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Capillarity is the familiar manifestation of the cohesion of liquids. Since Laplace (1805),
we know that intense attractive forces between the molecules bridge the small with
the large as they shape liquid/vapor interfaces at the macroscopic scale through the
concept of surface tension (menisci, drops, bubbles, puddles, liquid rise in tubes, etc. . . ).
We concentrate on situations where liquids ‘disgregate’, following the neologism of R.
Clausius (1862), meaning that they fragment by the action of deformation stresses whose
intensity competes with that of cohesion forces. Various examples, including explosions,
blow-ups, hard and soft impacts, and shears applied to liquid jets, sheets and drops
are reviewed. They concern applications ranging from liquid propulsion, agricultural
spraying, to the formation of ocean spray, raindrops, and human exhalations by violent
respiratory events. In spite of their diversity, the various modes of fragment production
share an ultimate common phenomenology –the ligament dynamics–, suggesting that the
final stable droplets size distribution can be interpreted from elementary principles.
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1. Overview: issues and scope
In his treatise on Cohesion, J. S. Rowlinson notes that Some problems have always been

with us. Among them notably: Why does matter stick together (Rowlinson 2002)? We
could, identically, ask the same question concerning fragmentation: Why does condensed
matter break? After all, even if stressed, sheared, compressed or stretched, a piece of
cohesive matter could well remain as a whole rather than splitting into pieces; and it
actually does so when perturbed sufficiently gently. But then, what does gently means?
And when a stressed object breaks, why is it typically into many pieces, with many more
small than bigger ones, rather than just in two pieces (think of a glass dropped on the
floor)? Is there a way to quantify the diversity of the sizes? Is there a minimum fragment
size, or can the object divide ad-infinitum? Why is it that a liquid volume may fragment
spontaneously (like a jet), or on the contrary keeps its integrity (like a puddle lying on a
solid surface) depending on its shape only?

Answers to some of the above questions exist, the others are still under debate and are
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Figure 1. Rome, Piazza del Popolo, the lions of the central fountain expectorate a turbulent
water sheet. Random velocity fluctuations and possible bubbles inclusions in the liquid nucleate
holes which, driven by surface tension, grow and merge, leaving the sheet as a set of connected
ligaments. These corrugated ligaments further breakup into a collection of disjointed droplets
broadly distributed in size.

the subject of active research in Fluid Mechanics and beyond. Their study is the topic
of the present review.

1.1. Objects of interest and scope
The subject matter, illustrated in Fig. 1, will be concerned with liquid sheets, shells,

holes, jets and ligaments, those which ultimately break into stable fragments, namely the
final drops. Since these ligaments, kind of elongated, finite sized rough columns will be
shown to be the ‘sinews’ of liquid fragmentation (Villermaux 2007), their formation will
be tracked, and described along with the instabilities giving birth to them in a variety
of different situations with applications ranging from liquid propulsion, agricultural
spraying, to the formation of ocean spray, raindrops, and human exhalations by violent
respiratory events etc... It will be shown that their dynamics, and final outcome, results
from a trade-off between cohesion and fragmentation.

Attention will be paid in each case to understanding the overall drop size distribution,
for at least two reasons: First because a satisfactory understanding of a physical phe-
nomenon requires its complete statistical description, particularly when it is non-trivial,
and second because most applications urge us to do so, as we explain next.

1.2. Distributions rather than just averages
We list below a number of situations taken from various fields showing the importance,

in fragmentation, to understand or control the overall drops size distribution, rather than
just a mean size.

(i) Liquid propulsion, combustion, drying: Fragmentation is a mandatory step in
various industrial processes like in furnaces, liquid propulsion engines, or drying facilities,
contexts where it is usually called atomization (i.e. literally, down to the atom size).
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Although produced in a swarm with other droplets densely packed in space at the
atomization nozzle, it is nevertheless often the fate of an individual liquid droplet which is
of practical interest: the length of a liquid-propulsion combustion chamber, or the height
of a drying tower depend on the distance from the injection nozzle for the last, biggest
droplet of fuel, or solvent, to evaporate, burn (Marble 1964), or solidify (Yule & Dunkley
1994). Conversely, fine droplets burn too soon after their formation, and may damage
the injectors. A better control of the fuel droplet size distribution at injection is one of
the ways to improve car engines consumption (Taylor 2008).
(ii) Agricultural spraying, snow lances, painting and printing industry, dust control:

