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We investigate emergent quantum dynamics of the tilted Ising chain in the regime of a weak transverse

field. Within the leading order perturbation theory, the Hilbert space is fragmented into exponentially many

decoupled sectors. We find that the sector made of isolated magnons is integrable with dynamics being governed

by a constrained version of the XXZ spin Hamiltonian. As a consequence, when initiated in this sector, the

Ising chain exhibits ballistic transport on unexpectedly long times scales. We quantitatively describe its rich

phenomenology employing exact integrable techniques such as Generalized Hydrodynamics. Finally, we initiate

studies of integrability-breaking magnon clusters whose leading-order transport is activated by scattering with

surrounding isolated magnons.

Introduction.— The celebrated Ising model contributed to

several paradigm shifts in physics. In classical statistical me-

chanics, Onsager’s solution [1] on a two-dimensional lattice

kick-started the development of a general theory of continu-

ous phase transitions. It is well-known that in the presence

of a transverse field only, the one-dimensional quantum Ising

chain is exactly solvable [2–4] and reduces via the Jordan-

Wigner transformation to a free Majorana chain [5]. On the

other hand, the addition of a longitudinal field breaks the inte-

grability of the model. In the ferromagnetic case, this leads to

confinement of fermionic domain walls into bosonic magnons

[6–9]. Recent studies concentrated on aspects of anomalously

slow dynamics [10–15], quantum scarring [16, 17], prether-

malization [18], fractons [19], meson scattering [20, 21], dy-

namics of the false vacuum [22–27] and emergent Z2 lattice

gauge theories [28, 29].

In this paper, we unveil unexpected features of the one-

dimensional quantum Ising model in a weakly tilted field.

Specifically, we investigate transport in the prototypical parti-

tioning protocol [30]: the chain is initialized into two halves

which are then connected, activating transport across the junc-

tion. We observe strong signatures of ballistic behavior for un-

expectedly long times in the regime where the transverse field

is small. Moreover, we discover that the nature of transport

exhibits a strong dependence on the longitudinal field and on

the Ising coupling. Using degenerate perturbation theory as

a tool, we argue that the effective Hamiltonian in this regime

enjoys two separate U(1) conservation laws for the number of

magnons and domain walls. These two symmetries are emer-

gent as they are not imprinted in the microscopic Hamiltonian.

We show that, at leading order in perturbation theory, the ef-

fective dynamics fragments the Hilbert space (expressed in the

canonical local basis) into a large number of independent sec-

tors that scales exponentially in the system size. Among all

sectors we first zoom in on the dynamics of isolated magnons,

which we find to be integrable. This finding accounts for

the emergence of ballistic behavior – a clear signature of

integrability– in contrast to the naively-expected diffusion.

Specifically, this sector is governed by the constrained XXZ

Hamiltonian first investigated by Alcaraz and Bariev [31] with

coordinate Bethe Ansatz. Apart from early studies [32, 33]

this model went unnoticed for a long time, but recently ap-

peared in several independent contexts, e.g. in the constrained

PXXP model [34], in the strongly-coupled regime of a Z2 lat-

tice gauge theory coupled to fermions [35] and in interact-

ing correlated hopping models [36]. At the non-interacting

point, that is non-trivial due to the constraint, it emerges in

the strong coupling limit of the canonical XXZ spin chain

[37–39]. The leitmotif of some of these studies is the phe-

nomenon of Hilbert space fragmentation [40–44] due to im-

posed or emergent constraints which make the constrained

XXZ chain a natural candidate to describe integrable sectors,

if present. Moreover, see also Refs. [45–47] for related in-

tegrable constrained models with medium range interactions.

Using Generalized Hydrodynamics (GHD) [48, 49] (see also

Refs. [50–56]) we analytically tackle transport within the iso-

lated magnon sector. The Alcaraz-Bariev (AB) model inher-

its the rich phenomenology of the XXZ spin chain: trans-

port greatly depends on the interactions and can exhibit sharp

jumps [57]. We find that the hydrodynamics of the AB model

is peculiar on its own, since in certain regimes of interac-

tions quasiparticles carry fractional magnetization, in clear

contrast with the vast majority of integrable models and sig-

naling the collective nature of the excitations. The presence

of two or more neighboring magnons breaks integrability and

probes the transport of surrounding isolated magnons. In-

deed, within the leading order perturbation theory clusters of

magnons are completely immobile in isolation, but we show

they undergo magnon-assisted hopping experiencing biased

diffusion, whose mean and variance are directly connected to

the magnetization current crossing them.

Emergent ballistic transport in the Ising chain in a weak

transverse field— With the help of Time Evolving Block

Decimation (TEBD) [58], we start by numerically investigat-

ing transport in the Ising chain in a tilted magnetic field

H = −J
∑

i

ZiZi+1 − h‖

∑

i

Zi − h⊥

∑

i

Xi, (1)

where Xi and Zi denote the Pauli matrices at site i. In the

partitioning protocol [30], one initializes the state in two dif-
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ferent halves |Ψ〉 = |ΨL〉 ⊗ |ΨR〉 and then lets the system

evolve with the homogeneous Hamiltonian. In Fig. 1 (a)
we choose |ΨL〉 and |ΨR〉 to be the Neel and ferromagnetic

state respectively, and we focus on the regime where the trans-

verse field is weak. While the Hamiltonian (1) is known to

be non-integrable for generic values of the parameters, our

analysis unveils persistent ballistic transport typical of inte-

grable models [48, 49], in contrast with the naively expected

diffusion. With this choice of initial states, we also observe

a strong dependence of transport on the longitudinal field

and the Ising coupling with a lightcone suppression whenever

0 < h‖/J < 4, see Fig. 1 (b). This unexpected behavior can

be ascribed to a peculiar integrable model, as we now discuss.

Effective Hamiltonian.— We analyse the Ising chain (1)

in the regime where the transverse field h⊥ is much smaller

than the two generic (but incommensurate) couplings J and

h‖. To set up a perturbative expansion we split the Hamil-

tonian (1) into the classical Z-dependent part H0 (the Ising

and longitudinal field terms) and the transverse field perturba-

tion. Since [H0, Zi] = 0, the Hamiltonian H0 has an extensive

number of symmetries and trivially splits in the Z-basis into

2L independent blocks. Notwithstanding, its energy spectrum

is organized into degenerate multiplets characterized only by a

pair of emergent U(1) quantum charges: the magnon number

N and the domain wall number D =
∑

i(1−ZiZi+1)/2. By

construction, N and D are both simultaneously preserved by

the effective perturbative dynamics. The transverse field per-

turbation changes the number of magnons and thus can con-

tribute only at even orders of the degenerate perturbation the-

ory. Employing the Schrieffer-Wolff transformation [59, 60],

in the Supplementary Material (SM) [61] we have constructed

the second-order effective perturbative Hamiltonian

H
(2)
eff =−

∑

s=±1

ts
∑

j

Ps
j−1,j+2

(
S+
j S−

j+1 + h.c.
)

− g
∑

j

Zj−1ZjZj+1 − δJ
∑

j

ZjZj+1 − δh‖

∑

j

Zj ,

(2)

where the spin-exchange coupling ts = h2
⊥h

−1
‖ J/(h‖+2sJ),

the projector Ps
i,j = (1 + s(Zi + Zj) + ZiZj) /4 and S±

j =
(Xj ± iYj)/2. Moreover, the induced three-spin coupling

g = h2
⊥h

−1
‖ J2/α and the shifts of the Ising and longitudi-

nal couplings are δJ = −h2
⊥J/α and δh‖ = h2

⊥h
−1
‖ (h2

‖ −
2J2)/(2α), where we introduced α = h2

‖ − 4J2. Corrections

beyond Eq. (2) are O(h4
⊥) and are discussed in [61]. The

Hamiltonian agrees with the previous derivation [62], see also

[21, 36] for related studies. Domain wall conservation en-

forces the projector Ps
i,j ensuring that the two outer spins sur-

rounding the exchange pair point in the same direction. Sim-

ilar type of hopping have been recently discussed in [36–39].

