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The fragmentational instability of an infinite isothermal gas layer, extending infinitely in the x­
and y-direction, is investigated by means of three·dimensional numerical simulations. The nonlinear 
growth of perturbations with the initial wave pattern, cos(kxx) x cos(kyy), is calculated for various 
values of the wave numbers kx and kyo For unstable modes, the fragmentation of a layer and the 
subsequent collapse of fragments are simulated. It is found that, if the ratio, ky/kx, is in the range, 
0.8-1.2, each fragment collapses almost axisymmetrically without flattening along the z-axis. 
However, if the ratio is greater than 1.2 or less than 0.8, each fragment becomes more and more 
slender as it collapses and finally a thin filament is formed. We also calculate the growth of random 
perturbations and confirm that a large number of filaments are formed. 

As a result of the computations, we construct a scenario of fragmentation and subsequent 
evolution of a sheet-like doud such that most of the fragments become finally thin filaments and 
re-fragment. This scenario explains why filamentary structures often appear in interstellar clouds 
observed. We also find that the mass function of the final fragments is expressed in the form, N 
rxm-2, where Nand m are the number and mass, respectively. 

§ 1. Introduction 

This is the second paper in a series studying the nonlinear effect on the growth of 
perturbations in the sheet-like clouds. In Paper 1/) we described the motivation of 
this study, reviewed the linear perturbation theory and obtained solutions of the 
second-order perturbation equations. These solutions show that the second-order 
effect enlarges the axis ratio of the collapsing fragments. 

In this paper, we compute the fragmentation processes of an isothermal sheet by 
three-dimensional numerical simulation, in order to analyze the fully-nonlinear effect 
on the growth of perturbations. Using the results of these computations we aim at 
clarifying the following points. (1) How does an isothermal sheet fragment and why 
does such a filamentary structure appear often in nature? (2) What structure does 
each fragment have? Numerical data obtained may also be useful to know the initial 
condition for star formation. (3) What is the mass distribution of the fragments? 
This relates to the initial mass function of stars. (4) Because we know the solution 
of the linearized perturbation equation, we can make a critical test of our three­
dimensional computations themselves by comparing our numerical solutions in stages 
of small amplitudes with the linear solutions. 

In this paper, we make the same simplifications and assumptions as in Paper I. 
(1) The equation of state is a.ssumed to be isothermal. (2) The sheet-like cloud 
extends to infinities in the x- and y-direction. We assume· periodic boundary condi­
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1274 S. M. Miyama, S. Narita and C. Hayashi 

tions in these directions. In the remaining z-direction, the cloud has a finite size 
because we assume the presence of small but finite external pressure. We use the 
periodic boundary condition not only for the mathematical reason but also for the 
purpose to find the gravitational effect of neighboring condensations on the formation 
and the collapse of each condensation. 

The unperturbed state of a sheet-like cloud is a self-gravitating equilibrium gas 
layer which has a vertical density distribution (see Paper I) 

for Izl~Zb, (1·1) 

where Poo is the unperturbed density at z=O, (i.e., Poo=Po(O». The scale height Zo is 
defined by using the constant sound velocity Cs as 

(1·2) 

and Izl = Zb denotes the boundary of the layer where the gas pressure is equal to the 
external pressure, Pext (=C/P(Zb». Initially, this equilibrium layer has small­
amplitude perturbations and we calculate their growth toward the stage of nonlinear 
amplification. 

In § 2, the method of computation is shown briefly and in § 3 the results of 
numerical simulations are given. Discussion on the ~cenario of fragmentation of 
clouds and on the mass function of fragments together with conclusions is given in § 4. 
In the Appendix, we describe our computational method of calculating gravitational 
force in the case of a periodic boundary condition. 

§ 2. Method of numerical computations 

2.1. Three-dimensional hydrodynamical code 

The numerical method used in this work is one of the Lagrangian methods which 
is so-called the smoothed particle method developed by Miyama, N arita and 
Hayashi.2) In this method, a cloud is divided into a number of fluid elements which 
are called pa:rticles. Each particle has,the same mass and its own internal density 
distribution. Local densities of the' fluid are given by the superposition of density 
distributions of all the particles. 

