Lawrence Berkeley National Laboratory Recent Work

Title
FRAGMENT SPIN ORIENTATION IN DEEP-INELASTIC REACTIONS FROM ANISOTROPY MEASUREMENTS OF CONTINUUM y-RAYS

Permalink
https://escholarship.org/uc/item/78z64116
Author
Aguer, P.
Publication Date
1979-08-01

$[B$ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Submitted to Physical Review Letters

FRAGMENT SPIN ORIENTATION IN DEEP-INELASTIC REACTIONS
FROM ANISOTROPY MEASUREMENTS OF CONTINUUM γ-RAYS
P. Aguer, G. J. Wozniak, R. P. Schmitt, D. Habs,
R. M. Diamond, C. Ellegaard, D. L. Hillis, C. C. Hsu,
G. J. Mathews, L. G. Moretto, G. U. Rattazzi,
C. P. Roulet, and F. S. Stephens

August 1979

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Divísion, Ext. 6782

NECEIVED LAWRENCE BERKELEY LABORATORY

LIBRARY AND DOCUMENTS SECTION

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

FRAGMENT SPIN ORIENTATION IN DEEP-INELASTIC REACTIONS FROM ANISOTROPY MEASUREMENTS OF CONTINUUM γ-RAYS

P. Aguer, (a) G. J. Wozniak, R. P. Schmitt ${ }^{(b)}$, D. Habs, (c) R. M. Diamond, C. Ellegaard, (d) D. L. Hillis, C. C. Hsu; (e) G. J. Mathews, L. G. Moretto, G. U. Rattazzi, C. P. Roulet, (f), and F. S. Stephens,

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

The in-plane and out-of-plane anisotropy has been measured for γ-rays in coincidence with deep-inelastic products from the $1064-\mathrm{MeV}$ ${ }^{136} \mathrm{Xe}+{ }^{197} \mathrm{Au}$ reaction. The γ-ray energy spectra exhibit a bump corresponding to a dominantly stretched-E2 cascade, but only a small out-of-plane anisotropy, indicating a misalignment of the fragment spins. A simple model is used to extract a rms misalignment angle of $34^{\circ} \pm 7^{\circ}$.

[^0]Simple friction models suggest that during deep-inelastic (DI) reactions the angular momentum transferred into fragment spin should be normal to the plane of, the reaction. This spin alignment should yield a strong anisotropy in the out-of-plane to in-plane intensity ratio for the γ-rays emitted by the fragments if most of the spin is carried off by stretched quadrupole (E2) transitions: Large anisotropies are indeed observed ${ }^{1}$ for discrete γ-rays from light systems such as ${ }^{16} 0+{ }^{27}$ Al. Similarly, a strong anisotropy is also expected and has been observed in out-of-plane α-particle ${ }^{2}$ and sequential fission fragment ${ }^{3-5}$ angular distributions. In contrast, measurements ${ }^{6-9}$ of continum γ-rays have yielded relatively small anisotropies.

To account for this behavior, two not mutually exclusive explanations have been put forth. On the one hand, the small continuum γ-ray anisotropy could be due to a depolarization mechanism ${ }^{4}, 6,7$ similar to that which occurs in the fission process, namely the excitation of collective modes carrying angular momentum (e.g., bending modes.) On the other hand, even if the fragment spins are aligned, a small anisotropy would result if there is a substantial admixture ${ }^{8}$ of quadrupole and dipole transitions in the γ-ray cascades. The latter explanation may be more proper for light nuclei where the proportion of dipole transitions present in the continuum γ-ray spectra can be large. Thus, it is important to investigate more favorable systems where the γ-ray cascade multipolarity is relatively pure and is known, and where large amounts of angular momentum can be transferred into fragment spin.

To this purpose, we have studied the $1064-\mathrm{MeV}{ }^{136} \mathrm{Xe}+{ }^{197} \mathrm{Au}$ reaction. The symmetric DI products from this reaction are rare-earth nuclei of mass ~ 160 which are known to be good rotors and have been shown ${ }^{10}$ via (HI, xn) reactions to decay mainly by stretched E2 transitions when formed with large spins. The continuum γ-ray energy spectra from such nuclei consist of a prominent ($80 \% \pm 10 \%$) E2 bump ${ }^{10}$ from 0.6 to 1.5 MeV followed by a higher energy statistical tail.

