

that address is held in the CFR. A lookup is done in cfMap to see

whether there is a compressed fragment for the application

address. If so, the fragment is decompressed and the control code

needed by the translator is generated. 

We use a compression algorithm that is based on IBM’s CodePack

algorithm [16]. CodePack has a good compression ratio (about

50%) and performance when implemented in software [23]. We

changed CodePack to accommodate PISA and to avoid aligning

the starting point of compressed code to word boundaries (which

minimizes the footprint of the compressed code in the CFR). Our

implementation is configurable to support other compression algo-

rithms. The inclusion of other algorithms does not change the pro-

cess outlined in Figure 4.

4.2.3 Experimental Results 
With variable region partitioning, the number of flushes is the

same as NE+TF. Because this scheme discards the compressed

code, it can adapt to situations when the EFR needs more capacity.

In fact, the executable fragment region effectively has the same F$

capacity as NE+TF. The benefit to victim compression will show

as an improvement in performance by avoiding accesses to Flash. 

Table 5 shows performance without (NE+TF) and with victim

compression (Comp.). When a program suffers at least one F$

flush, there is potential improvement by memoizing the victims.

For example, fft and jpeg.decode have the same number of flushes

with NE+TF and victim compression. Their performance is

improved since the accesses to Flash are avoided when evicted

code is needed again. This result also shows that there is code

reuse across EFR flushes. Indeed, when a program has many

flushes and there is much reuse, victim compression is especially

beneficial. For example, ghostscript has a 8.4 slowdown with

NE+TF and a 4.5 slowdown with victim compression. In this pro-

gram, some code is evicted for a short period and reused later, pos-

sibly after more than one flush has occurred. Another interesting

case is fft.inverse, where an initial 1.1 slowdown is improved to a

1.1 speedup. 

cfMap, csym and dsym are added for victim compression, which

increases main memory usage by Strata. Without victim compres-

sion, memory usage for Strata’s data structures ranges from 118.7

KB (gsm.encode) to 148.2 KB (tiffdither), with an average 137

KB. In comparison, victim compression has a near constant 90%

increase in memory usage. This increase is primarily due to

cfMap, which tracks information about the compressed fragments.

Finally, with compression, Strata’s binary image is increased by 16

KB. We conclude that the performance gain from victim compres-

sion is worth its small increase in SDRAM memory usage. 

Because fragment pinning, which is described next, benefits pro-

grams with more than one fragment cache flush, we now further

consider only such programs. 

4.3 Fragment Pinning
While victim compression avoids fetching and translating previ-

ously encountered code, it still suffers overhead. For a small F$, it

is possible that the same fragment may be evicted, compressed,

and decompressed many times, incurring unnecessary overhead.

To address this problem, we use fragment pinning, where a frag-

ment can be locked in the F$. When a fragment is pinned, it is not

evicted on a flush. It remains as executable code and will not incur

multiple compression and decompression cycles. 

We incorporate pinning with a new fragment cache region, called

the pinned fragment region (PFR). The code in the PFR is execut-

able, but persists across F$ flushes. The PFR and EFR are inter-

mixed to best utilize fragment cache space. During runtime,

fragments are moved between the EFR, CFR, and the PFR accord-

ing to a pinning strategy. The pinning strategy decides what frag-

ments to pin, when to pin them, and when to release the pins.

4.3.1 Pinning Strategy
There are many possible pinning strategies. One strategy might

count fragment execution frequency to pin hot fragments. Counters

could also be used to determine when to release a cold pinned frag-

Figure 4: Incorporating compression and decompression.

Context 
Switch

Fetch
Decode

Translate

New 
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

Strata Virtual Machine

Yes

Context 
Capture

Cached
In EFR?

Yes

New 
Fragment

Next PC

Cached 
in CFR?

No

Read Block
Decompress
Update EFR

Yes

Finished?

No

Yes

With fragment compression
 and decompression

Decompression

Loop

Fixup 
Branches

Flush?

No

Compact
Dictionary

Compress
Fragment

Finished?Yes

No

Yes

Compression Loop

Table 5: Speedup/slowdown with victim compression.