The motion of fluid is represented by a set of motion of all the particles. The 
equation of motion of each particle is 

dvddt=-(f7 P/p)i+Fi+Si , (2·1) 

where Vi, Fi and Si are velocity, gravitational force and artificial viscosity force at 
the center of mass of the i-th particle, respectively. Because we assume an isother­
mal gas, the pressure gradient term is calculated from the density gradient. In this 
paper all the physical quantities are assumed to be periodic in the x- arid y-direction. 
Therefore, differently from our previous work,2) we obtain the gravitational force by 
solving the Poisson equation, using a finite difference method described in the 
Appendix. The viscosity force Si is used to reproduce plane shock phenomena 
numerically. Detailed formula for Si will be described elsewhere.3

) 
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2.2. Boundary conditions 

In the x- and y-direction, we assume periodic boundary conditions. In terms of 
the lattice constants, XL and YL, we define new variables, X and Y, as 

(2-2) 

and we assume that any physical quantity, j, satisfies the condition 

/(X±I, Y±I)=/(X, Y) where -1/2<X, Y~I/2. (2-3) 

At the boundary in the z-direction, the pressure is always equal to Pext, and this 
is called the pressure-constant boundary condition (PCBC). . In our smoothed particle 
method, it is very difficult to set exact PCBC. So we adopt an approximate procedure 
such that, for the particle whose density is less than the boundary density 
Pb( = Pext/e/), the pressure gradient is modified as 

(2-4) 

The above formula and the numerical value 0.8 have been determined after many test 
computations. We have found that in the case of Eq. (2 -4) the minimum density of 
all the particles remains to be almost Pb. This shows that Eq. (2-4) gives a very 
simple and powerful approximation to PCBC. 

In this paper, the ratio PO(O)/Pb for all the simulations is fixed to 8. In the linear 
perturbation theory, the dispersion relation for Po(0)/Pb=8, is very close to that for 
PO(O)/Pb=OO (see Fig. 1 in Paper I). Namely, the growth of perturbation does not 
depend sensitively on the value of P(O)/Pb as far as it is much greater than unity. 

2.3. Construction of an initial unperturbed state 

In our simulation, an unperturbed state with the density distributi(;m given by 
Eq. (I-I) is constructed in the following way. We impose the external gravitational 
force, 

F= -(2cs2 /Zo)tanh(z/Zo)(z/lzi), (2-5) 

and also the strong damping term - vir, where r is a constant. Then we integrate the 
particle's equation of motion, 

dvddt= -(17 P/P)i+ F(Zi)- vdr, (2-6) 

until velocities of all the particles become small enough. Finally we obtained a 
density distribution which is in agreement with Eq. (2-1) within a 2% error. From 
this distribution, we compute gravitational force using a method described in the 
Appendix. Comparing this force with Eq. (2 -5), we fomid that the error is less than 
3%. 

In our computations, we use 5000 particles with 64 X 64 X 32 meshes for gravity 
calculation in the case kx = ky and 8333 particles with 144 X 48 X 32 meshes in the case 
ky/kx=3 (for kx and ky see Eq. (3-1)). 
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1276 S. M. Miyama, S. Narita and C. Hayashi 

§ 3. Numerical simulations of growth of perturbations 

Because the solutions of the linear perturbation equation form a complete set, any 
small perturbation in the sheet-like clouds can be expanded using these eigenfunc­
tions. Therefore first investigate how each of the eigenmodes grows nonlinearly. 
After that we simulate the growth of random perturbations, in order to obtain a whole 
view of fragmentation of the clouds. 

3.1. Initial condition for the case of a pure eigenmode 

We take the equilibrium isothermal sheet (Eq. (1·1» with a small perturbation as 
the initial condition of numerical simulations. For the initial perturbation, we adopt 
the eigenmode solutions of the perturbation equation as shown in Paper 1. As to the 
numerical treatment of constructing the initial condition, the velocity perturbation is 
simpler than the density perturbation. Therefore, for simplicity, we choose a mode 
of the velocity perturbation which is written as 

pdpo= f(z)cos(kxx)cos(kyy )sinh(wt) , ) 
¢dcs2= g(z)cos(kxx )cos(kyy )sinh(wt) , 

Vl/cS= - cs/w· ~ {(f + g)cos(kxx)cos(kyy )}cosh(wt) , 

(3·1) 

where f(z) and g(z) are the eigenfunctions in the linear theory. Then the initial data· 
for simulation are written as 

(3·2) 

Because of the spatial periodicity assumed, we have only to consider the region where 

-If/2< kxx + kyy;;? If/2 '} 
-If/2<kxx-kyy;;?'lf/2. 