In our experiment, both the projectile- and target-1ike nuclei were detected in coincidence with two $X-Y$ position-sensitive parallelplate avalanche detectors. ${ }^{11}$ These $12 \times 12 \mathrm{~cm}^{2}$ detectors have an intrinsic time resolution of 0.4 ns , and were located at 57° and -37° with respect to the beam axis and at a distance of 30 cm from the target. The γ-rays were detected in four $7.6 \mathrm{~cm} \times 7.6 \mathrm{~cm} \mathrm{NaI}$ detectors 52 cm from the target. These detectors had an intrinsic time resolution of 1.5 ns ; thus, particle-neutron events could be separated from the particle-gamma events of interest in the time spectra. Self-supporting $185 \mu \mathrm{~g} / \mathrm{cm}^{2}{ }^{197} \mathrm{Au}$ targets were placed in a low-mass target holder which was tilted in such a way that all detectors had an unobstructed view of the target.

In order to verify ${ }^{10}$ the amount of $E 2$ component in the γ-ray spectra and its expected anisotropy for the "symmetric products" produced in the $\mathrm{Xe}+\mathrm{Au}$ reaction, we studied ${ }^{154-156}$ Dy nuclei produced in the $617-\mathrm{MeV}{ }^{136} \mathrm{Xe}+\mathrm{Mg}$ compound nucleus reaction.

Representative energy spectra of γ-rays detected in coincidence with the $\mathrm{Ge}(\mathrm{Li})$ detector at -150° are shown in Fig. la. Both the 150° and the 90° raw NaI spectra are characterized by a "bump" of intensity below 1.2 MeV and above that by a lower intensity "statistical" tail. This bump in the γ_{1}-energy (E_{γ}) spectra is evidence that these Dy nuclei de-excite primarily by rotational transitions. ${ }^{10}$ Confirmation of the $E 2$ multipolarity of the transitions in this region comes from measurement of the in-plane γ-anisotropy. Fig. lb shows the ratios $W\left(150^{\circ} \mathrm{in}\right) / \mathrm{W}\left(90^{\circ}\right.$ in $)$ and $W\left(90^{\circ}\right.$ out $) / W\left(90^{\circ} \mathrm{in}\right)$ extracted from the unfolded NaI spectra after Doppler shift and aberration (solid angle) corrections ${ }^{12}$ were made. (The raw data and the unfolded spectra gave the same ratios to within 5%). The observed ratios, $W\left(150^{\circ} \mathrm{in}\right) / W\left(90^{\circ} \mathrm{in}\right)$, of ~ 1.4 and ~ 1.0 for E_{γ} below 1.0 MeV and above 2.0 MeV , respectively, are consistent with previous measurements ${ }^{10}$ yielding for these nuclei an $\sim 80 \%$ stretched E 2 composition for the γ-rays in the bump region. The ratio of $W\left(90^{\circ}\right.$ out $) / W\left(90^{\circ}\right.$ in $)$ doesn't show any marked anisotropy which is also consistent with the above conclusions.

In the main part of this experiment, we produced DI products from the ${ }^{136} \mathrm{Xe}+{ }^{197} \mathrm{Au}$ reaction. Those corresponding to a symmetric division should have masses, and a percentage of E2 transitions similar to the Dy nuclei. When triple coincidences were detected for both deep-inelastic fragments and a γ-ray in one of the NaI counters, the positions of the particles, their time-of-flight difference, E_{γ} and the particle- $T A C$ signal were recorded on magnetic
tape. Assuming a binary reaction mechanism, the Q-value and the masses of both reaction products were extracted. From elastic scattering, the mass resolution was determined to be 16 amu FWHM. To define the reaction plane, the coplanarity of both fragments was restricted to be within $\pm 6^{\circ}$.

In Fig. lc E_{γ} spectra from the symmetric DI products $(152 \leqslant A \leqslant 172)$ and for Q values between -140 and -280 MeV are shown for the 90°-out and 90°-in NaI counters. Both γ-ray spectra show the yrast E2 bump at the same position as observed in the $\mathrm{Xe}+\mathrm{Mg}$ compound nucleus reaction. This similarity indicates a rotational spectrum with predominantly stretched E2 γ-ray transitions in the bump region. For this range of masses, and for the three Q-value bins, $\geqslant-140 \mathrm{MeV}$, -140 to -280 MeV and $<-280 \mathrm{MeV}$, the average γ-ray multiplicity \bar{M}_{γ}, was measured to be 30,38 and 42 , respectively, assuming that 5γ-rays lie below the $360-\mathrm{keV}$ threshold set off-1ine to cut out the back-scatter region. These values indicate a transfer to each fragment of a large amount of angular momentum ($24-36 \hbar$, assuming 6 dipole transitions), though somewhat less than that estimated (44) from the sticking or rolling limit for symmetric fragments and for an $\ell_{\text {max }}$ of 460%.