Benchmark NE+TF Comp. Benchmark NE+TF Comp.

basicmath (1.5) (1.4) gsm.encode (11.2) (3.3)

fft (1.03) 1.0 jpeg.decode 3.1 3.2

fft.inverse (1.1) 1.1 jpeg.encode 2.1 2.5

ghostscript (8.4) (4.5) lame (185.6) (158.8)

gsm.decode 1.9 1.9 susan.edges 2.9 3.0

tiff2bw (3.3) (3.7) tiffdither 1.7 1.9

tiff2rgba 3.1 3.5 tiffmedian 2.0 2.3
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ment. However, these strategies have monitoring overhead,

whether done with instrumentation or hardware counters. 

Instead, we take advantage of the fact that the compressed frag-

ment region holds recent victims. If an application address is

needed and a corresponding fragment is in the CFR, then that frag-

ment is likely part of the current working set. When a needed frag-

ment is in the CFR, it is decompressed, pinned, and put into the

pinned fragment region. Thus, the fragments that can be pinned are

victims from a previous F$ flush. A pin is acquired immediately

once an application address is requested and its fragment is found

in the CFR. The pins are released when the size of the PFR reaches

a “release threshold” ratio of the executable fragment region. Pins

are released when . The

intuition is that a working set change is most likely when the exe-

cutable fragment region puts pressure on F$ capacity. The pins are

released so that the fragments do not become stale. This strategy is

simple and inexpensive because it does not need monitoring. 

Figure 5 illustrates our pinning strategy as a state machine. The

diagram shows the states that a fragment goes through and the

transitions that cause a state change. Initially, an application

address is in the untranslated state. When the address is fetched, a

fragment is created and put in the EFR. If the EFR is flushed, the

fragment is put in a compressed state. When the address is

requested again, the corresponding fragment is transitioned from a

compressed state to a pinned state. The pin will be released when

the PFR is above the threshold ratio. A CFR flush causes all com-

pressed code to be transitioned to untranslated states.

4.3.2 Experimental Results 
We investigated how fragment pinning helps reduce F$ flushes.

Table 6 shows the number of flushes without and with fragment

pinning. In the table, “Comp.” is victim compression with variable

region partitioning and “Pin” is compression with pinning. “Pin-

FIFO” is compression with a variant on the pinning scheme. In

PinFIFO, pins are released in FIFO order. In this policy, when the

EFR causes a flush, pins are successively released until the pinned

code is under the release threshold. Thus, pins are released in a

more fine-grained fashion to avoid releasing them too early. In

both Pin and PinFIFO, the pin release threshold is 50%. We tried

several thresholds and 50% did the best on average.  

Fragment pinning can reduce flushes. For example, in ghostscript,

the number of flushes changes from 489 with compression to 196

with Pin. When FIFO information is used (PinFIFO), there is only

one flush. After the EFR is flushed one time, there will always be

at least one pinned fragment in the EFR with this strategy. Thus,

the whole F$ is never flushed again. The EFR may continue to

overflow its boundaries, causing the CFR to be discarded. 

Table 7 gives performance with pinning. For ghostscript, there is a

3.6 slowdown with PinFIFO and 4.5 with compression. Pin, on the

other hand, increases the slowdown for ghostscript because older,

unneeded fragments are kept pinned, which is avoided by Pin-

FIFO. gsm.encode also has a particularly good improvement with

pinning: It has a 3.3 slowdown with compression and only a 1.1

slowdown with PinFIFO. The slowdown for this benchmark is

improved enough to be competitive with traditional memory shad-

owing. From these results, we conclude that pinning is beneficial

when evicted code may be requested many times. 

5. OVERALL IMPROVEMENT 
Figure 6 shows the performance improvement for all benchmarks

and SPM sizes when footprint reduction, victim compression and

pinning (PinFIFO, 50% threshold) are enabled. The figure shows

performance from Figure 2 for comparison. 

Our techniques improve performance across the SPM sizes, partic-

ularly when the translated code working set does not initially fit in

the F$. For example, in dijkstra for SP-16KB, performance is

improved from a 15.8 slowdown to a 2.2 speedup. gsm.encode has

an impressive improvement for SP-32KB. It initially has a slow-

down of 938.3 due to thrashing; with out techniques, its slowdown

is reduced to 1.1 because it no longer thrashes. These results also

show that our techniques usually do not degrade performance

when unneeded. For example, adpcm.decode is a tight loop that

fits in all SPM sizes and its speedup is 1.9 in all cases. 

Even with our techniques, some programs still have large runtime

overheads. lame has this behavior. With SP-32KB, it has an initial

slowdown of 258.7 and a final slowdown of 114.3. lame’s working

set does not fully fit in the F$. Although PinFIFO reduces flushes

to one, the executable fragment region overflows and there are

many accesses to Flash memory. ghostscript behaves similarly, but

the effect is not as dramatic. 