Since only isolated magnons can hop, the perturbative model

(2) supports a large number of immobile (frozen) quantum

states that contain clusters of magnons.

The number Fl of independent frozen states of size l ≫ 1

FIG. 1. Magnetization profiles 〈Sz
j 〉 in the Ising chain at J = 1 and

h⊥ = 0.2 initialized by joining the ferromagnetic and Neel states.

(a) For h‖ = −0.7 we observe ballistic transport with a character-

istic lightcone. (b) For h‖ = 0.7 we find strong suppression of spin

transport. TEBD simulations are done for a chain of length L = 80.

The peculiar transport is captured by the integrable dynamics gov-

erned by the Hamiltonian (3) which emerges for a weak transverse

field h⊥ ≪ (h‖, J). The validity of the phase diagram is within this

limit, see main text for discussion.

scales exponentially Fl ∼ ϕl, where ϕ is the golden ra-

tio [36]. In SM [61] we demonstrate that for chains of size

L ≫ 1 the effective Hamiltonian (2) splits into ϕL+1 inde-

pendent blocks. Such exponential growth is parametrically

larger than the O(L2) scaling expected purely from the two

U(1) emergent symmetries. A similar pattern of fragmenta-

tion of the Hilbert space was discovered in spin models in the

strict confinement regime [36]. Consider first a sector with

N isolated spin-down sites in the spin-up background. In this

case D = 2N and pairs of magnons cannot appear next to

each other. In this sector the second-order Hamiltonian (2)

reduces to

H
(2)
eff → −J

∑

j

P1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+2

)
P1,

(3)

where the projector P1 prohibits two spin-down magnons to

occupy neighbouring sites. The inverse of the coupling J =
2t+ defines the slow time scale associated with hopping of the

isolated magnons. The anisotropy parameter ∆ = 2J/(h‖ −
2J) can be tuned by changing the dimensionless ratio h‖/J .

This model is a constrained version of the celebrated XXZ

chain which was first investigated by Alcaraz and Bariev [31].

Remarkably, the Hamiltonian (3) at ∆ = 1/2 is known to be

a supersymmetric model [63, 64], which can be realized in a

Rydberg-based quantum simulator [65].

Transport in the Alcaraz-Bariev model.— The Alcaraz-

Bariev (AB) model can be generalized to the extended hard-

core constraint P1 → PT prohibiting magnons closer than T
sites. The original papers [31–33] addressed the equilibrium

thermodynamics. For ∆ = 0 and T = 1, the AB model gov-

erns the isolated magnon sector of the folded XXZ spin chain

[37–39]. Here we focus on transport and hydrodynamics of

the AB model at arbitrary ∆.

Being integrable, the AB model possesses an extensive
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number of (quasi-)local conserved quantities [66], with strik-

ing consequences on its nonequilibrium features, hindering

thermalization [67] and featuring ballistic transport [51]. The

AB Hilbert space is made of multiparticle magnonic asymp-

totic states labeled by the set of rapidities {λj}Nj=1, which

generalize the momenta of non-interacting systems. Due to

integrability, multiparticle scattering events can be factorized

in two-body scattering processes, the latter fully described by

the scattering phase Θ(λ, λ′). The scattering phase of the

AB model and of the XXZ spin chain are connected [31, 61]

Θ(λ, λ′) = Tp(λ)− Tp(λ′) +ΘXXZ(λ− λ′), with p(λ) the

momentum of the magnon. The relation resembles the cele-

brated T T̄ deformation, see [68–74] and references therein.

On a finite chain, the allowed rapidities are quantized, sim-

ilarly to the momenta of non-interacting models. However,

the interactions couple the rapidities through the highly non-

linear Bethe equations [61, 75], which explicitly depend on Θ.

Being non-linear, the Bethe equations are difficult to solve. In

the zero density limit (L → ∞, N fixed), the solutions of the

Bethe equations form groups of rapidities sharing the same

real part, but shifted in the imaginary direction. These special

solutions are called strings and are determined by the zeroes

and poles of the scattering matrix eiΘ(λ,λ′) [75] and are read-

ily interpreted as bound states of magnons. Since the factor

eiT (p(λ)−p(λ′)) does not have zeroes or poles, in the AB scat-

tering matrix these are entirely determined by the XXZ scat-

tering matrix. Hence the two models share the same pattern

of strings.

The string hypothesis [75] claims the persistence of strings

even in the thermodynamic limit (L → ∞, N/L = n fixed).

Within the Thermodynamic Bethe Ansatz (TBA) [75], one

opts for a coarse-grained description of the Bethe equations,

defining the so called root densities ρj(λ), one for each string,

where λ parametrizes the (real) center of the string. Then,

Ldλρj(λ) is interpreted as the number of solutions of the jth

string within the interval [λ, λ + dλ]. The interactions af-

fect the occupancy, hence the need of introducing the total

root density ρtj(λ) ≥ ρj(λ) representing full occupancy (see

SM for details [61]). The root densities fully determine the

equilibrium thermodynamics and homogeneous nonequilib-

rium steady states [66, 76, 77]. Moreover, they are the build-

ing blocks of GHD. Since the AB and XXZ models are closely

related, it is worth to address properly the string hypothesis

in the latter. The string classification in the XXZ chain is

textbook material [75] and we summarize it in SM [61]. The

structure of XXZ strings greatly depends on the parameter ∆:

in particular, for |∆| ≥ 1 the string hypothesis, strictly speak-

ing, does not cover the entire phase space. The thermodynam-

ics of the strings built on the all-spin-up reference state covers

only states up to half filling 0 < n < 1/2, with n being the

density of flipped spins. In the XXZ model, one circumvents

this limitation by using the reflection symmetry Sz
j → −Sz

j

and building the string hypothesis on the symmetric all-spin-

down reference state. The two descriptions together cover the

whole phase space and, in addition to the root densities, one

introduces the magnetization sign f = ±1 to specify the sec-

tor. In the case |∆| < 1, the string hypothesis covers all mag-

netization sectors and f is not needed.

In the AB model, the constraint shifts the half-filling point

to the value 1/(2 + T ). Moreover, it breaks the spin reflec-

tion symmetry. In Ref. [31] the Bethe equations of the AB

model in all sectors have been mapped onto the correspond-

ing equations for the XXZ chain in a reduced magnetization-

dependent volume. Building on these ideas, we now deter-

mine the thermodynamics of the AB model at a generic fill-

ing, which is described by the same set of root densities as

the XXZ spin chain. Above half filling, these cannot be inter-

preted as strings anymore; however, for the sake of retaining

a standard notation, we will still refer to these root densities

as strings. In addition, for |∆| > 1 one needs an extra bit

of information f = ±1 that distinguishes the regions below

and above half filling, respectively. When addressing ther-

modynamics and transport, it is crucial to know the amount

of magnetization carried by each string. Within the ordinary

string hypothesis, this is simply the number of magnons be-

longing to the same bound state. In the XXZ case, one has

mXXZ
j = f|mXXZ

j |, with |mXXZ
j | a f−independent inte-

ger. On the other hand, in the AB model we find an explicitly

f−dependent magnetization mj = [1+T (1− f)/2]−1mXXZ
j .

