
Fragment Reconstruction: Providing Global Cache Coherence in a
Transactional Storage System

Atul Adya Miguel Castro Barbara Liskov Umesh Maheshwari Liuba Shrira

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract
Cooperative caching is a promising technique to avoid

the increasingly formidable disk bottleneck problem in dis-
tributed storage systems; it reduces the number of disk ac-
cesses by servicing client cache misses from the caches
of other clients. However, existing cooperative caching
techniques do not provide adequate support for fine-grained
sharing. In this paper, we describe a new storage system
architecture, split caching, and a new cache coherence pro-
tocol, fragment reconstruction, that combine cooperative
caching with efficient support for fine-grained sharing and
transactions. We also present the results of performance
studies that show that our scheme introduces little overhead
over the basic cooperative caching mechanism and provides
better performance when there is fine-grained sharing.

1 Introduction
This paper describes how to integrate two techniques

that have been shown to improve performance in distributed
client/server storage systems: cooperative caching [8, 11,
12, 20] and efficient support for fine-grained sharing [1, 4,
6, 9, 10, 15]. Cooperative caching combines client caches
so that misses at one client can be serviced from caches of
other clients. It takes advantage of fast local area networks
to reduce access latency, replacing slow disk accesses by
significantly faster fetches from the memory of other clients,
and it reduces the load on the server processors and disks,
thus improving scalability.

However, existing cooperative caching techniques use
pages as the unit of consistency and do not provide ade-
quate support for fine-grained sharing, although studies in
databases [4] and DSM systems [6, 15, 16] have shown that
such support is important to avoid performance problems
caused by false sharing. This paper presents a new storage
system architecture for client/server transactional storage

Copyright 1997 IEEE. Published in the Proceedings of the International
Conference on Distributed Computing Systems (ICDCS’97), May 27- 30,
1997, Baltimore, Maryland.

systems, split caching, and a new cache consistency pro-
tocol, fragment reconstruction, that together preserve the
benefits of both cooperative caching and efficient support
for fine-grained sharing. The new architecture is designed
for an environment where clients and servers are connected
by a high-speed network, and machines trust each other and
are willing to cooperate, e.g., a corporate intranet.

Split caching divides functionality between clients and
servers: client caches are used to avoid disk reads, while
server caches are used to avoid disk writes. Disk reads are
avoided by using the combined memory of the clients as
a cooperative cache. Disk writes are avoided by using the
entire server main memory as an object cache, called the
m-cache [13, 19], in which the server stores new versions of
recently modified objects. When a transaction commits, a
client sends its modified objects to the server, which stores
them in the m-cache replacing any previously cached ver-
sions of those objects. These modifications are installed into
their disk pages in the background when the m-cache fills
up. Since the m-cache stores modifications more compactly
than a page cache, it can absorb more modifications and
delay installations for a longer time, which in turn reduces
the number of writes. However, to install a modification,
the system first needs the containing page. The disk reads
needed to obtain containing pages are called installation
reads. Split caching fetches the containing pages from the
cooperative cache thus providing the benefits of the m-cache
without the cost of the installation reads.

Fragment reconstruction ensures client cache consis-
tency. It supports fine-grained concurrency control tech-
niques such as adaptive call-back locking [4] and optimistic
control [1]; such techniques improve performance because
they avoid conflicts due to false sharing. When a transaction
commits, copies of its modified objects in other client caches
become obsolete, causing containing pages to become frag-
ments with holes where the obsolete objects are. We use
fragment reconstruction to bring fragments up to date by
filling the holes with the latest object versions stored in the
m-cache. This is done lazily when the client holding a frag-

ment needs the missing objects, or when the fragment is
needed to service another client’s cache miss or to install
modifications on disk. Laziness reduces communication
cost when pages are modified repeatedly and it is safe (i.e.,
causes no loss in reliability) because the m-cache is recov-
erable from the transaction log.

To evaluate the effectiveness of our techniques, we im-
plemented them in Thor [17] and ran a set of experiments
using the multi-user OO7 benchmark [5]. Our results show
that our approach preserves the benefits of both coopera-
tive caching and support for fine-grained sharing: it adds
almost no overhead to the basic cooperative caching mecha-
nism, and it substantially improves performance when fine-
grained sharing affects the pages that clients fetch from the
cooperative cache. Furthermore, the results indicate that
many disk reads can be avoided by fetches from the coop-
erative cache, thus substantially off-loading work from the
server processors and disks.

The paper is organized as follows. Section 2 discusses
related work. Section 3 describes the system model; Sec-
tion 4 describes split caching and fragment reconstruction.
Section 5 evaluates the effectiveness of the new approach.
We close with a discussion of what we have accomplished.