Spray drift is a major concern in agriculture. Standard flat fan atomizers used to spray
fields with fertilizers and pesticides produce broad drops sizes distributions, with a
notable fraction with diameter below 100µm (called ‘fines’) likely to be swept by the wind,
reaching the farmer’s neighbor field who may not like it, or the river next to it (Hewitt
2000; Kooij et al. 2018). Strategies to reduce their relative number are the subject of active
research (Hilz et al. 2012; Vernay et al. 2015a). The biggest droplets however soon fall
by their own weight, are too heavy to hook on plants leaves, or rebound on them, splash
like raindrops do, favoring plant-to-plant contamination (Gilet & Bourouiba 2015). Snow
lances, whose popularity is indexed on the progress of global warming, suffer from the
same flaw: light snowflakes from tiny droplets wander aloft, missing the targeted ski slope,
while big droplets fall on the ground before freezing, finally producing undesired ice. For
similar reasons, the rotary atomizers used in the automotive painting industry produce
many droplets that fail reaching the car bodies they are supposed to coat (Wilson et al.
2018). Dust particles are routinely removed from air by sprays with a capturing efficiency
depending critically on the droplets sizes (Swanson & Langefeld 2015). The formation of
undesired small satellite droplets causes notorious difficulties in inkjet printing (Wijshoff
2010; Basaran et al. 2013).
(iii) Geophysics, planetary sciences, precipitations: The Earth was built by high-energy

impacts of planetesimals with metallic cores of their own. The composition of the Earth
mantle depends critically on the time offered to metal–silicate chemical equilibration
as the impactor material settles towards the Earth core. It fragments very much like
raindrops form as they fall from clouds in the atmosphere (Villermaux & Bossa 2009),
producing broad size distributions (Marshall & Palmer 1948). Efficient equilibration is
achieved with smaller fragments allowing fast metal–silicate mass transfer, while the
fate of bigger ones is to accumulate in the –therefore iron-rich– core. The overall planet
chemical composition relies on fragmentation (Deguen et al. 2014; Landeau et al. 2014;
Wacheul et al. 2014).
(iv) Sea spray: The spray produced by wave breaking in the surf zone, or white caps

at the ocean surface is a superposition of different mechanisms which results in broadly
distributed droplets sizes (nanometers to millimeters, see e.g. O’Dowd & de Leeuw (2007);
Veron (2015)). If they all contribute to the global air-sea exchanges, the fate of each
droplet in this distribution is not identical: The smallest aerosols are long lived in the
atmosphere, carry salt and diverse chemical/biological substances (Cochran 2017; Pietsch
et al. 2018) over large distances inland while the biggest spume droplets carry momentum,
heat and produce moisture by evaporation, feeding hurricanes for example, before settling
by gravity.
(v) Exhalations, disease transmission, seeding: Human exhalations like coughing or

sneezing produce a broad spectrum of droplets sizes, possibly carrying pathogens and
thus mediate disease transmission (Pasteur 1861; Flügge 1897; Winslow & Robinson
1910; Duguid 1946). This well known fact is currently re-examined in the light of modern
methods and ideas (Turner et al. 1941; Bourouiba et al. 2014). The contamination radius
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of an infected coughing individual is the distance needed for the last liquid droplet exhaled
from his mouth and staying aloft in air to evaporate (Wells 1955), but it is not clear which
are the nastiest most long-lived droplets in the exhaled spectrum; It has been suggested
that the finest the nastiest, through a collective evaporation delay mechanism (Villermaux
et al. 2017). Fungi reproduce by ejecting encapsulated seeds of different sizes, the biggest,
heaviest and thus farthest reaching ones being responsible for substrate exploration, while
the smallest exploit the substrate in the immediate emitter vicinity (Ingold 1971). These
airborne spores, like pollens, can be carried over long distances, crossing oceans (Hirst
et al. 1967; Aylor 2017).
(vi) Medicine, forensic science, inhaled drugs, scents: Some therapies rely on inhaled