We observe that for f = −1 (needed if |∆| > 1) the string

magnetization mj becomes fractional! This signals the lack

of microscopic interpretation of the root density as a bound

state of magnons. We found that the non-trivial f−dependence

extends from the magnetization to thermodynamic observ-

ables. To see that we consider the TBA string scattering phase

Θj,j′(λ, λ
′) that, whenever the string hypothesis holds, is ob-

tained from Θ(λ, λ′) summing over the constituents of the

string. In all sectors it can be written as

Θj,j′(λ, λ
′) = Tpj(λ)mj′ − Tmjpj′(λ

′) + ΘXXZ
j,j′ (λ− λ′) .

(4)

The appearance of the magnetization mj makes Θj,j′ ex-

plicitly f−dependent. In addition, we find that f renor-

malizes the total root density 2πσjρ
t
j = (∂λpj)

dr(1 +

T (1 − f)/2)−1, where σj is the string parity and the

standard definition of dressing is (∂λpj)
dr = ∂λpj −

∑

j′

∫
dλ
2π∂λΘj,j′(λ, λ

′)ϑj′(λ
′)σj′(∂λ′pj′)

dr, with ϑj =

ρj/ρ
t
j being the filling fraction. With these caveats, one

can recover the full equilibrium thermodynamics by stan-

dard methods: we leave the details to SM [61] and move

on towards discussing hydrodynamics. Let us imagine that

the system, still governed by the homogeneous AB Hamilto-

nian, features a long wavelength inhomogeneity in the state.

In the limit of weak inhomogeneities, one can invoke lo-

cal relaxation to (weakly) space-time dependent root densi-

ties. This is the idea behind GHD [48, 49], which in its

simplest form describes the convective expansion of particles

∂tρj(λ) + ∂x[v
eff
j (λ)ρj(λ)] = 0. The effective velocity

veff
j (λ) = (∂λǫj(λ))

dr/(2πσjρ
t
j(λ)) , (5)

depends on the state due to interactions, making the equation

non-linear. Above, ǫj is the energy carried by the string. In
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FIG. 2. (a) The magnetization profile of a chain of length L = 80
evolved with TEBD from |Neel〉⊗ |ferro〉 at large time (measured in

the AB units [J−1]) tAB = 20 approaches the GHD prediction. For

the Ising model we choose parameters h⊥ = 0.5, h‖ = 6 and J = 1,

corresponding to ∆ = 0.5 in the AB model. In the inset, we show

the collapse of the AB simulations on the GHD analytical prediction.

(b) To highlight magnetization jumps in |∆| > 1 (precisely, ∆ =
1.5,J = −1), we consider the partitioning from |GS〈Z〉〉 ⊗ |ferro〉
with |GS〈Z〉〉 the ground state of the AB model in the sector at fixed

magnetization 〈Z〉 for a chain of length L = 120. For the left-side

magnetization being below (top) and above (bottom) the half-filling

dotted line, the profile exhibits qualitatively different behaviour.

contrast to the AB model, in most integrable systems the iden-

tity 2πσjρ
t
j = (∂λpj)

dr holds, leading to the alternative more

intuitive definition veff
j (λ) = (∂λǫj)

dr/(∂λpj)
dr that was origi-

nally reported in Refs. [48, 49]. However, in a recent rigorous

proof [55, 78, 79], Eq. (5) naturally emerges from the calcu-

lations. At a technical level, Eq. (5) arises in the AB model

naturally by manipulating the hydrodynamic equations [61].

To the extent of our knowledge, this is the only model with

this feature. In the case with |∆| > 1, the spin flip continu-

ity ∂tn + ∂xjn = 0, with n = (1 − f)/(2 + T (1 − f))−1 +
∑

j

∫
dλmjρj(λ) and jn =

∑

j

∫
dλveff

j (λ)mjρj(λ), closes

the hydrodynamic equations giving a further condition on f,

similarly to the XXZ model [57].

The partitioning protocol and GHD.— We now apply

GHD of the AB model to the partitioning protocol. After a

short transient the profile of local observables becomes scale-

invariant [48, 49] 〈O(t, x)〉 = F [x/t] and curves at different

time collapse when plotted as a function of the ray ζ = x/t.
As we show in Fig. 2 (a), if one starts from an initial state with

only isolated magnons the Ising chain agrees with the underly-

ing AB description (up to a time scale t ∼ h−4
⊥ ) and supports

ballistic transport. Note that for |∆| ≥ 1, i.e. 0 ≤ h‖/J ≤ 4,

the magnetization sign f is responsible of sharp jumps when-

ever states from the two different magnetization sectors are

joined. At t = 0, the f(x) profile is a step function and due to

discreteness of f, GHD cannot smoothen its profile, but only

moves the position of the jump. The explicit f−dependence

of the TBA induces non-analyticities not only in the magneti-

zation profile (as in the XXZ chain [57]), but in all conserved

charges.

An extreme example is presented in Fig. 1: for |∆| ≥ 1, the

FIG. 3. (a) The level statistics analysis shows compatibility with

the Gaussian Orthongonal Ensamble [49], suggesting that the sec-

tor with a two-magnon cluster is not integrable. The distribution

function P (r) is defined in [61] and computed with the exact di-

agonalization package QuSpin [80, 81]. (b) A two-magnon cluster,

initially at the center of a chain of length L = 80 bipartitioned into

anti-ferromagnetic and ferromagnetic halves, can move to the left by

virtue of the magnon-assisted hopping. We track its position by mea-

suring the projector on two consecutive flipped spins P↓↓
i,i+1. (c) At

large times, the position 〈x〉 and variance 〈x2〉 − 〈x〉2 of the cluster

evolve linearly in time, as described in the main text. The TEBD

simulations for (b) and (c) are done with the Ising Hamiltonian with

parameters corresponding to ∆ = 0.5 and J = −1.

Neel state and the ferromagnetic states have the exactly same

trivial root density ρj(λ) = 0, but differ in the sign of f [61].

Hence, any smooth dependence of the profile is suppressed

and only the jump, that is pinned at the origin, remains. In this

case, transport is inhibited. Whenever the initial root density

of the two halves is known, GHD provides an exact solution

of the partitioning protocol, see Fig. 2 and SM [61] for further

evidence.

Beyond isolated magnons.— Sectors which contain

frozen clusters of magnons appear to be generically not inte-

grable: their energy level statistics [82, 83] falls into the class

of the Gaussian orthogonal random matrix ensemble, see Fig.

3 (a) and [61] for a detailed analysis. As mentioned before,

within leading order perturbation theory clusters are frozen

when isolated [84] and do not contribute to transport by them-

selves, but their mobility is activated by the scattering with a

magnon. If the scattering is reflective, the cluster stands still,

but if transmission occurs the cluster hops by two sites in the

direction opposite to the traveling magnon. Therefore, one

can relate the cluster displacement x with the total magneti-

zation transported through it as x = 2δSz . Given that, the

cluster position reflects the local transport of spin and its fluc-

tuations. At late times, a cluster of two magnons undergoes a

biased random walk, hopping in the left and right directions

with certain rates RL,R which depend on the interactions with

the magnonic gas and being proportional to its density. Hence,

at late time the cluster experiences diffusion [61] with a linear

growth of the average position and variance, see Fig. 3.
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Conclusions and outlook.— We discussed the rich phe-

nomenology and transport in the weakly tilted Ising spin

chain, exhibiting fragmentation, emergent integrability and

magnon-assisted cluster dynamics. Rydberg atoms in opti-

cal tweezers could be used to probe the slow exotic physics of

magnons and clusters discussed here. This experimental plat-

form provides a versatile tool for studying many-body quan-

tum dynamics of Ising-type models in a tilted field [85–87].