2 Related Work
Our proposal builds on previous work on cooperative

caching and support for fine-grained sharing. Cooperative
caching has been studied in several contexts: distributed vir-
tual memory [11], file systems [8, 7, 20], and a transactional
database [12]. All studies show that cooperative caching
can reduce access latency and improve system scalability in
workloads with coarse-grained sharing. These studies are
complementary to ours; we explain how to extend the ben-
efits of cooperative caching to workloads with fine-grained
sharing. We can use the techniques developed in [8, 11, 20]
to perform page replacement in the cooperative cache.

Cache coherence work in client/server databases [4, 9]
has addressed the performance problems caused by false
sharing. The study by Carey et al. [4] describes a con-
currency control and coherence protocol that supports fine-
grained sharing efficiently. A coherence protocol using a
cache of recent updates similar to the m-cache is studied
in [9]. However, neither of these studies integrates fine-
grained sharing support with cooperative caching.

DSM is similar to cooperative caching; it allows clients
to fetch data from the memory of other clients. Some DSM
systems [6, 15] provide efficient support for fine-grained
sharing. However, these systems do not deal with accesses
to large on-disk databases; they assume infinite client caches
and they do not address the problems of efficiently updating
on-disk data and reducing the latency of capacity misses.
Furthermore, they do not support transactions.

The work closest to ours is the log-based coherence study
by Feeley et al. [10], which extends DSM to support trans-

actional updates to a persistent store. One key difference
is that they associate mutexes with segments and require
segments to be large to reduce the time overhead of acquir-
ing mutexes. This coarse-grained concurrency control can
cause severe performance degradation due to lock conflicts
in workloads with fine grained sharing. Our fine-grained
optimistic concurrency control algorithm avoids these prob-
lems. The log-based coherence protocol in [10] ensures
cache consistency by propagating fine-grained updates to
all cached copies of a segment eagerly when a transaction
commits, but the authors acknowledge that eager propaga-
tion does not scale to a large number of clients. In contrast,
our coherence protocol uses a scalable lazy invalidation pol-
icy. Furthermore, like other DSM systems, their system
assumes infinite client caches.

The study presented in [18] proposes sending pages from
clients to the server at commit time to avoid installation
reads. Split caching allows the server to delay installations
for a longer time, thus reducing their number while still
avoiding most installation reads by fetching pages from the
cooperative cache.

3 Base System Architecture
Our work is done in the context of Thor, a client/server

object-oriented database system [17]. This section describes
the system architecture before we extended it to support split
caching and fragment reconstruction.

Servers provide persistent storage for objects and clients
cache copies of these objects. Applications run at the clients
and interact with the system by making calls on methods
of cached objects. All method calls occur within atomic
transactions. Clients communicate with servers only to fetch
pages or to commit a transaction.

The servers have a disk for storing persistent objects, a
stable transaction log, and volatile memory. The disk is
organized as a collection of pages which are the units of
disk access. The stable log holds commit information and
object modifications for committed transactions. The server
memory consists of a page cache and the m-cache. The page
cache contains pages recently read from the server disk. The
m-cache holds recently modified objects that have not yet
been written back to their pages on disk.

3.1 Fetches
When a client C accesses an object x that is not present

in its cache, it fetches the page p containing x from p’s
server. At this point, the server adds an entry to its directory,
indicating that client C is now caching p; the directory keeps
track of which pages are cached by each client.

3.2 Transactions and Cache Coherence
Transactions are serialized using optimistic concurrency

control [1, 14]. The client keeps track of objects that are read
and modified by its transaction; it sends this information,
along with new copies of modified objects, to the servers

when it tries to commit the transaction. The servers de-
termine whether the commit is possible, using a two-phase
commit protocol if the transaction used objects at multiple
servers. If the transaction commits, the new copies of mod-
ified objects are appended to the log and also inserted in
the m-cache, but they are not immediately installed in their
containing disk pages.

Since objects are not locked before being used, a trans-
action commit can cause caches to contain obsolete objects.
Servers will abort a transaction that used obsolete objects.
However, to reduce the probability of aborts, servers no-
tify clients when their objects become obsolete by sending
them invalidation messages; a server uses its directory plus
information about the committing transaction to determine
what invalidation messages to send. Invalidation messages
are small because they simply identify obsolete objects.
Furthermore, they are sent in the background, batched and
piggybacked on other messages.

When a client receives an invalidation message, it re-
moves obsolete objects from its cache and aborts the current
transaction if it used them. The client continues to retain
pages containing invalidated objects; these pages are now
fragments with holes in place of the invalidated objects.
Performing invalidation on an object basis means that false
sharing does not cause unnecessary aborts; keeping frag-
ments in the client cache means that false sharing does not
lead to unnecessary cache misses. Invalidation messages
prevent some aborts, and accelerate those that must hap-
pen — thus wasting less work and offloading detection of
aborts from servers to clients.