Figure 5: Pinning state diagram
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Table 6: Number of flushes without and with pinning.

Benchmark Comp. Pin PinFIFO

ghostscript 489 196 1

gsm.encode 88 16 1

jpeg.decode 2 1 1

jpeg.encode 2 1 1

lame 2320 235 1

tiffdither 3 2 1

tiffmedian 2 1 1

Table 7: Speedup/slowdown with pinning.

Benchmark Comp. Pin PinFIFO

ghostscript (4.5) (5.6) (3.6)

gsm.encode (3.3) (3.1) (1.1)

jpeg.decode 3.2 3.2 3.2

jpeg.encode 2.5 2.5 2.5

lame (158.8) (143.1) (114.3)

tiffdither 1.9 1.9 2.0

tiffmedian 2.3 2.3 2.3
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On average, footprint reduction, victim compression and pinning,

have an initial speedup of 1.9 (SP-64KB), 1.6 (SP-32KB), and 0.9

(SP-16KB) over memory shadowing. With our techniques, these

average speedups are improved to 2.2 (SP-64KB), 2.1 (SP-32KB)

and 1.9 (SP-16KB). 

In comparison to Mem-2MB, a 32KB fragment cache allocated to

SPM (i.e., SP-32KB) has slightly better performance. Mem-2MB

has an average speedup of 2.06 and SP-32KB has an average

speedup of 2.1. The total amount of memory needed for the frag-

ment cache is much less with SP-32KB than Mem-2MB, yet its

performance is better than Mem-2MB. From these results, we con-

clude that our techniques are effective and will help enable the use

of DBT in embedded systems with small scratchpads. 

6. RELATED WORK
There has been much work related to this paper. The management

of the F$ has been widely studied for general-purpose systems and

large fragment caches [2, 3, 4, 5, 11, 21, 23, 27]. Bala et al. sug-

gested the strategy of flushing the F$ when it becomes full [2].

Hazelwood and Smith investigated a generational garbage collec-

tion approach that promotes traces when they are frequently used

[11]. Bruening et al. investigated how to manage the F$ for multi-

threaded programs [5]. They also investigated how to bound the F$

and maintain consistency with self modifying code [4]. 

Zhou et al. investigated F$ management for smartcards [27]. This

work used a code server to download on-demand code into the F$.

Their approach used a profile-based technique to pre-plan cache

decisions so they could be done with low cost. Instead, our

approach makes all decisions online. Guha, Hazelwood and Soffa

suggested a technique to reduce code footprint due to exit stubs in

a program instrumenter [9]. Other related work comes from

Shogan and Childers [23]. This project proposed compressing the

program binary prior to execution. The image is decompressed by

the dynamic translator. None of the approaches used SPM. 

The most related work addresses software-managed instruction

caches [19] for processors that lack an instruction cache. This

approach minimizes the cost of loading and evicting instructions

from the scratchpad. It is similar to incremental loading done by a

dynamic translator. They used static binary rewriting to manage

the scratchpad. Pinning was used to keep important basic blocks in

the scratchpad. However, the project did not apply their techniques

in a dynamic translator or use code compression.

Lastly, there has been much work on managing code in SPM with

the compiler. Approaches proposed for code execution in the

scratchpad use compiler support to partition the code and allocate

it statically to the scratchpad [7, 8, 25], or copy it on-demand from

main memory to the scratchpad [7, 8, 20]. Code is selected for

SPM execution at compile time [25], or based on profiles [7, 8,

20], to optimize performance or energy consumption.

Figure 6: Initial speedup compared to final speedup. SP-64KB-Initial, SP-32KB-Initial and SP-16KB-Initial are the initial speedups. 
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7. CONCLUSION
This paper investigated how to use scratchpad memory for

dynamic binary translators. We described three techniques to

improve the performance from a small F$ when allocated to SPM.

Footprint reduction mitigates code expansion, while victim com-

pression reduces the cost associated with fetching and translating

previously encountered code. The last technique, fragment pin-

ning, locks important code in the F$. Our techniques improved

performance of small fragment caches by an average of 20% in a

64KB SPM, 30% in a 32KB SPM and 110% in a 16KB SPM.

Indeed, with our techniques, a much smaller 32KB F$ allocated to

the scratchpad has equivalent performance as a 2MB fragment

cache allocated to main memory. 
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