(3·3) 

We can characterize the initial data by the following 4 parameters. 
(1) PO(O)/Pb: the ratio of the central density to the boundary density in an unperturbed 
state. This parameter represents the property of cloud's circumstance. As 
mentioned above, this factor is fixed to 8 in this paper. 
(2) c: the initial magnitude of perturbation (e.g., P=Po+ CPl + C2P2+··). In this paper, 
the value of c is fixed to 0.1. For this value of c, the nonlinear effect at the initial 
stage is negligibly small. If we choose a smaller value of c, we need only a longer 
time of computation. 
(3) kZo: the normalized wave number of where k2=k}+k/. The growth time in the 
linear theory depends only on the value of kZo. 
(4) ky/kx: the ratio of wave numbers which represents the initial shape of perturbation. 
in the (x, y) plane. 

We fix the values of PO(O)/Pb and c and compute the growth of perturbation for 
various values of kZo and ky/kx. For the units of time, we adopt the free fall time at 
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the cloud boundary, i.e., (3TC/32 GpS/2. 
The values of kx and ky adopted in the 

numerical computations are shown by the 
circles in Fig. 1. We compute the three 
cases for kZo, i.e., kZo=0.5,0.8 (both are 

. unstable modes) and kZo=1.5 (a stable 
mode). For each of the cases, kZo=0.5 and 
0.8, we compute 5 cases where ky /kx=1, 1.2, 
1.5, 2 and 3. In the case kZo = 1.5, we 
compute only one case, kx=ky • In the 
following, first we show the result of the 
stable mode (kZo=1.5), which is also useful 
as a test of our numerical method. Next 
we show the results of the two unstable 
cases (kZo=0.5, ky /k;=1) and (kZo=0.5, ky 

/kx =2),which are typical examples indicat­
ing strong dependence on the ratio ky/kx . 

Fig. 1. The data of the initial perturbation in the 
wave·number space (kx, ky). The values of 
(kxZo, kyZo) adopted in the numerical computa· 
tions are shown by the circles. The curves, kZo 
=1 and kzo=O.5, are shown by the dashed 
curves. According to the linear perturbation 3.2. A result of a stable mode (kZo=1.5, kx 
theory, the perturbations with kzo> 1 are stable = ky ) 

and those with kzo~O.5 are most unstable. 
The results of nonlinear simulations show that, 
if the wave numbers of the initial perturbation 
lie in the hatched region, the cloud fragments 
and each fragment collapse as a single blob. 
However, for the wave numbers lying in the 
other region with kzo<1, the cloud fragments 
and each fragment collapse to form a very 
slender filament. 

Op/Poo=p(x=0)/Poo-1. 

This mode is stable according to the 
linear analysis. Therefore the main aim 
of the computation of this mode is to test 
the ability of our numerical method. In 
order to express the growth of perturb a -
tion most simply, we consider op/Po at the 
origin of the coordinates, i.e., 

(3·4) 

In Fig. 2, we show the time variation of op/Poo and also show the behavior of the linear 
solution for comparison. Because the initial amplitude is very small, the agreement 
is very good, as it should be, except for small noisy oscillations arising from the noises 
which remain undamped in the construction of the unperturbed state (see § 2.3). 
Figure 2 shows that the numerical computational method used here is reliable. Also 
from the fact that the amplitude of the oscillation is almost constant, it is seen that 
the artificial viscosity term, which has been introduced to simulate a shock process, 
does not give a bad influence upon the numerical results. 

3.3. Typical results for unstable modes 

a) a mode with kZo=0.5 and kx=ky (model A) 
The eigenmode with kZo=0.5 is the almost fastest growing mode. The variations 

of op/Poo with time are shown in Fig. 3, where the curves by op/Poo and CPl/POO 
represent the numerical results and the linear solution for c=0.1, respectively. 
Because only the velocity perturbations are given initially, we have op/p=O at t=O. 
It is clearly seen that, for op/p<0.2, our numerical result is in close agreement with 
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Fig. 2. The time variation of i'Jp/Poo for the stable 
mode with kZo=1.5 and kx=ky. The solution 
of the linear equation is also shown by the 
dashed curve, CPt/Poo. 

lOt 

10° 

lO- t 

0.0 0.5 1.0 
Time 

Fig. 3. The growth of the density perturbation in 
the case, kzo=O.5 and kx=ky (model A). The 
time variation of i'Jp/Poo at x= y=z=O is shown 
by the solid curve. The time variation given 
by the linear perturbation theory is shown by 
the dotted curve: CPt/Poo. The amplitudes of 
the Fourier components of the density at z=O, 
7JI, 7Jz and 7J3 are also plotted. 

the linear solution. Our numerical code passes a test also in the case of an unstable 
mode. 