To extract the γ-anisotropy, the E_{γ} spectra were unfolded, and corrected for Doppler shift and aberration effects. Since one does not know which of the two similar fragments emitted the γ-ray, these last two corrections were made in an average way. In Figure 2, the out-of-plane and in-plane intensity ratios are plotted as a function of E_{γ} for $152 \leqslant A \leqslant 172$ and for three $Q-v a l u e$ bins. The error bars
reflect the uncertainties due to statistics, the above corrections and the unfolding procedure. The ratio $W\left(90^{\circ}\right.$ out $) / W\left(90^{\circ}\right.$ in $)$ equals 0.75 ± 0.1 for E_{γ} between 0.8 and 1.6 MeV (the "bump" region), possibly decreasing slightly with decreasing Q-value. For all values of E_{γ}, the ratio $W\left(150^{\circ} \mathrm{in}\right) / W\left(90^{\circ} \mathrm{in}\right)$ is near unity and independent of Q-value.

The small out-of-plane anisotropy for the bump region ($\sim 80 \%$ E2) implies a substantial misalignment of the fragment angular momenta. The magnitude of this spin misalignment has been estimated by assuming that the probability function for misalignment is gaussian (Poe ${ }^{-\left(\theta^{2} / 2 \sigma^{2}\right.}$) in the polar angle peaked at $\theta=0^{\circ}$. The angular distributions for dipole and quadrupole γ-rays emitted by the depolarized source was then obtained by folding the theoretical angular distributions ${ }^{13}$ with this function, weighting by the solid angle, and integrating over all space. For 80% E2 transitions it was found that a standard deviation, σ, of $34^{\circ} \pm 7^{\circ}$ would reproduce the anisotropy data. If the admixture is 70% stretched E2's, then $\sigma=30^{\circ}$. A1though a larger misalignment has been determined from continuum γ-rays for the $\mathrm{Ne}+\mathrm{Cu}$ system ${ }^{9}$ and a smaller one from discrete γ-rays for the ${ }^{16} 0+{ }^{27}$ A1 system, ${ }^{1}$ these differences could be explained by the narrower ℓ-window available for DI reactions in light systems and also by the larger background of dipole transitions for the ${ }^{20} \mathrm{Ne}+{ }^{63} \mathrm{Cu}$ system ${ }^{9}$ and the absence of such a background for the ${ }^{16} 0+{ }^{27}$ A1 system. ${ }^{1}$

Recently Moretto and Schmitt ${ }^{14}$ have considered the equilibrium statistical excitation of bending, twisting, tilting and wriggling modes which are presumably responsible for the spin depolarization. Utilizing a two-sphere model, they have derived expressions for the angular momentum associated with each of these modes. The bending and twisting modes are degenerate in this model and lead to a random angular momentum I_{R} whose mean square value is $\bar{I}_{R}=(3 \Omega T / 2)^{1 / 2}$, where d is the moment of inertia of one of the fragments and T is the temperature. The wriggling and tilting motions also produce angularmomentum components along all three coordinate axes. In this case, the angular momentum I_{k} is not completely random, but is nearly so and its root mean square value is $\overline{\mathrm{I}}_{\mathrm{k}}=(14 \mathrm{~T} / 5)^{1 / 2}$. The rms misalignment for these two modes is given by the following expressions:

$$
\sigma_{R} \simeq \tan ^{-1}\left(\overline{\mathrm{I}_{\mathrm{R}}^{2}} / \mathrm{S}^{2}\right)^{1 / 2} \text { and } \sigma_{k} \simeq \sin ^{-1}\left(\overline{\mathrm{I}_{\mathrm{k}}^{2}} / 4 \mathrm{~S}^{2}\right)^{1 / 2}
$$

where S is the spin of one of the fragments. Since the modes considered above are independent, the total misalignment can be obtained by adding the two standard deviations in quadrature. Using the experimental values of Q and \bar{M}_{γ}, and assuming rigid moments of inertia to calculate S and T, one obtains a misalignment, σ, of $\sim 35^{\circ}$. A1though the experimental uncertainties are large and the model unsophisticated, the good agreement between the experimental and theoretical values indicates that the observed γ-ray anisotropies are consistent with the thermal excitation of collective modes which depolarize the fragment spins.