aerosols carrying drugs which should be embedded in particles whose size is critical
to escape from the lung’s natural clearance mechanisms. Controlling particles sizes,
and density is vital in this context (Edwards et al. 1997). Experts in the forensic
technique of Blood Pattern Analysis routinely contemplate blood splats to decipher the
circumstances of a homicide. These splats consist of myriads of stains on the floor which
are meaningful only when the fragmentation process creating them has been understood
(Attinger et al. 2013). Electronic cigarettes (e-cigs) are efficient, cancer agent free, tobacco
smoking alternatives. However, the nicotine-rich aerosol produced by e-cigs has a droplet
size distribution appreciably more skewed towards small sizes than the tobacco smoke
particles, with a fat tail towards ‘nano’ particles; they are, for this reason, considered as
suspect (Glantz & Bareham 2018). There is a, yet unexplored, relationship between the
way a fragrance spray has been atomized, and the persistence of its scent, admittedly a
fascinating question.

1.3. A fragmented world
The examples above suggest that we are indeed living in a fragmented world, in

more than one sense. There are other sectors of science where the dilemma between
cohesion and fragmentation has been identified as paramount: For example, the survival
of colonies of living species is known to be influenced by their habitat fragmentation.
While fragmentation is usually believed to have a deterring impact on wildlife colonies
because it promotes species competition for limited resources and inbreeding, thus
hampering bio-diversity (Betts 2019), other aspects like long lasting adaptation to a
given small perimeter substrate in an immigration/emigration-free isolation is known to
favor persistence (Mc Arthur & Wilson 1967; Letcher et al. 2007). In sociology, spatial
fragmentation and its cultural corollary have been identified to impede social cohesion,
and are considered as a threat to democracy. These topics are however out of the scope
of this review.

2. Cohesion, Aggregation and Fragmentation
Before we wonder how cohesive objects break, it is useful to recall in which manner

they have been understood to be, precisely, cohesive.

2.1. Founding idea of Laplace (1805)
The founding idea is due to Laplace (1805). Liquids rise spontaneously in narrow tubes.

Well aware of Newton’s Query 31 (Newton 1704), and of the subsequent experimental
observations by Hawksbee and Jurin intended to solve this inadmissible exception to the
theory of gravitation (see the detailed history in Rowlinson (2002)), Laplace conjectured,
a century later, the existence of a central force between nearby ‘molécules’ (or ‘particles’
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Figure 2. (i) A sketch from Hawksbee (1709) where ‘particles’ are clearly singled-out as the
constitutive components of a liquid, here ascending in a capillary tube. (ii) Breakup of a laminar,
falling smooth water jet (h0 = 4 mm and v0 = 1 cm/s) contrasted with the fragmentation of
the same, but turbulent jet. (iii) The ‘particulate’ vision of the rearrangements occurring during
ligament breakup (Villermaux et al. 2004). (iv) Stripping of ligaments at the surface of a water
jet sheared by a fast coaxial stream (Marmottant & Villermaux 2004b). (v) The time-lapse of
an isolated ligament featuring longitudinal rearrangements as it breakup.

as Hawksbee called them; this word has to be understood as a synonym of small amount,
for instance, Newton (1687) refers to a particle of time to designate an infinitesimal time-
increment): Two masses m and m′ distant by f are attracted by a force mm′φ(f) with
φ(f) assumed to be very intense at short distance, and evanescent for large separation
distances f , in Laplace’s notations. This formalism, exposed in his Traité de Mécanique
Céleste is directly imported from the one operating for gravitational forces. The work of
separation, or binding energy of the particles pair is u(f) =

∫∞
f
φ(f ′)df ′. Lord Rayleigh

(1890), in his exegesis of Laplace’s contribution, shows how successive summations
provide the attraction from a half space with density ρ on a unit mass at distance z from
its bounding plane ψ(z) = 2πρ

∫∞
z
fu(f)df , that the mutual attraction between two half

spaces separated by x is θ(x) = ρ
∫∞
x
ψ(z)dz per unit plane surface area, producing an

internal bulk pressure K = θ(0), and that the separation work of the two planes from
contact is 2σ =

∫∞
0
θ(x)dx.