The ability to tune the model parameters and the unprece-

dented control of the initial state [88] opens a pathway to-

wards experimental investigation of the constrained integrable

dynamics emerging in the Ising model in a weak transverse

field. In particular, the latter can be seen as a quantum sim-

ulator of the Alcaraz Bariev model with completely tunable

interaction. Finally, interesting questions concerning the role

of a finite density of integrability-breaking clusters on the late

time thermalization and transport remain open for future in-

vestigations.
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[58] U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011

Special Issue.

[59] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

[60] S. Bravyi, D. P. DiVincenzo, and D. Loss, Annals of Physics

326, 2793 (2011).

[61] Supplementary Material for construction of the effective Hamil-

tonian; integrability and hydrodynamics of the Alcaraz-Bariev

model; analysis of the energy level statistics; dynamics of a

two-magnon cluster.

[62] C.-J. Lin and O. I. Motrunich, Phys. Rev. A 95, 023621 (2017).

[63] P. Fendley, K. Schoutens, and J. de Boer, Phys. Rev. Lett. 90,

120402 (2003).

[64] P. Fendley, B. Nienhuis, and K. Schoutens, Journal of Physics

A: Mathematical and General 36, 12399 (2003).

[65] J. Minar, B. van Voorden, and K. Schoutens, “Kink dynamics

and quantum simulation of supersymmetric lattice hamiltoni-

ans,” (2020), arXiv:2005.00607 [quant-ph].

[66] E. Ilievski, M. Medenjak, T. Prosen, and L. Zadnik, Journal of

Statistical Mechanics: Theory and Experiment 2016, 064008

(2016).

[67] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.

Lett. 98, 050405 (2007).

[68] A. B. Zamolodchikov, “Expectation value of composite field tT̄
in two-dimensional quantum field theory,” (2004), arXiv:hep-

th/0401146.

[69] Y. Jiang, “tT̄ -deformed 1d bose gas,” (2020),

arXiv:2011.00637 [hep-th].

[70] J. Cardy and B. Doyon, “tt deformations and the width of fun-

damental particles,” (2021), arXiv:2010.15733 [hep-th].

[71] B. Doyon, J. Durnin, and T. Yoshimura, “The space of in-

tegrable systems from generalised tT̄ -deformations,” (2021),

arXiv:2105.03326 [hep-th].

[72] M. Medenjak, G. Policastro, and T. Yoshimura, Phys. Rev. D

103, 066012 (2021).

[73] E. Marchetto, A. Sfondrini, and Z. Yang, Phys. Rev. Lett. 124,

100601 (2020).

[74] B. Pozsgay, Y. Jiang, and G. Takács, Journal of High Energy
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Supplementary Material
Fragmentation and emergent integrable transport in the weakly tilted Ising chain

Alvise Bastianello, Umberto Borla, Sergej Moroz

1. SECOND-ORDER EFFECTIVE THEORY

Here we derive the effective Hamiltonian by adopting the Schrieffer-Wolff transformation [59, 60]. While the unperturbed

Hamiltonian H0 trivially preserves the number of magnons N and the number of domain walls D, the perturbation V =
−h⊥

∑

i Xi changes them. We eliminate transitions that do not conserve N and D order by order in h⊥ by performing a unitary

transformation of the Hamiltonian

Heff = eSHe−S = H + [S,H] +
1

2
[S, [S,H]] + . . . , (S1)

where the anti-Hermitian operator S is organized in the power series S =
∑∞

n=1 S
(n) in the transverse field coupling h⊥. As a

result, the expansion of the effective Hamiltonian in h⊥ reads

Heff = H0 +
(

[S(1), H0] + V
)

︸ ︷︷ ︸

H
(1)
eff

+
(

[S(2), H0] + [S(1), V ] +
1

2
[S(1), [S(1), H0]]

)

︸ ︷︷ ︸

H
(2)
eff

+ . . . . (S2)

Now the terms S(n) are chosen such that up to the n-th order in the perturbation coupling h⊥ the effective Hamiltonian operates

exclusively within the degenerate subspaces of the Hamiltonian H0. Mathematically, one has [H
(n)
eff ,PN,D] = 0, i.e. the nth

order contribution to effective Hamiltonian H
(n)
eff commutes with every operator PN,D that projects on the Hilbert subspace with

N magnons and D domain walls. Since V changes the number of magnons, it is purely off-diagonal. Hence, the linear order

Hamiltonian H
(1)
eff vanishes

H
(1)
eff = PN,DV PN,D = 0. (S3)

The quadratic order of the effective Hamiltonian is

H
(2)
eff = PN,D

([

S(1), V
]

+
1

2

[

S(1),
[

S(1), H0

]])

PN,D = PN,DV
1− PN,D

E
(0)
N,D −H0

V PN,D, (S4)

where E
(0)
N,D is the unperturbed energy of the degenerate manifold with N magnons and D domain walls.

As illustrated in Fig. S1, at the second order in h⊥, a nearest-neighbor spin-exchange term is generated

H
(2)
eff,se = − h2

⊥J

h‖(h‖ + 2J)

∑

j

P+
j−1,j+2

(
S+
j S−

j+1 + h.c.
)
− h2

⊥J

h‖(h‖ − 2J)

∑

j

P−
j−1,j+2

(
S+
j S−

j+1 + h.c.
)

(S5)

where S±
j = (Xj ± iYj)/2 is the creation/annihilation spin 1/2 operator on the site j. The operator P±

i,j =
(1± (Zi + Zj) + ZiZj) /4 is a projector on spin up-up and down-down pair states, respectively. Notably, any longer-range

spin exchange vanishes because all virtual processes exactly cancel each other in that case.

FIG. S1. Virtual second-order processes that give rise to the nearest-neighbor spin exchange.
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FIG. S2. After flipping the middle spin from up to down, a virtual state is obtained whose energy differs by ∆E from the energy of the original

configuration.

We derive now the interaction terms generated by the perturbation theory. To this end, we take into account all second-order

processes, where first a spin is flipped by the perturbation V = −h⊥

∑

i Xi and next the very same spin is flipped back again.

The energy of the intermediate virtual state depends on the two surrounding spins as illustrated in Fig. S2. We found that all

these processes generate the following effective Hamiltonian

H
(2)
eff,int = −h2

⊥J
2

h‖α

∑

j

Zj−1ZjZj+1 +
h2
⊥J

α

∑

j

ZjZj+1 −
h2
⊥(h

2
‖ − 2J2)

2h‖α

∑

j

Zj , (S6)

where α = h2
‖ − 4J2. We observe that a three-spin interaction term is generated by the second-order perturbation theory.

Moreover, the Ising and longitudinal terms, present in the unperturbed Hamiltonian H0, acquire small perturbative shifts.

Putting now the spin-exchange (S5) and the interaction (S6) contributions together, we arrive at the complete second-order

Hamiltonian (2). We checked that our final result agrees with the effective Hamiltonian computed in Ref. [62]. Before closing

this section, we wish to comment on the expected corrections beyond the second order perturbation theory. While these additional

terms can be explicitly computed by moving to the next order in the Schrieffer-Wolff transformation, the calculation is lengthy

and beyond the scope of our work. Hence, we limit ourselves to characterize the scaling. As already mentioned in the main

text, the perturbation induced by the transverse field changes the number of magnons, hence only even orders in the perturbation

theory contribute. Therefore, the next-to-leading order correction to the effective Hamiltonian scales as O(h4
⊥). Furthermore,

additional contributions emerge due to the fact that the spin degrees of freedom appearing in Eq.(S6) are in the Schriffer-Wolff

rotated basis. Rotating back to the original spin degrees of freedom, the Pauli matrices get ∝ h2
⊥ corrections which ultimately

result in further O(h4
⊥) corrections to Eq. (S6). Given that, at short times, generic observables acquire corrections that grow

linearly in time O(th4
⊥). However, notice that as h⊥ is taken smaller, also the overall energy scale of the effective Alcaraz-Bariev

model is reduced as h2
⊥. Therefore, for practical purposes one wishes to express the corrections in the limit of small h⊥, while

keeping constant the timescale in energy-units of the Alcaraz-Bariev model tAB = J t ∝ th2
⊥ with J = 2h2

⊥h
−1
‖ J/(h‖ + 2J).