When a transaction aborts, its client restores the cached
copies of modified objects to the state they had before the
transaction started; this is possible because a client makes a
copy of an object the first time it is modified by a transaction.
If the copy has been evicted due to cache management, the
modified object becomes a hole and its page becomes a
fragment.

3.3 Installation
When the m-cache fills up, the server installs some of

the cached modifications in their disk pages. The server
reads these pages into memory (these are installation reads),
installs the modified objects in their pages, and writes the
pages to disk. It then removes these modified objects from
the m-cache, freeing up space for future transactions. If the
server crashes, the m-cache is reconstructed at recovery by
scanning the log.

Since installation is lazy, pages on disk can contain ob-
solete versions of some of their objects. Therefore before
sending a page to a client in response to a fetch request, the
system retrieves new versions of the page’s objects from the
m-cache and installs them in the page.

The m-cache architecture improves the efficiency of disk
writes for fine-grained updates [13, 19]. It avoids instal-

lation reads at commit time and stores modifications in a
compact form, since only the modified objects are stored.
Nevertheless, installation reads can consume a significant
portion of the available disk bandwidth [13, 19].

4 The Split Caching Architecture
The split caching architecture differs from what was de-

scribed above in two important ways. First, it uses server
memory only for the m-cache; there is no server page cache.
Second, it implements cooperative caching. The coopera-
tive cache is used both to service fetches and to avoid instal-
lation reads; it decreases fetch latency and makes the system
more scalable by decreasing the load on the server disk.

Fragment reconstruction ensures cache consistency
while allowing clients and servers to fetch fragments from
the cooperative cache. To allow a fetch or an installation
to use a copy of a page obtained from a client C, the sys-
tem must ensure that C’s copy can be brought up-to-date
using information in the m-cache. To determine whether
information in the m-cache is sufficient for this purpose, we
augment the servers’ directory information to record a sta-
tus for each cached page. A page is complete at client C if C
has the latest versions of all its objects, i.e., the page is not a
fragment; it is reconstructible if the m-cache contains new
versions for all holes in C’s copy of the page (so that apply-
ing them to this copy will make it complete); otherwise, it is
unreconstructible. Only complete and reconstructible pages
are used to service fetches and avoid installation reads.

4.1 Fetches
When a client A requests a page p from the server, the

server reads p from disk only if no client cache contains
a complete or reconstructible copy of p. If such a client
B exists, the server forwards the request to B along with
any updates in the m-cache for p and updates the directory
to record p as complete at A and B. (It selects a client B
containing a complete copy of p if possible, because in this
case no updates from the m-cache are sent to B.) B merges
the updates into its fragment and sends the page to client
A. This situation is illustrated in Figure 1. B includes only
the latest committed versions of objects in the page; if its
current transaction has modified the page, it uses the copies
it made when the objects were first modified to restore the
page to its committed state. (These copies were discussed
in Section 3.2.)

If client B does not have page p or does not have the
committed state for one of p’s objects, it informs the server
that it cannot service the fetch. The server marks p as absent
or unreconstructible for B, and obtains it from another client
if possible. To improve performance, clients inform the
server when they evict pages or copies of modified objects
by piggybacking that information on messages sent to the
server.

We also provide a second kind of fetch request, which

x

y

y

1

3
Client B

Client A

Server

 Send
complete page

Forwarded Request +
 Object Updates (y)

 Fetch
Request

Complete
 the page

2

Page p

Mcache
y Disk

Directory before fetch

Client Page State

 B p Recon

Client Page State

 B p Comp
 A p Comp

Directory after fetch

Figure 1: Fetch from cooperative cache.

indicates that the client just needs to fill in the holes in a
page. In such a case, the client need not receive the whole
page and the special fetch allows us to avoid a disk read or
extra network communication. If the page is reconstructible,
the server sends the updates in the m-cache to the client and
marks the page as complete; otherwise, it treats the request
as a page-fetch request.
4.2 Transaction Commits

Commits are handled as described in Section 3.2 with
one addition: when a transaction committed by a client
A modifies an object on page p, the server modifies the
directory to mark all complete copies of p at clients other
than A as reconstructible.
4.3 Installation

Client caches are used to avoid installation reads, in a
manner similar to what happens for fetches. If a client B
has a complete or reconstructible copy of page p, the server
sends it an installation fetch message that includes updates
for p. B completes p, i.e., fills the holes with the received
updates, and sends it back to the server, which marks B as
having a complete copy of p. If no client B has a complete
or reconstructible copy, the page is read from disk and the
changes are installed in it in the usual way.

Then the server writes the page to disk, and removes
its updates from the m-cache. Additionally, it modifies the
directory to mark all reconstructible copies of p as unrecon-
structible. This is necessary because after discarding these
modified objects from the m-cache, the server can no longer
bring those copies up-to-date using the m-cache.