In order to analyze the behavior of nonlinear growth of perturbations, let us 
consider the Fourier components of density. Th~ density at z=O is decomposed into 
the Fourier series as 

p(z=O)= L; Pm,nei(mkxx+nkyy} . 
m,n 

Now, we define 

T/m,n= Pm,n/Po,o(t=O) , 

T/I = L; (T/I,n + T/-I,n) , 
n=±1 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

(3-9) 

Here, T/I represents the amplitude of the normal mode, and T/2 and T/3 represent the 
amplitudes of the second and third harmonics, respectively. These components are 
also shown in Fig. 3. The time variation of T/I is very close to that of the linear 
solution until op/Poo grows to 1. This result shows that the nonlinear wave-wave 
interaction works mainly in the direction to generate higher wave-number waves and 
does not work well in the generation of lower wave-number ones. 

As shown in Paper I, the amplitude of the second harmonics T/2 must grow as 
exp(2wt), when t is large enough. This behavior is also seen in Fig. 3. 
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Fig. 4. The particle positions projected onto the 

z=O plane and the density contours in the same 
plane for model A at time t = 1.4. The broken 
lines denote the periodic boundaries. 

P 

10' 

101 

Fig. 5. The density structure of the cental blob 
shown in Fig. 4. The density distributions 
along the X-, y- and z-axis are shown. In the 
envelope densities along the x- and y-axis 
decrease as R-2

• 

Z_:I:.:0~~ part:~l!~r~j:;e:~:toa1~:epi:!~~:~~ 
~ and also show the density contours in the 

-4.0 -2.0 0.0 2.0 
x 4.0 same plane. The broken lines denote the 

periodic boundaries. The density Fig. 6. The density contours in the y=O plane for 
model A at time t=1.4. contours near the center are almost 

axisymmetric. In order to see the density 
structure of this axisymmetric region, the density distributions along the X-, y- and z­
axis are shown in Fig. 5. The densities along the x- and y-axis are almost constant 
near the center and decrease as R-2( =(x2+ y2)-I) in the outer region. It is to be noted 
that this type of density distribution appears often in the inner region of an isothermal 
axisymmetric collapsing cloud.4

)-6l In Fig. 6, we show therdensity contours in the y 

=0 plane. The shape of the central region in the (x, z) plane is not spherical but 
slightly flattened and the axis ratio is almost equal to 2. The central, where the 
density is high enough, has a very compact size compared with the distance between 
two neighboring condensations. This means that the central region collapses as a 
nearly isolated system since the gravitational effect of neighboring condensation is 
very small. 

Will this isolated blob fragment into many pieces? The flatness of a cloud 
determines whether a cloud will fragment or not. Here we define the flatness of a 
cloud by the ratio ax/az where ax and az are the lengths of the x- and z-axis, 
respectively, of an equi-density surface. The time variations of the flatness of 

equi-density surfaces with P/Pmax=1/2, 1/.jiO and 1/10 are shown in Fig. 7, where Pmax 

is the maximum density at a time considered. For all the values of P/Pmax, the flatness 
decreases to about 2 as the perturbation grows (see also Fig. 6). Hence the possibility 
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that the cloud will re-fragment is small because the flatness ax/az must be greater than 
7r (Le., kZo < 1) for the fragmentation to occur (see, e.g., Fig. 1 in Paper I). 