In summary, we have established that for symmetric ($A \cong 160$) $D I$ products from the ${ }^{136} \mathrm{Xe}+{ }^{197} \mathrm{Au}$ reaction, the E_{γ} spectra exhibit an E2 bump and a large \bar{M}_{γ}, but a small out-of-plane anisotropy. This provides clear evidence of a depolarization of the fragment angular momentum during the deep-inelastic process. The extracted misalignment is interpreted in terms of a statistical excitation of various depolarizing modes.

ACKNOWLEDGEMENTS

This work was supported by the Nuclear Science Division of the U. S. Department of Energy under contract No. W-7405-ENG-48.

REFERENCES

1. K. Van Bibber et al., Phys. Rev. Lett. 38334 (1977).
2. H. Ho et al., Z. Phys., A283 235 (1977).
3. P. Dyer et al., Phys. Rev. Lett. 39392 (1977).
4. G. J. Wozniak et al., Phys. Rev. Lett. 40 1436 (1978).
5. D. v. Harrach et al., Phys. Rev. Lett. 421728 (1979).
6. M. Berlanger et al., J. Phys. (Paris), Lett. 37 L323 (1976).
7. C. Gerschel et al., Nuc1. Phys. A317 473 (1979).
8. J. B. Natowitz et al., Phys. Rev. Lett. 40751 (1978).
9. R. A. Dayras et al., Phys. Rev. Lett. 42697 (1979).
10. M. A. Deleplanque et a1., Phy. Rev. Lett. 411105 (1978).
11. D. v. Harrach and H. J. Specht, Nuc1. Inst. and Meth. (in press).
12. T. K. Alexander and J. S. Forster, in Advances In Nuclear Physics, Vol. 10, edited by M. Baranger and E. Vogt. (Plenum Press, New York-London, 1978), p. 197.
13. S. R. de Groot and H. A. Tolhoek, in Beta-and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland, Amsterdam, 1955), p. 616.
14. L. G. Moretto and R. P. Schmitt, Phys. Rev. (in press), Lawrence Berkeley Laboratory Report No. LBL 8656.

FIGURE CAPTIONS

Fig. 1. a) γ-ray pulse-height spectra of the two in-plane NaI detectors gated by the $\mathrm{Ge}(\mathrm{Li})$ detector (see text). The anisotropy of the γ-ray in-plane distribution is evident in the "bump" region ($0.6-1.2 \mathrm{MeV}$) in these data. b) The ratios $R=$ $\mathrm{W}\left(150^{\circ}\right.$ in $) / \mathrm{W}\left(90^{\circ}\right.$ in) (squares) and $\mathrm{W}\left(90^{\circ}\right.$ out) $/ \mathrm{W}\left(90^{\circ}\right.$ in) (triangles) are plotted as a function of E_{γ}. The solid symbols represent a $400-\mathrm{keV}$ bin in the unfolded γ-ray spectra whereas the open symbols represent a bin from 2 to 10 MeV .
c) γ-ray pulse-height spectra emitted by symmetric products $(152 \leqslant \mathrm{~A} \leqslant 172)$ from the $1064-\mathrm{MeV}{ }^{136} \mathrm{Xe}+{ }^{197} \mathrm{Au}$ reaction detected in the 90° in-plane and 90° out-of-plane NaI counters.

Fig. 2. The ratios $R=W\left(90^{\circ}\right.$ out $/ 90^{\circ}$ in) (triangles) and $\mathrm{W}\left(150^{\circ} \mathrm{in}\right) \mathrm{W}(90 \mathrm{in})$ (squares) are plotted as a function of E_{γ} for the product mass range $152 \leqslant \mathrm{~A} \leqslant 172$ at three different Q-value bins.

XBL 797-10738 B
Fig. 1.

Fig. 2.
XBL 797-2298

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.
OZLD6 VINYOHITVD 'XGTGYצヨg
UNIVERSITY OF CALIFORNIA

LNGWLYZ

[^0]: a Permanent address:
 b Present address:
 CSNSM-Bat. 104-91406 Orsay, France.
 Cyclotron Institute and Department of Chemistry, Texas A \& M University, College Station, Texas 77840.
 c Permanent address: Physikalisches Institut der Universität, Heidelberg, 6900 Heidelberg, Germany.
 d Permanent address: Niels Bohr Institute, Riso 4000 Roskilde, Denmark.
 e Permanent address: Institut of Atomic Energy, Beijing, China
 f Permanent address: Institut de Physique Nucléaire-B.P. no. 1, 91406 Orsay, France.