Thus defined as an energy per unit surface, what is now called the surface tension of the
material or, equivalently, its fracture energy (we will come back to this delicate question
in Section 11), is related to the hypothesized microscopic force φ(f) by the celebrated
formulae

σ =
π

8
ρ2
∫ ∞

0

f4φ(f)df (2.1)

Surface tension is a finite quantity provided the force φ(f) decays fast enough with f ,
and it is not the least of Laplace talents to have embarked in this description without,
at the time, an empirical proof of the existence of molecules and ignoring that, more
than a century later, quantum mechanics would rationalize the so-called van der Waals
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forces (Israelachvili 1991) by showing that u(f) ∼ f−6 and that therefore φ(f) ∼ f−7, a
decay making the integral in (2.1) convergent indeed (Laplace had envisaged, safely, an
exponential decay).

2.2. Clausius disgregation (1862)

Clausius (1862) created the ephemeral concept of disgregation which he himself soon
replaced by the notion of entropy. Clausius wanted to formalize the idea that a body mass
exchanging heat or work with an outside source suffers an ‘alteration of arrangement’ of
the ‘aggregation state’ of its constitutive molecules:

... the effect of heat always tends to loosen the connexion between the molecules,
and so to increase their mean distances from one another. In order to be able to
represent this mathematically, we will express the degree in which the molecules
of a body are dispersed, by introducing a new magnitude, which we will call the
disgregation of the body...

We would nowadays call disgregation the configurational part of the entropy but it is
interesting to note that by ‘dispersed’, Clausius equally meant loosely aggregated (like
molecules in a liquid), or completely disjointed (like in a gas). Cohesion, aggregation and
fragmentation are thus notions which were thought at this time as parts of the same
problem, or at at least as having strong inter-relationships.

We have on purpose recalled the early ‘particulate’ description of matter cohesion first
to underline its origin as an inspiration from the theory of gravitation and central forces
between isolated bodies. It is also possible that Laplace, who knew well the experimental
background of the Cambridge group, notably the one of Hawksbee, has been influenced
by one of his drawings, reproduced in Fig. 2, where sizable ‘particles’ are clearly evidenced
as the constitutive components of a liquid. And second, because this representation will
be useful to understand the dynamics of fragmentation per-se, and the origin of the
multiplicity in fragments sizes, through considerations à la Clausius where disgregation
and aggregation compete on an unstable substrate (Section 9). We examine such an
example below.

2.3. Fragmentation of a necklace of magnets

In order to see how cohesion and disgregation compete, it is instructive as a starting
exercise to work-out the caricatural problem of the sudden forced radial expansion of an
assembly of attracting particles arranged in a circle: the shatter of necklace of magnets
(Vledouts et al. 2015, 2016b).

A set of spherical magnets is assembled in a necklace positioned on a cone with an
incline at 45°. The cone, guided by an axle, is released from rest at a given height and
when it hits the ground, it is suddenly stopped. An initial impulse in the radial direction is
communicated to each sphere, and the necklace expands at radial speed V . Consequently,
the spheres separate from each other; the necklace is literally ‘atomized’. But, because of
the attractive force linking them, the spheres start concomitantly to aggregate in bigger
clusters, a process going on at an ever slowing down pace to finally stop when the clusters
are too heavy, and distant from each other to aggregate. Fragments of various sizes are
then irreversibly formed (the collision between clusters is inelastic, with virtually no
rebound, see Hinch & Saint-Jean (1999) for the opposite situation). The sequence of
events, with the corresponding inverse cascade of aggregations is illustrated in Fig. 3.
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Figure 3. Fragmentation of a necklace of spherical magnets (Vledouts et al. 2015, 2016b).
(i) A ring made of spherical magnets of diameter a = 5 mm, mass m = 0.5 g and mutual
contact force φ(a) is placed on a cone, which is let fall on the ground. At impact, each sphere is
communicated a radial speed V and the ring expands. The spheres separate from each other and
start to aggregate, driven by the attractive magnetic force. The arrows indicate intervals between
fragments. (ii) Sketch of the separation process. (iii) (a) The conventional direct, sequential
cascade of breakups for which the arrow of time points towards ever smaller fragments sizes. (b)
The inverse cascade of aggregations, occurring after the smallest sizes accessible by the system
have been formed in a first step (dotted arrow). Fragments sizes get larger as time proceeds.