Figure 2 illustrates using page p from client B’s cache
to avoid an installation read. It also shows client C’s entry
being marked unreconstructible after the installation has
been performed.
4.4 Discussion

Our scheme preserves correctness because only com-
plete and reconstructible pages are used in fetches from the
cooperative cache; this is equivalent to fetching pages from
disk in the earlier system. Unreconstructible pages are never
used: Servers cause pages to become unreconstructible only
by removing objects from the m-cache; they record this in-
formation in directories and never request unreconstructible
pages from clients. Clients cause pages to become unre-
constructible only via evicting copies of modified objects;
they keep track of this information and refuse to satisfy
client and installation fetch requests with unreconstructible
(or missing) pages.

Sending modifications to the client as part of fetching
the page from its cache is similar to update propagation [3]
but is not exactly the same. The server sends the m-cache
updates relatively rarely, e.g., the updates may be sent after
many updates to the same page have occurred. Furthermore,
the server does not update all cached copies of the page but
only the copy it uses to satisfy the client or installation fetch.

It is possible to reduce the number of modified objects
sent from the m-cache to the clients. This can be done
by augmenting the status information in the server directo-
ries to record the latest transaction whose modifications are
reflected in the client’s cache, and sending only the mod-
ifications made by transactions that committed later. We
rejected this optimization because our current scheme is
simpler and requires less storage at servers.

x

y
Client B

Request for p
 +
Object updates (y)

1

Send complete
 page p

3

2

 Write
 to disk

y

Complete
 the page

x

y

Page p

Server

Mcache Disk

Directory before install
Client Page State

 B p Comp
 C p Unrecon

Directory after install
Client Page State

 B p Recon
 C p Recon

Figure 2: Installation fetch from cooperative cache.

5 Performance Evaluation
This section evaluates the costs and benefits of fragment

reconstruction and split caching. We do not attempt to
show the benefits of cooperative caching, since that has
been shown by others [8, 11, 12, 20].

The key performance goals are reductions in client cache
miss latency and in the latency to install modified objects.
Therefore, we start (Section 5.1) by presenting a simple
analytic model of the latency of different types of client and
installation fetches. Section 5.2 uses micro-benchmarks run
in our prototype and published performance numbers for fast
networks and disks to estimate values for the variables used
in the model. These values are used to compute an estimated
latency for the different types of fetches and show that our
techniques introduce only a small overhead over the basic
cooperative caching mechanism.

The average fetch latency is determined not only by the
latency of each type of fetch but also by the number of
fetches of each type. Therefore, we ran the multi-user OO7
benchmark[2] in a version of our prototype instrumented
to count the number of fetches of each type. The counts
obtained were fed to the analytic model and used to predict
average fetch latency. These results are presented in Sec-
tion 5.3. They show that our techniques retain the benefits of
cooperative caching in workloads with coarse-grained shar-
ing and can significantly improve performance in workloads
with fine-grained sharing; they reduce average client fetch
latency by up to a factor of 3 and the number of disk reads
to service fetches by up to a factor of 3.5. Furthermore,
installation fetches from the cooperative cache reduce the
number of installation reads by up to a factor of 52 and the
average installation fetch latency by up to a factor of 11.
The significant reductions in the number of disk reads show
that our techniques improve the scalability of the system
when disk I/O is the performance bottleneck.

We chose the experimental methodology just described
instead of directly measuring elapsed times because our ma-
chines are connected by a slow Ethernet network; elapsed
times measured in our environment would be dominated by
the network overheads. Furthermore, cooperative caching
was designed for a large client population but we have only
a small number of client machines. We simulate several
client machines using a single machine, which prevents us
from collecting meaningful elapsed times. Our experimen-
tal methodology allows us to circumvent these problems
while still obtaining sound results.

5.1 Analytic Model
This section presents a simple analytic model to estimate

the cost of fetches and installation of modified objects in the
database. Using the notation shown in Figure 3, the fetch
and installation costs for various cases in our scheme are:

1. Modified objects fetched from m-cache:

�������
Disk time taken to read

�
bytes�������

Network latency for message with
�

bytes
(including processing overheads)	
���
�
Processor time taken to perform job

�
� Size of a page� Average size of a message containing

modified objects� Size of a request message (without data)

Figure 3: Parameters of the Model.

�
�
m-cache

������� � ������� � �

2. Page fetch from server disk:�
�
disk
������� � ������� � ������� � �

3. Page fetch from a client with a complete page:�
�
complete

������� � ������� � ����	
� unswiz
������� � �

4. Page fetch from a client with a reconstructible page:
�
�

reconstructible
������� � ������� � ����	
� recon

���
	
�

unswiz
������� � �

5. Installation fetch from server disk: � � disk
����� � � �

6. Installation fetch from client with a complete page:
� � complete

������� � ����	
� unswiz
������� � �

7. Installation fetch from client with a reconstructible
page:

� � reconstructible
������� � ����	
� recon

�!�
	
�

unswiz
������� � �

Here, P(recon) is the cost to reconstruct a fragment by fill-
ing its holes. P(unswiz) is the cost of unswizzling. Like
many other object-oriented databases, Thor uses pointer
swizzling [17] to make code at clients run faster: persistent
references stored in cached copies of objects are replaced
by virtual memory pointers before they are used. Swiz-
zled references in a page must be unswizzled into persistent
references before the page can be shipped to another client.