In the case where kZo = 0.8 and kx = ky, the behavior of perturbation growth is very 
similar to the above case (kZo=0.5 and kx=ky), except for a longer time of growth. 

b) a mode with kZo=0.5 and ky/kx=2 (model B) 
Figure 8 shows the growth of the total perturbation as well as its components, 7}1 

and 7}2. Furthermore, the time variations of 7}02 and 7}20, which are the amplitudes of 
the waves cos(2kyy) and cos(2kxx), respectively, are also shown. It is clearly seen 
th<;lt we have 7}02> 7}20, in agreement with the analytic result obtained in Paper I. 
Namely if initially the perturbation has a longer wavelength along the x-axis than 
that along the y-axis, e.g., Ax/Ay=2, the amplitude of cos(2kyy) grows more rapidly 
than that of cos(2kxx) and the axis ratio Ax/Ay becomes larger than 2 (see Fig. 3 in 
Paper 1). This is more clearly seen in Fig. 9, where the projected particle positions 
at t=1.19 (Fig. 9(a» and t=1.40 (Fig. 9(b» are shown. The axis ratio of dense 
regions is clearly increased with time. 

Figure 10 shows the time variations of the axis ratios, ax/ay and ay/az, of the 
equi-density contours with various values of /=p/Pmax. After the nonlinear effect 
becomes large (t ~1.2, see also Fig. 8), the ratio ax/ay grows rapidly. On the other 
hand, the ratio ay/az decreases only with time and finally becomes unity. That is, the 
collapsing object becomes a slender cylinder. In Appendix B of Paper I, we showed 
a similarity solution for the isothermal collapse of an infinite cylinder. According to 
this solution, the collapsing cylinder contains an inner region, where the density is 
almost constant, and an envelope, where the density drops as R-4 (R being the 
distance from the axis). In Fig. 11, we show the density distribution found by our 

8.0 t--T~~.,---'-~~~~~~----r 

a. 
a. 

6.0 

4.0 

2.0 

0.0 +-~~~~~~~~~--'-
0.8 0.9 1.0 1.1 1.2 1.3 Time 

Fig. 7. The time variations of the flatness of equi­
density surfaces in model A. We choose the 
equi-density surfaces such that the ratio f 
=P/Pmax, where P is the surface density and 
Pmax is the maximum density in the cloud, takes 
the constant values. The flatness is defined as 
the ratio, ax/az, where ax and az are the length 
of the x- and z-axis, respectively. 

10' 

10-1 

0.0 0.5 1.0 Time 

Fig. 8. The same as shown in Fig. 3 for the case, 
k2l,=0.5 and ky =2xkx (model B). The am­
plitude of the Fourier components of the den­
sity at z=O, 7}1, 7}z and the second-order 
components 7}oz and 7}zo are also plotted. 
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Fig. 9. The particle positions projected onto the plane of z=O and the density contours at the same 
plane for model B, (a) at t=1.19 and (b) at t=1.40. The broken lines denote the periodic 

boundaries. 
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Fig. 10. The time variations of the axis ratios, a"jay and ay/az, of the equi-density surfaces in model 
B. The label f denotes the ratio, P/Pmax for the surfaces. 

1.4 

computation, which is at the same stage as shown in Fig. 9(b). The density distribu­
tions along the y- and z-axis, which are perpendicular to the cylindrical axis, are 
nearly proportional to R-4

• Therefore the collapse of the filamentary region shown 
in Fig. 9(b) is essentially the cylindrical collapse. 

According to Appendix B of Paper I, the high density region of the cylinder 
becomes slender and slender, and this collapse may continue until the density becomes 
so high that the filament becomes opaque to radiation. Then the equation of state 
changes from an isothermal one to an adiabatic one. Finally the collapse stops and 
a very thin filament will be formed. The equilibrium cylinder is always unstable to 
fragmentation along its axis: In conclusion, the fragment of the sheet-like cloud 
which contains the initial perturbation with k~=0.5 and ky/kx=2, collapses to a 
filament which finally re-fragments into a large number of dense clumps. 

The above-mentioned behavior is also seen in the cases of different modes with 
ky/kx > 1.2 (or < 1/1.2) and k~=0.5 as well as 0.8. In the case where k~=0.8, the 
growth time of perturbation is slightly longer. 
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3.4. Comparison of modes with the same k 
but different ky/kx 

In this subsection, we show how the 
growth of the perturbations with the same 
value of k depends on the ratio ky/kx. 

First let us compare the growth time 
of perturbation. The time spent until 
8p/poo grows to 1 and 10 is tabulated in 
Table I, for the cases where kZo=0.5 and 
0.8. The growth time depends mainly on 
the value of k and does not depend sensi­
tively on the ratio ky/kx,· in qualitative 
agreement with the linear perturbation 
theory. 