2.3.1. Radial deceleration
The central force between two spherical particles of diameter a, of magnetization

density M separated by a centre-to-centre distance ` is

φ(`) = φ(a)×
(a
`

)4
(2.2)

with φ(a) = πµ0M
2a2/24 where µ0 is the vacuum permeability (Jackson 1998). Spheres

are essentially attracted by their nearest neighbors, and the first consequence of this
triplet interactions along the curved necklace shape is the decrease of the expansion
radial speed. Attractive forces on a curved substrate induce a Laplace, surface tension
force decelerating the cohesive necklace. If R is the necklace radius and R(t = 0) = R0,
its equation of motion writes

mR̈ = −φ(Rθ)× 2 sin(θ/2) (2.3)
θ = a/R0 � 1 (2.4)

where m is the sphere mass, integrating into

Ṙ2 = V 2 − V 2
c

(
1−

(
R0

R

)3
)
, with V 2

c =
2

3

aφ(a)

m
(2.5)

The critical velocity Vc is the escape velocity of the process, meaning the velocity below
which an initial expansion at velocity V will coalesce back to the initial state R0. For
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V > Vc, the expansion velocity Ṙ is strongly slowed down at short time, before reaching
a steady value, smaller that V as

(
Ṙ

V

)2

−−−→
t→0

1− V 2
c

V

t

R0
, and Ṙ2 −−−−→

R→∞
V 2 − V 2

c (2.6)

This decay and final shift from V reflects the transfer of kinetic energy into potential
energy, the one which was spent at breaking the liaisons between the spheres. We will
come back to these energetic considerations in Section 11.

2.3.2. Ortho-radial aggregation
The other consequence of the central force φ(`) besides expansion slowing down is the

concomitant aggregation of the spheres, and then of clusters of spheres. Two neighbor
fragments with p and q spheres respectively, separated by a distance ` between the center
of their facing end spheres interact through φ(`), the force between the end spheres. The
equation of motion for ` then reads

῭= −φ(a)

m

(a
`

)4(1

p
+

1

q

)
(2.7)

whose first integral is again

˙̀2 = u2p,q −
p+ q

pq
V 2
c

(
1−

(a
`

)3)
, with up,q = V

a

R0

p+ q

2
(2.8)

where up,q is the geometrical initial divergence velocity (i.e. in the ortho-radial direction)
of two clusters of size p and q. Making ζ = `/a and τ = up,qt/a, we have

d2ζ

dτ2
= −3

2

εp,q
ζ4

, (2.9)

with ζ(0) = ζ̇(0) = 1 and

εp,q =

(
uc
up,q

)2

, with u2c = V 2
c

p+ q

pq
(2.10)

The critical velocity uc is the divergence velocity above which two cohesive fragments
with sizes p and q will not reconnect. Initially p = q = 1 and successive cluster-cluster
coalescences increase these numbers. Aggregation thus proceeds as long as up,q < uc,
or εp,q > 1, and the necklace fragmentation is completed as soon as εp,q < 1 for all
neighboring fragments of size p and q. The fragments trajectories described by (2.9),
the cluster coalescence timescales, the mean fragment growth and the details of the
aggregation cascade are discussed by Vledouts et al. (2015); the role of pre-existing
defects along the necklace is considered in Vledouts et al. (2016b).

2.3.3. The Weber number
In this necklace shattering example like in all fragmentation problems, disgregation

and cohesion compete and cooperate in building the overall fragment size distribution.
There is a number which measures the initial ratio of these two ingredients, namely

the Weber number (it was, actually, introduced by Constantin Weber (Weber 1931) not
even in the form of a dimensionless quantity, and in the very different context, examined
in Section 8, of jet stability, see also Appendix A.5). In our example, fragmentation is
completed at the end of the inverse coalescence cascade marked by εp,q = 1, a condition
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we will first write for the average fragment size p = q = 〈n〉, leaving the discussion about
the distributions of fragments sizes to Section 9. From (2.10), we see that

〈n〉3/2 ∼ Vc
V

R0

a
(2.11)

The surface tension σ of the necklace is approximately such that a2σ ≈
∫∞
a
φ(`)d` for

this one-dimensional cohesive object so that σ ≈ φ(a)/a, and the mass of a sphere with
density ρ is m ∼ ρa3. Introducing the particle Weber number

We =
ρu21,1a

σ
, (2.12)

where u1,1 = V a/R0 is the divergence velocity at the scale of the elementary molecule,
or particle constitutive of the cohesive necklace, we can re-write (2.11) in terms of We
as

〈n〉 ∼We−1/3 (2.13)

This scaling relationship, in which We can at most be equal to 1 for 〈n〉 & 1 can also
be viewed as a simple (but flawed, see Section 11) energy balance in which the kinetic
energy 1

2ρ〈n〉a3u2〈n〉,〈n〉 of the diverging motion u〈n〉,〈n〉 = 〈n〉u1,1 equilibrates the cohesion
energy aφ(a) = aσ. It was derived essentially in this form, and from the above reasoning,
in different but related contexts (Grady 1982, 2006; Bazant & Caner 2013).