Our cache coherence mechanism introduces extra pro-
cessing overhead at the server to maintain the status of pages
cached by clients; we ignore these costs because they are
negligible compared to the total fetch or installation costs.

5.2 Latency of Different Fetch Types
This section presents results of microbenchmarks that

measure the processing costs defined in our analytic model
in Section 5.1. The results show that the overhead intro-
duced by our cache consistency mechanism on the fetch path
is small. The experiments were run on an unloaded DEC Al-
pha 3000/400, 133 MHz, workstation running DEC/OSF1;
we used a page size of 8 KB.

0 20 40 60 80 100

Percentage of swizzled objects in page

0

200

400

600

800

1000

U
ns

w
iz

zl
in

g
ti

m
e

(u
se

cs
)

Figure 4: Elapsed time unswizzling a page,
	
���������	��

�

0 5 10 15 20 25 30 35

Number of reconstructed objects

0

3

6

9

12

15

R
ec

on
st

ru
ct

io
n

ti
m

e
(u

se
cs

)

Figure 5: Elapsed time reconstructing a page,
	
� �
����� ��� .

Figures 4 and 5 presents the unswizzling and recon-
struction costs in our prototype as the number of objects to
be unswizzled or reconstructed is increased. Reconstruc-
tion times are low because they only involve setting up an
I/O vector for a readv routine to read the new versions of
modified objects into the cache. Unswizzling costs are high
because unswizzling is memory intensive. However, in the
experiments described in the next section, we observed an
average percentage of swizzled objects per-page of 25%;
the unswizzling cost for this percentage is about 320 � s.
Furthermore, the unswizzling cost is not directly related to
support for fine-grained sharing; this cost will be incurred by
any cooperative caching system that uses pointer swizzling.
On the other hand, unswizzling does increase the cost of
fetching pages (whether complete or reconstructible) from
client caches. Our algorithm also incurs a cost for restoring
objects modified by the current transaction to their com-
mitted state; we ignore this cost because restoring rarely
occurred in our experiments.

Figures 6 and 7 present the predicted fetch and installa-
tion fetch latencies using the analytic model, the previous
graphs, and the worst case observed values for number of
objects unswizzled or reconstructed that we observed in the
experiments described in Section 5.3. The network times
are for a fast implementation of TCP over ATM, U-Net [22],
and the disk times are for a modern disk, a Barracuda 4 [21].

0

500

1000

1500

2000

14500

F
et

ch
 t

im
e

(u
se

cs
) disk

reconstructible
complete
m-cache

Figure 6: Predicted fetch latencies.

0

500

1000

1500

2000

13500

In
st

al
la

ti
on

 f
et

ch
 t

im
e

(u
se

cs
)

disk
reconstructible
complete

Figure 7: Predicted installation fetch latencies.

Note that the y-axis is broken to represent the true disk times.
Fetches from disk have the same latency with or without

our techniques, as do fetches of complete pages from other
client caches. Split caching and fragment reconstruction
introduce two new fetch types: fetches of modified objects
from the m-cache and fetches of reconstructible pages from
other client caches. The first type of fetch is the fastest,
and can therefore reduce fetch overheads relative to other
systems when there is true fine-grained sharing. Fetch-
ing reconstructible pages from other client caches is only
slightly more expensive than fetching complete pages be-
cause reconstruction messages were smaller than 512 bytes
in our experiments and the processing cost of reconstructing
a page is lower than 14 � s.

We ignored contention for the disk and network in our
model. Our scheme does not increase disk contention rel-
ative to other systems. Since reconstruction messages and
replies to fetches from the m-cache are small, we also expect
contention on the network to be similar in our prototype and
in other cooperative caching systems.

Our scheme slows down clients that service fetch re-
quests. These clients need to send and receive messages,
reconstruct pages and unswizzle pages. The only cost that
is related to support for fine-grained sharing is the recon-
struction cost, and it is low.

Therefore, we conclude that split caching and fragment
reconstruction do not introduce any significant overhead

0 2 4 6 8 10 12 14
Percentage of modified objects

0

2000

4000

6000

F
et

ch
es

0 2 4 6 8 10 12 14
Percentage of modified objects

0

5000

10000

15000

F
et

ch
es

m-cache

reconstructible

complete

disk

Figure 8: Fetch breakdown for coarse-grained sharing with 20% and 50% shared accesses (6 MB m-cache).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

500

1000

1500

2000

2500

F
et

ch
es

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

2000

4000

6000

8000

F
et

ch
es

m-cache

reconstructible

complete

disk

Figure 9: Fetch breakdown for fine-grained sharing with 20% and 50% shared accesses (6 MB m-cache).

on the fetch path relative to the basic cooperative caching
mechanism. The predicted installation fetch latencies in
Figure 7 show that installation fetches from client caches
can significantly speed up installations.