Following this reasoning, corrections beyond the second order approximation are expected to scale as O(tABh
2
⊥) at small times,

as we indeed observe in Fig. S3.

1. Number of sectors in the model (2)

Here we demonstrate that on a closed chain of a length L ≫ 1 when expressed in the Z-basis the Hamiltonian (2) splits into

a large number of independent blocks which grows exponentially with the system size.

Following ideas from [36], we start from the observation that each independent sector can be labelled by a reference configu-

ration

frozen state
︸ ︷︷ ︸

L−2k

↑↓↑↓ · · · ↑↓
︸ ︷︷ ︸

2k

. (S7)

The frozen state is constructed out of clusters of magnons, but does not contain isolated magnons. The form of the kinetic term

in the effective Hamiltonian (2) ensures that in the absence of isolated magnons these clusters are immobile. The number of

independent frozen states of a length l follows the Fibonacci recurrence Fl+1 = Fl + Fl−1 and thus for l ≫ 1 the number Fl

grows exponentially as ϕl [36], where ϕ = (1 +
√
5)/2 is the golden ratio. To estimate the total number BL of independent

blocks of the Hamiltonian (2), we compute the number of frozen states which can fit into the chain of length L ≫ 1

BL =

L/2
∑

k=0

FL−2k ≈
L/2
∑

k=0

ϕL−2k = ϕL

L/2
∑

k=0

ϕ2k ≈ ϕL 1

1− ϕ−2
= ϕL+1. (S8)
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FIG. S3. We analyze systematically the discrepancy between the Ising model and the effective Alcaraz-Bariev Hamiltonian derived with

second order perturbation theory. For this purpose, we consider a partitioning protocol on a chain of 80 sites, where the first half of the chain

1 ≤ i ≤ 40 is initialized in a Neel state, while the rest 40 < i ≤ 80 is in a fully polarized state. a) At site i = 36 (i.e. four sites left of the

junction), the discrepancy in 〈Sz〉 between the Alcaraz-Bariev and Ising prediction grows approximately linearly on the Alcaraz-Bariev time

scale tAB . Similar behavior is observed at other sites on the chain. b) At fixed value of the AB time tAB = 3, we study the convergence in

h⊥ at different points of the chain in the proximity of the junction. We show that the magnetization 〈Sz〉 converges as a power-law in h⊥ to

the value predicted by the effective AB model. A fit of the deviation is compatible with the expected ∝ h2
⊥ behavior.

2. The Alcaraz Bariev model as a low temperature limit of the resonant antiferromagnetic Ising chain

We also note that the Alcaraz-Bariev constraint naturally emerges from the Ising chain at low temperatures at near-resonant

couplings. To see that the proximity to the resonance enforces the projector, let us consider the energy of a cluster of N down

spins in the sea of up spins: this configuration has (unperturbed) energy E
(0)
N,2 = E(0) + 2Nh‖ + 4J . Imagine now that

h‖ > 0 and one chooses J = −h‖/2 + δ with |h⊥| ≪ |δ| ≪ |h‖|, then clusters of size N > 1 are thermally suppressed

by the factor ∼ e−β2(N−1)h‖ . For β ≫ h−1
‖ the thermal state is effectively projected onto the sector of isolated magnons

e−βH → P1e
−2βδ

∑
j ZjP1. From the point of view of the AB model, this density matrix describes an infinite-temperature state

which can be easily described by integrable techniques.

2. THE INTEGRABLE ALCARAZ-BARIEV MODEL: THERMODYNAMICS AND HYDRODYNAMICS

In the original paper by Alcaraz and Bariev [31], the constrained XXZ model has been solved by coordinate Bethe Ansatz.

They studied the following Hamiltonian

HAB = −J
∑

j

PT

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+T

)
PT , (S9)

With the projector PT excluding consecutive magnons (in our notation represented by down spins) that are closer than T sites.

The eigenstates of the Hamiltonian (that are also common eigenstates of all conserved quantities) have the explicit representation

|{ki}Ni=1〉 ∝
∑

P

∑

ji+1−ji>T

A(P ) exp

[

i

N∑

i=1

jikP (i)

]
N∏

i=1

σx
ji |0〉 (S10)

where |0〉 is the reference state with all spins up. Above, the summation is over all possible permutations P of the set of

N wavevectors and the constrained summation over the sites {ji}Ni=1 is ordered. The coefficients A(P ) encode the effect of

interactions and satisfy

A(P ) = −eiΘ(kP (j),kP (j+1))A(Πj,j+1P ) (S11)
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with Πj,j+1 the permutation swapping the elements in position j and j+1. Above, Θ(k, q) is the scattering phase of the Alcaraz

Bariev model in the momentum k space. It turns out that Θ is a simple deformation of the scattering phase of the XXZ spin

chain [31]

Θ(k, q) = T (k − q) + ΘXXZ(k, q) , ΘXXZ(k, q) = −i log

[
1− 2∆eik + ei(k+q)

1− 2∆eiq + ei(k+q)

]

. (S12)

As we mentioned in the main text, periodic boundary conditions lead to quantization of the momenta encoded in the Bethe

equations

eikjL = (−1)N−1
∏

ℓ 6=j

eiΘ(kj ,kℓ) j = {1, ..., N} . (S13)

Without loss of generality, we assume N to be odd. The analytic structure of the scattering phase, or better of the scattering

matrix S(k, q) ≡ eiΘ(k,q) is crucial. Indeed, the momenta kj are not necessarily real, but they can also have a non-trivial

imaginary part.

Let us first consider the large L limit keeping N fixed: for complex solutions, in this limit, eikjL is either diverging or

vanishing depending on the sign of the imaginary part. On the other side of the equality (S13), this zero or divergence must

be reflected in the scattering matrix. In other words, the imaginary part of the momenta is governed by zeroes or poles in the

scattering matrix. Since the factor eiT (k−q) cannot vanish or diverge, the latter are completely dictated by the scattering matrix

of the XXZ spin chain SXXZ(k, q) = exp[iΘXXZ(k, q)]. As a next step, the pattern of the complex solutions obtained in the

limit L → ∞ at fixed N is used to build the true thermodynamic limit: this procedure is known as string hypothesis [75] and

must be taken with a grain of salt. Let us postpone this question and assume its validity.

It is well-known that the momentum parametrization is not the best to study the analytical properties of the XXZ scattering

matrix. A more efficient parametrization k = p(λ) is in terms of rapidities λ. This parametrization is ∆−dependent and we

report it at the end of this section for completeness. In terms of the rapidities, the XXZ scattering phase depends only on their

differences ΘXXZ(p(λ), p(λ′)) → ΘXXZ(λ − λ′), where we slightly abuse the notation for the sake of simplicity. In this

language, the complex solutions of the Bethe equations in the L → ∞ limit at fixed N can be organized in sets of rapidities

with the same real part, but shifted along the imaginary direction. These special solutions are called strings. The energy ǫj(λ)
(and in general any conserved charge) carried by a string of species j, is obtained summing over the constituent of the string

ǫj(λ) =
∑

a ǫ(λ + iδja), where from now on λ denotes the real-valued rapidity carried by the string. Moreover, the number of

spin flips mj is nothing else than the number of components of the string. The XXZ strings are well known and for details we

refer the reader to Ref. [75].