The relation (2.13) involves naturally the divergence velocity at the scale a of the
molecule and at that scale,We < 1 when the necklace is not trivially atomized into single
particles with 〈n〉 = 1. It is nevertheless customary in many applications to construct the
Weber number on the sample lengthscale R0, and on the injection, directly controllable
velocity V (Lefebvre 1989; Bayvel & Orzechowski 1993; Ashgriz 2011). This large-scale
Weber number ρV 2R0/σ is typically very large indeed since

We =
ρV 2R0

σ

(
a

R0

)3

(2.14)

with a/R0 � 1 in a macroscopic sample. Even if we will mostly use the (de-facto much
larger than unity) macroscopic Weber number in the sequel, one has to remember that
it is the one in (2.12) which is dynamically relevant regarding fragmentation (see in
particular Section 11 about energetics).

2.4. Outline

We are now equipped with the essential concepts to apprehend fragmentation phenom-
ena. After recalling classical results concerning static and dynamic equilibria in Section 3,
we will consider the fragmentation of liquid sheets and films in Section 4, the case of shells
in Section 5, the specific aspects associated with a shear with a gas phase in Section 6 and
those with impacts in Section 7. The spontaneous fragmentation of jets and threads will
be discussed in Section 8 and the important case of corrugated ligaments will be shown
to be the key to understand drops size distributions in Section 9. Direct cascades and the
formation of fines will be illustrated in Section 10 before we end by considerations on the
energetics of fragmentation in Section 11. The Appendix is a catalogue of instabilities
relevant to the discussion.
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Figure 4. Classical static shapes discussed in Section 3.1. From left to right and top to bottom:
The Segner representation of surface tension; A spherical liquid shell of radius R; Ascent in
a wedge; A puddle lying on a solid floor; A liquid film stretched between two opened rings
separated by h; A menisci at a solid wall (wetting angle θ); Capillary ascent in a tube.

.

3. Static and dynamic equilibria, classical results
In a liquid volume bounded by an interface with principal radii of curvature R1 and R2

and in view of the construction which has led to (2.1), the pressure p is (Laplace 1805;
Maxwell 1875; Lord Rayleigh 1890)

p =
1

2
ρ2
∫ ∞

0

f3u(f)df

∫ 2π

0

(
cos2 ψ

R1
+

sin2 ψ

R2

)
dψ (3.1)

=
π

8
ρ2
∫ ∞

0

f4φ(f)df

(
1

R1
+

1

R2

)
(3.2)

= σ

(
1

R1
+

1

R2

)
(3.3)

which is commonly called Laplace law. It was Laplace’s program to compute the shape
of static liquid volumes, but this relation shows that the pressure depends solely on the
shape of the interface, may it be immobile, or not. We recall below classical results.

3.1. Shapes of liquid volumes at rest: bubbles, films, minimal surfaces, puddles, menisci,
capillary ascent, capillary length

The shapes discussed below are all reported in Fig. 4.

3.1.1. Segner (1751) surface tension
The energy per unit surface σ is also a force per unit length, hence the name surface

tension since σ ds is the force acting tangent to the interface perpendicular to the arc
length ds as first suggested by Segner in 1751 (cited by Maxwell (1875), see also Pomeau &
Villermaux (2006)). From there, the structure of Laplace law in (3.3) is readily recovered
since, in two dimensions like in our necklace example in Section 2.3, the pressure force
pRθ acting on an interface arc length Rθ is equilibrated by the projection of the surface
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tension force 2σ sin(θ/2) perpendicular to the interface, leading to

p =
σ

R
(3.4)

3.1.2. Bubble
Similarly, the surface energy E of a spherical soap bubble can also be computed from

the work spent by the pressure force p(r) = 4σ/r (since in (3.3) R1 = R2 = r if r is the
current bubble radius, and the bubble shell is bounded by two sides) while inflating it
up to its final radius R as