5.3 OO7 Benchmark
This section describes experiments that ran the multi-

user OO7 benchmark[2, 5] in our prototype to determine
the distribution of fetches by type. We chose the multi-
user OO7 benchmark to generate the workloads, because
it is a standard benchmark and it allows us to control the
percentages of shared and write accesses.

The OO7 database contains one private module per client
and a shared module. Each private module has a tree of
assembly objects and 500 composite parts. The internal
nodes of this tree have 3 children, and its leaves point to 3
composite parts chosen randomly from among the module’s
composite parts. The shared module scales with the number
of clients. It has a root assembly object with one subtree
per client. Each subtree has 100 composite parts. The
subtrees are identical to the trees in the private module,
except that they are one level shorter. The leaves of a subtree
point to 3 composite parts chosen randomly from among
the composite parts corresponding to the subtree. Each
composite part contains a graph of 20 atomic parts linked
by connection objects; each atomic part has 3 outgoing
connections. The total size of the database is 85 MB.

Clients traverse the database concurrently. Each traversal
consists of 2000 transactions. Transactions randomly pick
the client’s private module or the shared module, choose a
random path down the module’s assembly tree, and execute

an operation on one of the composite parts referenced by the
leaf assembly. This operation can be a read or a write op-
eration, and it can be coarse-grained or fine-grained. Read
and write coarse-grained operations execute a depth-first
traversal of the entire graph of atomic parts in a composite
part; read operations do not modify any object; and write
operations modify all the atomic parts. The fine-grained op-
erations read or write a random atomic part in the composite
part graph. Coarse-grained write transactions modify 13.7%
of the accessed objects and fine-grained write transactions
modify 3.4% of the accessed objects.

5.3.1 Experimental Setup

We evaluated two different versions of our system: one
that does not use fragment reconstruction and one that does.
The first version of the system allows clients to cache pages
with holes, but prevents clients and the server from fetching
pages with holes from other client caches. Therefore, indi-
vidual clients still benefit from fine-grained sharing support
because they need not evict a page just because some object
in that page was modified by another client. We do not eval-
uate this benefit because that has been done by others [4].
Instead, we evaluate the benefit of allowing clients to fetch
pages with holes from other client caches.

We ran our experiments for a system with 8 clients, 4
each on 2 machines, and a single server on another machine.
Each client manages its cache greedily, without global cache
coordination. All the clients had a cache of 14 MB. The
database size is 76% of the sum of the cache sizes of all
clients, but only 16% of the database fits in the cache of a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

500

1000

1500

2000

2500

3000

3500

F
et

ch
 t

im
e

(u
se

cs
)

No reconstruction
Complete system

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

500

1000

1500

2000

2500

3000

3500

F
et

ch
 t

im
e

(u
se

cs
)

No reconstruction
Complete system

Figure 10: Predicted average fetch times for fine-grained sharing with 20% and 50% shared accesses (6 MB m-cache).

single client. The server had a small page cache (500 KB)
used to store pages while modifications from the m-cache
are being installed in them; the number of fetches serviced
from this cache is negligible. The m-cache was 6 MB.
These settings represent a reasonable configuration where
most fetches are serviced from other clients’ caches. These
settings are adequate because we do not intend to prove that
cooperative caching is a good technique, but to demonstrate
the impact of the fragment reconstruction algorithm in a
configuration where cooperative caching works well.

We ran the traversals twice starting from cold client
caches. The results presented are from the second run to
filter out cold cache misses.

5.3.2 Fragment Reconstruction
Figures 8 and 9 show the number of client fetches serviced
at each level of the caching hierarchy for coarse and fine-
grained transactions. The x-axis corresponds to the average
percentage of objects modified by a transaction relative to
the total number of objects it accesses. We varied the per-
centage of modified objects by changing the mix of read and
write operations. The m-cache label corresponds to fetches
that are serviced by sending the modifications cached in
the m-cache; reconstructible includes all fetches that are
serviced by reconstructing a page in another client’s cache;
complete corresponds to the fetches serviced by using a
complete page in another client’s cache; and disk includes
all the fetches that are serviced from disk.

Figure 8 corresponds to a workload where operations
are coarse grained, and therefore sharing is coarse-grained.
In the graph on the left, 20% of the accesses go to the
shared region; in the graph on the right, 50% go to the
shared region. There are more fetches when the percentage
of shared accesses is 50% because of reduced temporal
locality.