Usually, the rapidities belonging to the same string are grouped together in the Bethe equations, which then become a set of

constraints for the real part of the rapidities and are now called Bethe-Takahashi equations. Carrying out this procedure, one

defines the scattering phase of the strings j and j′ by summing over their constituents

Θj,j′(λ, λ
′) =

∑

a,a′

Θ(λ+ iδja, λ
′ + iδj

′

a′) = Tp(λ)mj′ − Tmjp(λ
′) + ΘXXZ

j,j′ (λ− λ′) (S14)

The scattering phase of the XXZ spin chain, as well as the momentum of the string pj(λ), the magnetization and all the necessary

details are reported at the and of this section. With Θj,j′(λ, λ
′) one can apply the Thermodynamic Bethe Ansatz and construct

the thermodynamics.

However, here we would like to point out an important fact: while for |∆| < 1 the string hypothesis determines the full

thermodynamics of the XXZ spin chain (and thus of the AB model), this is not the case for |∆| ≥ 1. In the XXZ model, the

string hypothesis covers only one magnetization sector [57], in our notation only states with 〈Sz
j 〉 > 0. In the XXZ case, the

way out of this problem is to use the spin reflection symmetry Sz
j → −Sz

j of the XXZ Hamiltonian. Specifically, to cover the

sector with a negative magnetization, one picks as a reference state the ferromagnetic state with all spins down and builds the

string hypothesis on top of it. These two symmetric copies of the string hypothesis are distinguished by the magnetization sign

f = ±1 that selects which sector one wish to describe.

Importantly, in the AB model this strategy is not feasible, since the Sz reflection symmetry is broken. To access both sectors,

in the following we build on the observation of the original AB paper [31] that the constrained XXZ model can be seen as an

ordinary XXZ model in a reduced effective volume.
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1. The AB model as the XXZ chain in reduced volume

Without loss of generality, we assume N being odd and reorganize Eq. (S13) as

eikj(L−TN) = e−iTP
∏

ℓ 6=j

eiΘ
XXZ(kj ,kℓ) , (S15)

where we introduced P =
∑

j kj . The above can be interpreted as the Bethe equations of a XXZ spin chain in a reduced volume

L̃ = L−TN and with periodic boundary conditions twisted by the factor e−iTP . This trick has already been noticed by Alcaraz

and Bariev [31] who used it to construct the coordinate Bether ansatz. We will now use this correspondence to address the

thermodynamics and hydrodynamics of the AB model. In the rapidity parametrization, the density the local conserved charges

Q̂ (except for the magnetization to be discussed later) is

L̃−1〈Q̂〉 =
∑

j

∫

dλ qj(λ)ρ
XXZ
j (λ) (S16)

with qj(λ) being called the charge eigenvalue. We explicitly rewrite L̃ = L(1 − nT ) with n being the density of flipped spins.

Hence, we can write

L−1〈Q̂〉 =
∑

j

∫

dλ qj(λ)(1− nT )ρXXZ
j (λ) =

∑

j

∫

dλ qj(λ)ρj(λ), (S17)

where we identified the rescaled XXZ root density with the root density of the AB model ρj(λ) ≡ (1 − nT )ρXXZ
j (λ). In

the sectors where the string hypothesis of the AB model is valid, this correspondence naturally emerges comparing the AB and

rescaled XXZ thermodynamics. Now, we will assume its validity also beyond this case.

Let us now consider the magnetization that was ommited above: in the XXZ model at |∆| ≥ 1 one needs to introduce the

magnetization sign [57]

L̃−1〈Sz
j − 1〉 = 1− f

2
+
∑

j

∫

dλf|mXXZ
j |ρXXZ

j (λ). (S18)

Now, we rewrite L̃−1〈Sz
j − 1〉 = L̃−1Ln = n(1− nT )−1 and solve the above for n

n =
(1− f)

2 + T (1− f)
+
∑

j

∫

dλ
2f

2 + T (1− f)
|mXXZ

j |ρj(λ). (S19)

This leads to the natural identification mj ≡ (1 + T (1− f)/2)−1mXXZ
j that we have already anticipated in the main text. The

correspondence is then easily extended to the whole thermodynamics. In particular, the definition of the total root density

σjρ
t
j(λ) =

2

2 + T (1− f)

∂λpj(λ)

2π
−
∑

j′

∫
dλ

2π
∂λΘj,j′(λ, λ

′)ρj′(λ) , (S20)

where Θj,j′ is defined in Eq. (S14) is consistent with the expected rescaling ρtj(λ) ≡ (1− nT )[ρtj ]
XXZ(λ).

Finally, let us address the problem of constructing thermodynamics of thermal states in the presence of a magnetic field

e−β(H+B
∑

j Sz
j ), where β denotes the inverse temperature. By means of standard TBA techniques, the root densities of thermal

states can be found solving the following integral equation

εj(λ) = β(ǫj(λ)−Bmj)−
∑

j′

∫
dλ′

2π
∂λ′Θj,j′(λ, λ

′)σj′ log(1 + e−εj′ (λ
′)) . (S21)

with ρj(λ) = ρtj(λ)(1 + eεj(λ))−1 and ǫj(λ) the energy of the string, which is the same as the XXZ spin chain. These TBA

equations are consistent with first solving TBA equations in the XXZ spin chain in a reduced volume and then taking the proper

rescaling afterwards. Notice that the ferromagnetic spin up state and Neel state are nothing else than ground states (β → ∞)
of the AB Hamiltonian with B = −∞ and B = +∞ respectively. Therefore, these states can be easily described with the

above equation. The ferromagnetic spin up state is nothing else than the vacuum hence ρj(λ) = 0 (and f = 1 for |∆| > 1), the

description of the Neel state depends on ∆. Indeed, if |∆| < 1 the associated root density is non-trivial, but whenever |∆| > 1
one gets again ρj(λ) = 0, but f = −1.
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2. The hydrodynamics: two equivalent formulations

In the case of homogeneous interactions, but inhomogeneous state, the hydrodynamics of integrable models is described by

the continuity equation [48, 49]

∂tρj(λ) + ∂x(v
eff
j (λ)ρj(λ)) = 0 (S22)

or, equivalently,

∂tϑj(λ) + veff
j (λ)∂xϑj(λ) = 0 (S23)

with ϑj = ρj/ρ
t
j being called the filling fraction and the effective velocity defined in the main text, see Eq. (5). It is worth

emphasizing that the intuitive expression for the effective velocity veff
j (λ) = (∂λǫj)

dr/(∂λpj)
dr is not equivalent to Eq. (5) in the

AB model. The equivalence between the two equations (S23,S22) is not trivial and it requires some formal manipulations to be

presented here.

Following Refs. [48, 49], let us demonstrate explicitly how Eq. (S23) follows from (S22). First, one rewrites Eq. (S22) as

∂t[ϑj(λ)ρ
t
j(λ)] + ∂x[

σj

2π (∂λǫj)
effϑj(λ)] = 0 and expands the derivatives

ρtj(λ)
[
∂tϑj(λ) + veff

j (λ)∂xϑj(λ)
]
+

σj

2π
ϑj(λ)

[
∂t(2πσjρ

t
j(λ)) + ∂x(∂λǫj)

eff
]
= 0 . (S24)

Next, the second term of the previous equation will be now shown to vanish. First, we take the time derivative of Eq. (S20)

∂t[2πσjρ
t
j(λ)] = ∂t

[

− T (1− f)

2 + T (1− f)

]

∂λpj(λ)−
∑

j′

∫

dλ′ ∂t[∂λΘj,j′(λ, λ
′)]ρj′(λ

′)−
∑

j′

∫

dλ′ ∂λΘj,j′(λ, λ
′)∂tρj′(λ

′).