E =

∫ R

0

4πr2p(r)dr (3.5)

= 2× 4πR2σ (two sides) (3.6)

A soap bubble is an example of liquid shells whose fragmentation modes will be studied
in Section 5. Under gravity, their structure is constantly evolving, large bubbles are not
even spheres, but the spheroidal shape is a good approximation for centimetric bubbles
and the reason is that this shape minimizes the surface area (and therefore the surface
energy) for a given volume (see the isoperimetric problem in Courant et al. (1996), Ch.
VII, § 8 for a simple geometrical justification). It is a nice realization of the principle of
least action (see e.g. Isenberg (1978) for a straightforward application to axi-symmetrical
shapes).

3.1.3. Minimal surface
The catenoid obtained by stretching a film between two circular rings is another

celebrated example of an optimal surface. The rings are opened (hence p = 0), their
radius is R and they are separated by a distance 2h. The radius of the film along the
axis of revolution z is r(z) and r′ = dr/dz. The surface energy E and its variation δE
upon modulations δr from the sought optimal shape are

E = 2σ

∫ h

−h
f(r, r′)dz, with f(r, r′) = 2πr

√
1 + r′2 (3.7)

δE = 2σ

∫ h

−h

{
∂f

∂r
− d

dz

∂f

∂r′

}
δrdz (3.8)

The optimal shape corresponds to δE = 0 whatever δr, a condition which cancels the
integrand in (3.8), thus providing the Euler-Lagrange equation whose solution is the film
shape

r(z)

rm
= cosh

(
z

rm

)
, and

R

rm
= cosh

(
h

rm

)
(3.9)

a solution (in fact a couple of solutions with one having a lower surface energy), which
does exist as long as h/R . 0.66 for h/rm ≈ 1.2. The net curvature of the catenoid
is indeed zero (Plateau 1873), and Delaunay (1841) has generalized this result to any
non-zero constant curvature (like if the sections of the end rims were closed, and the film
were either inflated, or deflated with p 6= 0).

3.1.4. Puddle, meniscus
A circular liquid puddle (radius R) lying on a flat horizontal solid surface is another

illustration of the energetic cost associated with interface creation: we assume for sim-
plicity that the liquid is indifferent to the solid, meaning that it has no tendency to wet
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it, or to be repelled by it (the complete problem involves a wetting angle, first introduced
by Young (1805), taken here as equal to π/2; the subtleties of wetting phenomena are
very well discussed in de Gennes (1985), for example). Two kinds of energies compete,
the potential energy πR2

∫ h
0
ρgzdz of the liquid in the gravitation field if h is the puddle

height, and the surface energy πR2σ. For a given puddle volume Ω = πR2h, the puddle
height h makes the net energy E

E

Ω
=

1

2
ρgh+

σ

h
(3.10)

minimum (∂E/∂h = 0, ∂2E/∂h2 > 0), when

h =

√
2σ

ρg
≡ a (3.11)

where a is called the capillary lengthscale (Landau & Lifshitz 1987). It is, for the same
reason, this lengthscale which sets the typical dimensions of the liquid meniscus wetting a
vertical solid wall at an angle θ. The expression of the meniscus profile z(x) is complicated
(see e.g. Landau & Lifshitz (1987); de Gennes et al. (2004)), but the maximal elevation of
the meniscus above the flat interface level far from it (x� a) is given by h = a

√
1− sin θ

while, when θ . π/2, one has z(x) ≈ h e−x/a; the meniscus is localized indeed.

3.1.5. Capillary ascents
Menisci are one example of the famous shapes, which had remained paradoxical before

he rationalized them, solved by Laplace. Others are the ascent of a wetting liquid in
the sharp interstice between two plates forming a dihedral (Taylor 1712; Bouasse 1924;
Higuera et al. 2008), whose profile is z(x) ∼ a2/(αx) with α the angle of the dihedral,
and x the distance from its apex, and of course the celebrated capillary ascent in a
narrow tube: The weight of the liquid column ρghπr2 is balanced by the capillary force
2πrσ cos θ at the capillary circumference, if r is its radius, and θ the wetting angle.
The liquid elevation is given by Jurin’s law (Jurin (1719), who quantified the inverse
relationship h ∼ r−1)

h

a
=
a

r
cos θ (3.12)

and is equal to zero when the liquid is indifferent to the solid (i.e. θ = π/2 like for water
on a surface of silanized glass).