Next the axis ratio ax/ay of an equi­
density surface with the density, p=O.l 
x Pmax, is plotted as a function of 8p/poo in 

axis decrease as R-
4 

in the envelope. This is a Fig. 12 for various models. For a model 
characteristic feature of a cylindrical collapse. 

with ky/kx > 1.2 (or < 1/1.2), the axis ratio 

Fig. 11. The density structure of the cental 
filamentary region shown in Fig. S(b). The 
density distributions along the X-, y- and z-axis 
are shown. The densities along the y- and z' 

becomes greater than 4 before op/Poo grows to 104
• This ~alue of the ratio, 4, is a 

critical (smallest) value for the occurrence of fragmentation of an isothermal infinite 
cylinder. 1) Accordingly, the perturbations ofthese modes will grow to form filaments 
which fragment again after the collapse stops. On the contrary, in the mode with ky 

/ kx:5,1.2 (and ~1/1.2), the axis ratio does not grow large before op/Poo grows to about 
104

• 

From the above results, we can construct the following scenario of evolution of 
the sheet-like clouds. When the sheet is formed, there are many modes of perturba­
tion in the cloud. As shown in Fig. 1, the evolution of perturbation is grouped into 
three types according to the wave number, i.e., the position in the (kx , ky ) plane as 
shown in Fig. 1. One is a stable type (kZo > 1). Next is a type which is unstable (kZo 
<1) and grows to a single high density blob (1/1.2:5, kyjkx:5, 1.2). The last is a type 

Table 1. The growth time of perturbation until op/Poo grows to 1 or 10. 

growth timea
) 

kind of the initial perturbation 

op/Poo=1 op/Poo=10 

kzo=0.5 kyjkx=1.0 0.96 1.2S 
ky/kx=1.2 0.97 1.29 
ky/kx=2.0 0.94 1.26 
ky/kx=3.0 0.93 1.25 

kzo=O.S ky/kx=1.0 1.23 1.62 
ky/kx=1.2 1.23 1.62 

ky/kx=2.0 1.24 1.65 
ky/kx=3.0 1.24 1.69 

a) The unit of time is the initial free fall time at the boundary surface where the denSIty IS 
Pb. 
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Fig. 12. The axis ratio axjay of the equi·density 
surface with p=O.lPmax(t) versus the value of 
opjpoo for the perturbations which have the 

which is unstable, grows to a thin filament 
and re-fragments into many blobs (ky/kx 
> 1.2 or < 1/1.2). 

Now, we consider a statistical prob­
lem on the spectrum of initial perturba­
tions in the (kx , ky ) space. Strictly speak­
ing, the spectrum depends on the formation 
process of the sheet cloud itself, but it is 
not unreasonable to assume that the 
spectrum is uniform, at least, in the most 
unstable region (i.e., a ring-like region 
around the circle, kZo::;::::0.5) of the (kx, ky) 
space. If this is the case, perturbations 
with different values of ky/kx exist with 
equal weight along the circle k=constant. 
Then, the probability that the initial ratio 

same value of k, kZo=O.5. ky/kx is greater than 1.2 or less than 1/1.2 is 
estimated to be about 90%. Namely,90% of the perturbations in the cloud will grow 
to thin filaments. In the next subsection we will confirm this by simulation for the 
case where initial perturbations are completely random. 

3.5. Growth of random velocity fluctuations 

In this subsection, we compute the growth of a perturbation which starts with 
random velocity fluctuations. The periodic length of the boundary in this case is 
chosen to be 4Am in both the x- and y-direction, where Am is the wavelength of the most 
unstable mode ( ~47rZo). 

As the random velocity fluctuations, we give the following velocity to each 
particle, 

y g 
6 

g 

-16.50 -It.oo -5.50 0.00 11.00 ]6.50 22.00 

x 
Fig. l3. The particle positions projected onto the 

plane, z=O, for the case of random velocity 
perturbations. 

vx=O.lCsRm '} 
vy=O.lCsRm, 

Vz=O, 

(3·10) 

where Rm is a uniform random number in 
the range ( - 1, 1). 