(S25)

In this model, the presence of the magnetization sign in the string scattering phase gives a time and space depencence to the

latter ∂t∂λ′Θj,j′(λ, λ
′) = ∂λpj(λ)T∂tmj′ and ∂x∂λ′Θj,j′(λ, λ

′) = ∂λpj(λ)T∂xmj′ . Using these identities and plugging the

hydrodynamic equation ∂tρj(λ) = −∂x(v
eff
j ρj) in the last term of Eq. (S25) one finds

∂t[2πσjρ
t
j(λ)] = −[∂tn+ ∂xjn]T∂λpj(λ) + ∂x




∑

j′

∫
dλ′

2π
∂λΘj,j′(λ, λ

′)σj′(∂λǫj′)
drϑj′(λ)



 . (S26)

The spin flip continuity equation causes the first term to vanish, while in the second term one recognizes the definition of the

dressed derivative of the energy

∂t[2πσjρ
t
j(λ)] = ∂x

[
∂λǫj − (∂λǫj)

dr
]
= −∂x(∂λǫj)

dr . (S27)

This result ensures that the second term in Eq. (S24) indeed vanishes and thus we end up with Eq. (S23).

3. The partitioning protocol

The partitioning protocol is best addressed by means of the hydrodynamic equations in the form (S23). In this protocol, the

two halves are initializes in two homogeneous states

ϑj(λ)
∣
∣
∣
t=0,x

= θ(x)[ϑj(λ)]R + θ(−x)[ϑj(λ)]L (S28)

with θ(x) the Heaviside theta function θ(x > 0) = 1 and zero otherwise. The left and right fillings [ϑj(λ)]L,R are the initial

conditions and must be given as an input. In our case, we probed filling fractions belonging to the class of thermal states

defined through Eq. (S21). Due to the appearance of only first derivatives in the hydrodynamic equation, signaling the ballistic

transport, the solution of Eq. (S23) with these initial condition is scale-invariant. Namely, for t > 0 the filling is not an

independent function of time and space, but a function of their ratio. We define the ray ζ = x/t and Eq. (S23) admits the

solution [48, 49]

ϑj(λ) = θ(ζ − veff
j (λ))[ϑj(λ)]R + θ(veff

j (λ)− ζ)[ϑj(λ)]L . (S29)
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FIG. S4. We compare the numerical simulations of partitioning protocols in the Alcaraz Bariev model against the exact hydrodynamic solution.

We initialize the state in two halves |GS〈Z〉〉⊗|ferro〉 with |GS〈Z〉 the ground state at fixed magnetization. In practice, |GS〈Z〉〉 can be obtained

by applying an external magnetic field in the z direction (BL in the figure), as described in Eq. (S21). The same method is used also to obtain

the desired matrix product state state in the microscopic simulations. Notice the sharp jump for ∆ = 1.5, since states above and below half

filling are connected. In all the plots we set J = −1.

where the ζ−dependence of veff
j (λ) is left implicit. Since veff depends on the state through the dressing, the above solution

is only implicit and cannot be further analytically simplified. However, very simple recursive numerical schemes guarantee fast

convergence: first, one finds an initial ansatz for ϑj(λ) ignoring the dressing in the effective velocities in Eq. (S29). Then, the

filling fraction is used to recalculate veff and the procedure is iterated until convergence is reached, which usually happens after

only few steps. In the case where the two halves are initialized in opposite magnetic sectors, one must supplement Eq. (S29)

with the proper equation for the sign f, similarly to what has been done in XXZ [57]. Imposing spin conservation ∂tn+∂xjn = 0
in the scaling form, one readily obtains an equation similar to (S29)

f = θ(ζ − v̄)fR + θ(v̄ − ζ)fL (S30)

with fR,L set by the initial conditions and

v̄ =




∑

j

∫

dλmjv
eff
j (λ)ρj(λ)








1

2 + T
−
∑

j

∫

dλmjρj(λ)





−1

. (S31)

Two crucial observations must be made. First, in contrast with the XXZ model, Eq. (S29) depends on the magnetization sign

f through the scattering phase. Hence, Eq. (S29) and Eq. (S30) must be solved simultaneously. Because this dependence, it is

not a priory obvious why the value of v̄ should not change if one computes it using in Eq. (S31) the root densities for ζ = v̄+0+

or ζ = v̄+0−: the convergence of the iterative solution is rooted on this fact. Indeed, besides the convergence, we also checked

the equivalence of the two limits a posteriori: this is a highly non trivial check of the consistency of our solution. In Fig. S4

we provide further checks of the hydrodynamic solution against the TEBD numerical simulation of the Alcaraz-Bariev model,

finding excellent agreement as expected. In Fig. S5, we supplement the plots shown in the main text with a further comparison

between the Ising dynamics, the Alcaraz-Bariev model and the GHD of the latter.

4. Summary of XXZ thermodynamics

For completeness, we provide a short summary of the XXZ thermodynamics on which the solution of the AB model is built.

For a more extended discussion, we refer to Ref. [75]. The sectors with opposite interaction signs are unitary equivalent, hence

as customary we focus on the regime ∆ > 0.
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FIG. S5. Here we provide further evidence that the Alcaraz-Bariev model gives an effective description of the Ising model in the limit of

weak transverse field. Due to its integrability, at large times we can compare expectation values of observables to the ones predicted by the

Generalized Hydrodynamics. We consider partitioning protocols where the left half is initialized in the Neel state, while the right half is a fully

polarized state. We consider two different values of the AB interaction parameter ∆. In the upper panels, we show that the expectation values

〈Sz〉 at a large time tAB = 30 in the Ising and AB models match with very good agreement for h⊥ = 0.5, and approach the GHD curve. A

deviation from the hydrodynamic prediction is evident, but this is a finite-time effect. In the lower panels, we zoom on the region where the

mismatch is more evident and show that for large times the curves slowly converge to the GHD (only the AB prediction is shown).

• The case ∆ ≥ 1: The interaction is conveniently parametrized as ∆ = cosh θ, the string parametrization and scattering

phases are

p(λ) = −i log

[
sin(λ− iθ/2)

sin(λ+ iθ/2)

]

, ΘXXZ(λ) = −i log

[

− sin(λ+ iθ)

sin(λ− iθ)

]

. (S32)

In this sector, the system has infinitely many strings of species j = {1, 2, ...} and the rapidities of the constituents of a

string with real rapidity λ are obtained by shifting in the imaginary direction

λa,j = λ+ iθ
(j − 1− 2a)

2
, a = {0, ..., j − 1}. (S33)

The scattering phase is given by Eq. (S14). In particular, one finds

∂λΘ
XXZ
j,j′ (λ) = (1− δj,j′)f|j−j′|(λ) + fj+j′(λ) + 2

min(j,j′)−1
∑

s=1

f|j−j′|+2s(λ) (S34)

with

fj(λ) =
1

2π
∂λpj(λ) =

1

π

sinh(jθ)

cosh(jθ)− cos(2λ)
(S35)

and ǫj(λ) = J π sinh θfj(λ) and |mXXZ
j | = j. In this sector, the parity of the string is always positive σj = 1 and the

rapidities of the strings live within a finite domain λ ∈ [−π/2, π/2]. The choice of the magnetization sector f = ±1 only

changes the sign of mXXZ
j and nothing else.