As expected, in the coarse-grained workload the perfor-
mance benefit of fragment reconstruction is not significant.
Most fetches are serviced using complete pages in other
client caches; at most 3% of fetches benefit from recon-
struction. This happens because most pages in the database

have objects from a single composite part graph, and write
operations modify all atomic parts in this graph. Therefore,
the last writer of a page is likely to have a complete ver-
sion of the page. While not improving performance in this
workload, our consistency mechanism does not degrade per-
formance, because the cost of fetching complete pages from
other client caches is mostly independent of split caching
and fragment reconstruction (as explained in the previous
section).

Figure 9 presents results for a workload where operations
are fine grained and there is a high degree of false sharing.
In the graph on the left, 20% of accesses go to the shared re-
gion; in the graph on the right, 50% go to the shared region.
As expected, the importance of fragment reconstruction in-
creases with the percentage of modified objects.

In this fine-grained sharing workload, up to 28% of
fetches take advantage of fragment reconstruction and the
number of disk reads needed to service fetch requests is
reduced by a factor of up to 3.5. Each operation reads and
writes a single atomic part in a composite part graph. There-
fore, clients can access a cached copy of a page repeatedly
without incurring coherence misses. Furthermore, a signifi-
cant portion of the misses that do occur can be serviced from
the m-cache, which provides a fast path for the transmission
of new values when there is true sharing.

The portion of fetches in the reconstructible category is
also high, because the copy of a page p cached by a client
is likely to have modifications made by that client, but not
modifications recently made by other clients. Therefore,
it is likely that no client is caching a complete copy of p.
When a client that is not caching p accesses an object in p,
our scheme reconstructs the fragment cached by one of the
clients and avoids a disk access.

5.3.3 Average Fetch Latency
With the fetch counts obtained above, we used the analytic
model to predict the average fetch time for each workload
(using parameters for modern disks and networks, as de-
scribed in Section 5.2). Figure 10 shows the average fetch
times predicted for both versions of the system for the ex-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

1000

2000

3000

F
et

ch
es

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

2000

4000

6000

8000

10000

F
et

ch
es

m-cache

reconstructible

complete

disk

Figure 11: Fetch breakdown for fine-grained sharing with 20% and 50% shared accesses (2 MB m-cache).

0 2 4 6 8 10 12 14
Percentage of modified objects

0

2000

4000

6000

8000

10000

In
st

al
la

ti
on

 f
et

ch
es

0 2 4 6 8 10 12 14
Percentage of modified objects

0

2000

4000

6000

8000

In
st

al
la

ti
on

 f
et

ch
es

reconstructible

complete

disk

Figure 12: Installation fetch breakdown for coarse-grained sharing with 20% and 50% shared accesses (6 MB m-cache).

perimental points shown in Figure 9. We can observe that
reconstruction reduces the average fetch time significantly,
by up to a factor of 3, when compared to a version of our
prototype where clients can only fetch complete pages from
other client caches. The total number of fetches increases
with the percentage of modified objects because there are
more coherence misses. In either system, a significant por-
tion of these misses is serviced from the m-cache. In the
system with reconstruction, this causes the average fetch
time to decrease when the percentage of writes increases.
In the system without reconstruction, this benefit is offset by
the increase in the number of fetches from disk (to fetch the
reconstructible pages), and the average fetch time increases
with the percentage of modified objects.

The fetch frequency counts potentially depend on the
rate of m-cache truncation. The 6 MB m-cache is not be-
ing truncated in the fine-grained sharing workload because
all modifications fit in the m-cache. Therefore, we ran the
same experiments with a 2 MB m-cache. The results are
presented in Figure 11. Even with this small m-cache, there
is no m-cache truncation for workloads with less than 2.5%
modified objects. Figures 9 and 11 show that when there are
at least 2.5% modified objects, a 2 MB m-cache causes more
fetches to be satisfied with complete pages or disk reads, and
fewer fetches to be satisfied from the m-cache or with recon-
structible pages. These effects occur because the m-cache
is smaller (so that we hit there less often); the server prop-
agates updates from the m-cache to clients on installation
fetches (so that there are more complete pages); and be-
cause some pages at clients become unreconstructible when

the m-cache is truncated. However, the differences between
the two graphs are small and do not affect the predicted av-
erage fetch times significantly. With the small m-cache, the
predicted average fetch time increases by at most 6% in the
worst case. We also ran experiments with a 1 MB m-cache
and the difference in predicted average fetch times (relative
to the experiments with the 2 MB m-cache) is always less
than 1%. Therefore, we conclude that reducing the size of
the m-cache does not significantly degrade the performance
of fragment reconstruction for these workloads.