The result of simulation is shown in 
Fig. 13. There appear many filamentary 
structures as expected from the results of 
the previous subsection. In the case ofthe 
random perturbation, most of the values of 
ky/kx is greater than 1.2 or less than 1/1.2 
and, hence, many fluctuations grow to 
form filamentary structures. But there 
are a few blob-like condensations, as is 
also expected. From Fig. 13, the mean 
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distances between filamentary clouds are found to be about ;1m. 

§ 4_ Discussion and conclusions 

4.1. Scenario of fragmentation 

Using the results of numerical simulations, we can construct the following scena­
rio of cloud's fragmentation. 
(1) A sheet cloud is formed by some triggering mechanism such as a collision between 
clouds, a compression by supernova explosion, etc. 
(2) In the sheet-like cloud formed, there are various types of perturbations with small 
amplitudes. If we define e as 

kx=k-cose and ky=k-sine , (4-1) 

the number of waves with the same k may be independent of e. 
(3) Perturbations with kZo~l are unstable to fragmentation and th<?se with kZo~0.5 
grow most rapidly. 
(4) The axis ratio of a fragment, which starts with the initial ratio ky/kx > 1.2 or < 1.2, 
grows greatly as it goes on collapsing. Hence, almost all of the p~rturbations grow 
to form filamentary structures. The remaining part (about 10%) of fragments, which 
have the initial ratio 1.2~ky/kx~1/1.2, collapse as single nearly axisymmetric blobs. 
(5) Eventually, the density of each fragment becomes so high that the gas is opaque 
to radiation and the temperature begins to rise. Then the collapse stops. 
(6) The cylindrical cloud becomes unstable to fragmentation in the axis direction 
when its axial length exceeds ~27rro, where ro is the radius of the cylinder. Then the 
filament will fragment into many dense clouds. On the contrary, the axisymmetric 
blob cloud does not fragment. 
(6) The rest gas of the original sheet-like cloud accretes onto the final fragments and 
these fragments begin to collapse again to form proto-stars. 
(7) As a result, almost dense clouds have filamentary structures. Within these 
filaments there are many dense molecular clouds and young stars, which have 
relatively small masses. Very small parts of clouds collapse as a single object to 
form a very massive proto-star. 

N ow we give several comments on the above scenario. The first key point of the 
above scenario is that a parent cloud, which fragments into many pieces, is a sheet­
like cloud. It comes from the fact that the dispersion relation has the maximum 
growing point at a finite k as shown in Fig. 1 of Paper I. The distances between 
fragments should be equal to the most unstable wavelength, ;lm=47rZo. Actually the 
observed distances between filamentary molecular clouds in Taurus molecular clouds 
agree consistently with most unstable wavelength.7

) 

The second point is that because of the nonlinear effect almost all the perturba­
tions grow to thin filaments. This explains why molecular clouds often have the 
filamentary structures. 

The third point is the mass of fragments. Larson discussed that this mass is 
equal to the maSS,(};lm2

, which comes from the first fragmentation of a sheet, with 
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column density (J.S) However we consider that it is rather equal to the mass which 
comes from the re-fragmentation of a filament and, hence, is much less than (JAm 

2 (since 
a filament fragments into many pieces), as will be mentioned in the next subsection. 

4.2. Mass distribution of fragments 

According to the scenario in § 4.1, we can calculate the mass function of frag­
ments. The mass which is contained in a pure eigenmode (kx , ky ) is 

(4 ·2) 

where e is defined in Eq. (4·1). Because the axis ratio of a filament, ay(t)/ait), 
changes as the perturbation grows, it is a function of Bp/ poo. When density becomes 
high enough and a cloud becomes opaque, the collapse will stop. The axis ratio of 
this opaque cloud is denoted as Rf which is a function of e. Because it is most 
probable for a filament to fragment with a wave length ~ 27r x radius, the number of 
fragments N( e) is given by 

(4 ·3) 

If all the mass given by Eq. (4·2) of one mode accretes to N(e) fragments, each 
fragment's mass will be 

(4 ·4) 

Now we consider cases where the values of Bp/poo at the time when the cloud becomes 
opaque are 102 and 103

• And if we assume that the initial number of waves is 
independent of e and use the value of Rf read from Fig. 12, we obtain from Eqs. (4·3) 
and (4·4) the mass function of fragments written in the form, N=N(m), i.e., the 
number in the mass range m-m+dm is N(m)dm. The results are shown in Fig. 14, 
where the number versus mass relation is obtained from the computational results for 
ky/kx=1.2, 1.5, 2.0 and 3.0. If we neglect the non-fragmentation case where kYJkx~1.2, 
the number N is nearly proportional to m-2