• The case 0 < ∆ < 1: With the parametrization ∆ = cos(πγ) one has

p(λ) = −i log

[
sinh(λ+ iπγ/2)

sinh(λ− iπγ/2)

]

, ΘXXZ(λ) = −i log

[
sinh(λ− iπγ/2)

sinh(λ+ iπγ/2)

]

(S36)

The string content depends on the continued fraction representation of γ

γ =
1

n1 +
1

n2+...

(S37)
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FIG. S6. The distribution P (r) of the ratios r of consecutive level spacings of the second-order effective Hamiltonian (2) in the sector with

Nm = 5 isolated magnons on a closed chain of length L = 40 in the momentum sector with k = 7× 2π/L. The Ising parameters that fix all

parameters of the effective model are J = 1.17, h‖ = 0.91 and h⊥ = 0.0291.

where ni are suitable positive integers and the total number of strings is
∑

i ni. The constituents of a string of species j
carry rapidities

λa,j = λ+ i
πγ

2
(mj + 1− 2a) + iπ(1− vj)/4 , a = {1, ..,mj}, (S38)

where the real rapidity λ covers the entrire real axis λ ∈ (−∞,∞). The value of the magnetization mj , the parity σj and

the parameter vj depend on the continued fraction expansion (S37). In the simplest case where one chooses γ = 1/ℓ, one

has ℓ strings and

mj = j , σj = 1 , vj = 1 , j < ℓ and mℓ = 1 , σℓ = −1 , vℓ = −1. (S39)

For the general case, we refer to Ref. [75]. Finally, the string scattering data are

∂λΘ
XXZ
j,j′ (λ) = (1− δmj ,mj′

)a
vjvj′

|mj−mj′ |
(λ) + a

vjvj′

mj+mj′
(λ) + 2

min(mj ,mj′ )−2
∑

s=1

a
vjvj′

|mj−mj′ |+2s(λ), (S40)

where

ayx(λ) =
y

π

sin(πγx)

cos(2λ)− y cos(πγx)
,

1

2π
∂λpj(λ) = avj

mj
(λ) , ǫj(λ) = J π sinh(πγ)avj

mj
(λ). (S41)

3. THE LEVEL SPACING STATISTICS ANALYSIS

Here we investigate numerically the level spacing statistics of the second-order perturbative effective Hamiltonian (2) that

captures the physics of the tilted Ising chain in the regime of a weak transverse field. As argued in the main text, this model

exhibits fragmentation of the Hilbert space as the latter splits in the local Z-basis into ϕL+1 independent blocks for L ≫ 1. Given

that, we investigate the level statistics of several large sectors and use it as a diagnostics of integrability of the corresponding

sectors.

We start with a closed chain of length L = 40 and compute numerically using QuSpin python package [80, 81] the energy

spectrum of the sector populated with Nm = 5 isolated magnons with momentum k = 7 × 2π/L. Instead of looking directly

at the energy level spacings, we follow ideas from [82, 83] and compute the ratios of consecutive level spacings rn = (En+1 −
En)/(En − En−1). The resulting distribution P (r), plotted in Fig. S6, agrees with P (r) = 1/(1 + r)2 [83] which one gets if

the energy levels are completely random (the Poisson distribution). As a result, our numerics is consistent with integrability of

the sectors with only isolated magnons that we argued for in the main text.

We turn now to sectors with clusters. In particular, we consider a closed chain of length L = 25 with Nm = 10 magnons

among which there is one cluster of sizes two, three, four and five, respectively. The resulting distributions of P (r) are plotted

in Fig. S7. Since they all plummet at low r, the energy levels repel implying that these sectors are not integrable. In fact, all

averages 〈r〉 are not far from the value 1.75 which is expected for the Gaussian orthogonal ensemble [83].
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FIG. S7. The distribution P (r) of the ratios r of consecutive level spacings of the second-order effective Hamiltonian (2) in the sector with

Nm = 10 magnons including one (a) dimer, (b) trimer, (c) tetramer and (d) pentamer on a closed chain of length L = 25 in the momentum

sector with k = 7× 2π/L. The Ising parameters that fix all parameters of the effective model are J = 1.17, h‖ = 0.91 and h⊥ = 0.0291.

4. LATE TIME DYNAMICS OF THE SMALLEST CLUSTERS

As we discussed in the main text, the presence of clusters composed of neighboring magnons breaks integrability and the

analytical methods of generalized hydrodynamics. Here we develop a simple phenomenological description to capture the late

time dynamics of the clusters.

Motivated by Fig. 3, let us consider an initial inhomogeneous state in the form of a partitioning protocol |ΨL〉 ⊗ |Ψr〉 and, in

addition, we place a cluster composed of two magnons at the origin. Clusters in isolation are static in perturbation theory, but

the surronding isolated magnons can activate their dynamics. A two-magnon cluster undergoes assisted hopping of two sites at

once, mediated by the scattering with an isolated magnon. The case of a bigger cluster of length Lc > 2 is more complicated,

since they can also decay into smaller clusters at intermediate stages, see Fig. S8. For the sake of simplicity, we focus here on

the case Lc = 2 that cannot decay into smaller clusters.

For t > 0, we investigate activation of transport on the timescale where the effective perturbative Hamiltonian is valid.

Far from the cluster, the dynamics is locally integrable and can be rightfully assumed to be described by the GHD equation

∂tρj + ∂x(v
eff
j ρj) = 0. In this perspective, the cluster plays the role of a dynamical impurity for the integrable excitations and

sets the proper boundary conditions in the form of a generalized scattering matrix. Finding the exact boundary conditions is

a challenging problem, since one needs to solve the non-integrable magnon-cluster scattering. Nevertheless, after a transient

time, the cluster will be surrounded by a state that reached a local (generalized) equilibrium, hence the interactions between the

cluster and the surrounding magnons will remain constant in time. Let us consider the motion of the cluster in a semiclassical

approximation, by denoting with Pt(j) the probability of finding the cluster at a position j. At any time, the cluster can jump to

the left by two sites with rate a RL and to the right with a rate RR. These rates originate from the interaction with the surrounding

isolated magnons: their computation is a fomidable task, but in the present calculation we will treat them as phenomenological

parameters constant in time. Given that, one expects Pt(j) to obey the difference equation

∂tPt(j) = RLPt(j + 2) +RRPt(j − 2)− (RL +RR)Pt(j). (S42)

This equation can be easily solved by passing to the Fourier space

Pt(j) =
∑

j′

Gj−j′(t)P0(j
′) Gj =

∫
dk

2π
eikj−tRL(1−ei2k)−tRR(1−e−i2k) . (S43)

At late times when Pt(j) becomes a smooth function of j, we can replace discrete jumps with spatial derivatives. As a result, a
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FIG. S8. Decay of a three-magnon cluster in two clusters mediated by the interaction with surrounding isolated magnons.

a biased diffusive equation is obtained

∂tPt(x) ≃ 2(RL −RR)∂jPt(j) + 2(RL +RR)∂
2
jPt(j) +O(∂3

jP ) . (S44)

From this equation we find for the average displacement 〈x〉 = 2t(RR − RL) and its variance 〈(x)2〉 − 〈x〉2 = 4t(RR + RL).
Remarkably, the expressions for 〈x〉 and 〈(x)2〉 can be exactly recovered from the solution of Eq. (S42), hence the linear growth

of averaged position and variance is expected to emerge as soon as Eq. (S42) is valid.
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