5.3.4 Installation Read Avoidance

This section presents results showing the number of installa-
tion fetches serviced at each level of the caching hierarchy.
Figure 12 corresponds to a workload where operations are
coarse-grained, and Figure 13 corresponds to a workload
where operations are fine-grained. In the graphs on the left,
20% of accesses go to the shared region; in the graphs on the
right, 50% go to the shared region. We use a 6 MB m-cache
for the coarse-grained workload and a 2 MB m-cache for the
fine-grained workload. The number of installation fetches
increases with the percentage of modified objects as ex-
pected, and there are no installation fetches with fewer than
2.7% modified objects. In the coarse-grained workload,
there are very few installation fetches from reconstructible
pages for the same reasons that there were very few fetches
from reconstructible pages in this workload.

The results show that only a very small percentage of
installation fetches are serviced from disk; our technique
reduces the number of installation reads by a factor of 52.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

2000

4000

6000

In
st

al
la

ti
on

 r
ea

ds

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Percentage of modified objects

0

1000

2000

3000

4000

5000

In
st

al
la

ti
on

 r
ea

ds

reconstructible

complete

disk

Figure 13: Installation fetch breakdown for fine-grained sharing with 20% and 50% shared accesses (2 MB m-cache).

Therefore, servicing installation reads from client caches
can substantially reduce disk bandwidth consumption. This
technique also reduces the average installation latency pre-
dicted by the analytic model by a factor of approximately
11 for both types of workloads (1.15 msec as opposed to
12.6 msec).

6 Conclusions
This paper has presented a new architecture, split caching

with fragment reconstruction, for use in transactional dis-
tributed object storage systems. The architecture allows
such systems to benefit from two techniques that have been
shown to improve performance, cooperative caching and
support for fine-grained sharing.

The paper also presents results of performance studies
that investigated the benefits of our approach. The studies
show that our techniques add little overhead in cases where
there is no fine-grained sharing, and provide substantial per-
formance improvements when fine-grained sharing affects
the pages fetched from the cooperative cache. In particular,
fetching recent updates from the m-cache to fill in holes
provides good performance when there is true sharing, and
fragment reconstruction allows use of pages in the coop-
erative cache when there is false sharing. In addition, our
techniques substantially reduce the load on server disks by
reducing disk reads for both fetches and installations. These
results justify further study of the new architecture to com-
plete the analysis, compare it with other techniques, and
determine the best policy for performing page replacement
in the cooperative cache.

References
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Opti-

mistic Concurrency Control Using Loosely Synchronized Clocks. In
SIGMOD, 1995.

[2] M. Carey et al. A Status Report on the OO7 OODBMS Benchmarking
Effort. In OOPSLA Proceedings, 1994.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data caching
tradeoffs in client-server DBMS architectures. In SIGMOD, 1991.

[4] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained Sharing
in a Page Server OODBMS. In SIGMOD, 1994.

[5] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The
OO7 Benchmark. In SIGMOD, 1993.

[6] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for Reducing
Consistency-Related Communication in Distributed Shared Memory
Systems. In ACM Transactions on Computer Systems, August 1994.

[7] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson. A
Quantitative Analysis of Cache Policies for Scalable Network File
Systems. In SIGMETRICS, 1994.

[8] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System
Performance. In OSDI, 1994.

[9] A. Delis and N. Roussopoulos. Performance and Scalability of Client-
Server Database Architecture. In VLDB, 1992.

[10] M. Feeley, J. Chase, V. Narasayya, and H. Levy. Integrating Co-
herency and Recoverability in Distributed Systems. In OSDI, 1994.

[11] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and
C. Thekkath. Implementing Global Memory Management in a Work-
station Cluster. In SOSP, 1995.

[12] M. Franklin, M. Carey, and M. Livny. Global Memory Management
in Client-Server DBMS Architectures. In VLDB, 1992.

[13] S. Ghemawat. The Modified Object Buffer: A Storage Manage-
ment Technique for Object-Oriented Databases. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

[14] R. Gruber. Optimism vs. Locking: A Study of Concurrency Con-
trol for Client-Server Object-Oriented Databases. PhD thesis, Mas-
sachusetts Institute of Technology, 1997.

[15] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In ISCA, 1992.

[16] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Henessy.
The Directory Based Cache Coherence Protocol for the DASH mul-
tiprocessor. In ISCA, 1990.

[17] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber,
U. Maheshwari, A. Myers, and L. Shrira. Safe and Efficient Sharing
of Persistent Objects in Thor. In SIGMOD, 1996.

[18] J. O’Toole and L. Shrira. Shared data management needs adaptive
methods. In Proceedings of IEEE Workshop on Hot Topics in Oper-
ating Systems, 1995.

[19] James O’Toole and Liuba Shrira. Opportunistic Log: Efficient In-
stallation Reads in a Reliable Object Server. In OSDI, 1994.

[20] P. Sarkar and J. Hartman. Efficient Cooperative Caching Using Hints.
In OSDI, 1996.

[21] Seagate Technology. http://www.seagate.com, March 1997.

[22] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-
Level Network Interface for Parallel and Distributed Computing. In
SOSP, 1996.