• This resuit is very suggestive to the 

logN(m) 

log(m) 

Fig. 14. The number versus mass relation for the 
final fragments of clouds. The value of OPf/POO 

denotes the final value of oP/Poo when the col­
lapse stops. 

explanation of observational data for pre­
main sequence stars and dense clouds in 
Taurus region, where the mass function is 
nearly equal to m-2•9},IO} 

4.3. Conclusions 

A) We investigated the growth of 
perturbation of the mode, cos(kxx)cos(kyy), 
existing initially in the isothermal sheet 
cloud by means of fully-nonlinear simula­
tion. The results are as follows. 
(1) The growth time of perturbation 
depends mainly on the wave number 

k(=Jk/+k/). 
(2) The shape of the density contours and 
its evolution depend strongly on the ratio 
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ky/kx. 
(3) If 1/1.2:;;;;' ky/kx:;;;;' 1.2, the perturbation grows axisymmetric ally and the density 
distribution in the z=O plane is given by pcxR-2

• The shape of the equi-density 
surface of the fragment is not spherical but sightly flattened. This flatness is not so 
large ( ~ 2) and hence this fragment will not break up again. 
(4) If ky/kx > 1.2 or < 1/1.2, the perturbation grows to form a collapsing filament. The 
collapse is essentially equal to the isothermal cylindrical collapse. Namely, the 
cylinder collapses in the direction perpendicular to the cylindrical axis and the density 
distribution in the outer region is nearly given by R-4 (R being the radial distance 
from the axis). 
B) If we assume that the initial spectrum of perturbations is independent of the ratio 
ky/kx, about 90% of the perturbations grow to form thin filaments. This has been 
confirmed by simulation for the case of random velocity fluctuations. 
C) Finally we can construct a scenario of cloud's fragmentation. According to this 
scenario, the mass function of final fragments is almost proportional to m-2

• 
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Appendix 
-- Method of Computing Gravitational Force--

We consider how to solve numerically the Poisson equation 

a~ lfJ"/OX2+ a2lfJ"/ay2+ a2lfJ"/az2=47rGp . 

Because density obeys the periodic condition given by Eq. (2·3), we have 

P(X±Xb, Y±Yb)=P(X; y), -xb/2<x:;;;;'Xb/2, -Yb/2<y:;;;;'Yb/2. 

(A·l) 

(A·2) 

We solve Eq. (A ·1) in a rectangular box with the side lengths, Xb, Yb and 2.4zb. The 
side lengths of Xb and Yb are divided into Nx and Ny grids with equal intervals. In the 
z-direction, the region with 1z1:;;;;, 1.2Zb is divided into Nz grids. Let the value of 
density at the grid point (a, b) be denoted by Pa,b(Z). Then, because of the periodicity 
of the density and the potential, they can be expressed as the Fourier series 

Nx-iNy-i 

Pa,b(Z)= ~ ~ Pm,n(z)exp(27ri(am/Nx+ bn/Ny)) . 
m=O n=O 

(A·3) 

(A·4) 

The operators a2/ax2 and a2/ay2 in Eq. (A ·1) are changed into a finite difference 
operator, i.e., 

(A·5) 
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where Llx is the grid interval. Then, firm,n(Z) must satisfy 

where 

We can obtain the Green function Gm,n of Eq. (A· 6) as 

Gm,n(Z, z')=(1/2Km,n)exp( - Km,nlz- z'l), if m=l=O or n=l=O} 

Go,o(z, z,)= -(1/2)lz- z'l. 

If the density distribution in the z-direction is approximated as 

then we can obtain at the grid point Z=Zi, 

firm,n(Zi) = -4JrG f P m,n(Z') Gm,n(Zi, z')dz' 

= -4JrG'2:, Pm,n(Zj) Gm,n(Llz(i - j)) , 
j 

1287 

(A'6) 

(A'7) 

(A·8) 

(A'9) 

(A'10) 

where Llz is the grid size in the z-direction. Now 1Jfa,b is obtained from Eq. (A·4). 
The Fourier transformation is carried out very quickly using FFT algorithm. Then 
we calculate the gravitational forces at the grid points and interpolate them to the value 
at the particle center. 
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