3.2. Dynamic equilibria: Film edge recession, Taylor-Culick formulae, paradox, holes,
Savart sheets and bells

Equilibrium does not mean absence of motion. Capillary forces may be balanced by
inertial and viscous forces, as in the situations we describe below.

3.2.1. Rim recession: straight edges
Liquid sheets extruded through slits are bordered by a rim, which has its own dy-

namics. Holes may nucleate in liquid films, sheets or shells (see Section 4), and open
spontaneously. The reason is that at the edge of a ruptured film, surface tension forces are
no more balanced, and communicate inertia to the liquid. We discuss below the nature
of this transfer, its sensitivity to the liquid properties, geometry (planar or circular),
starting first by the integral formulation of Taylor (1959c).

A film of uniform thickness h and surface tension σ is bounded by a free straight
edge with velocity v = ẋ. As the edge recedes under the action of capillary traction,
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it accumulates a mass m initially constitutive of the undisturbed film, in a region of
size L, which is the typical distance from the edge where fluid particles are accelerated
irreversibly from v = 0 (the film is at rest), to v. This region defines the extent of the
sheet rim. The force, and mass balances (per unit rim length) over this region write

Ṗ = 2σ, and ṁ = ρhv (3.13)

where P = mv is the rim momentum. The factor 2 stands for the two sides of the film.
Expanding the first relation in (3.13) as mv̇ + vṁ = 2σ we seek a constant receding
velocity (as suggested by experiments, see Ranz (1959); Koros et al. (1960); McEntee &
Mysels (1969a); Frankel & Mysels (1969); Pandit & Davidson (1990)), leading to

v =

√
2σ

ρh
(3.14)

called the Taylor-Culick velocity. It was established along the above lines by Taylor
(1959c) in the context of freely expanding liquid sheets and independently, in the circular
geometry suitable to holes opening on a soap film, by Culick (1960), himself inspired by
experiments of Ranz (1959). Equations (3.13) can be written

d

dt

(
v

∫ t

0

ρhv dt

)
= 2σ (3.15)

which, for a film with constant thickness indeed leads to x ẋ = v2t, or x = vt when
m(0) = 0. The velocity is constant, given by (3.14), from the start. Although the pulling
force 2σ is permanent, it is the rim velocity which is constant, and not its acceleration,
because the mass m is itself increasing on the way. The cases of an initial non-uniform
film profile h(x) was considered by Keller et al. (1995) and Raufaste et al. (2015), and
non-zero mass by Lhuissier & Villermaux (2011).

Culick offered a deeper understanding of (3.14) in correcting a notable, but interesting
mistake by Dupré (1867, 1869), echoed in plain words by Lord Rayleigh (1891). The
model of Dupré consisted in attributing the entire surface energy consumed when the
rim has travelled a distance x to the kinetic energy of the rim mass m = ρhx, that is
1
2mv

2 6= 2σx, a flawed equality leading to an over-estimated velocity
√

2 v when v is
given by the (correct) value in (3.14). The reason why this ‘sentimental’ energy balance
(on which we come back in Section 11) fails is that it disregards the energy sink of the
inelastic process of accelerating the fluid in the undisturbed film up to the velocity of the
edge, a fraction of the available energy dissipated by internal viscous fluid friction which
represents exactly half the consumed surface energy. Equivalently, this sink represents
the energy loss at a sudden expansion when the fluid particles pass from the film to the
thicker rim (see Section 11).

Estimating the viscous dissipation rate
∫
η(∇v)2dΩ by η(v/δ)2Ω for a dissipation

volume Ω ≈ h`δ and equating it to the rate of energy loss 1
2 (2σ`v) along a rim portion

length `, Culick (1960) further computed the dissipation lengthscale δ as

δ

h
∼ ηv

σ
(3.16)

∼ η√
ρhσ

≡ Oh, (3.17)

thus defining the Ohnesorge number Oh.
The problem of a receding rim is thus one of the rare instances in Fluid Mechanics

where the net amount of dissipation can be computed exactly from first principles, even in
the presence of inertia. Like in turbulent flows, the dissipative scale self-adapts to make
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Figure 5. Bounded liquid sheets: rim recession and hole opening. (i) Sketch of a receding rim.
(ii) A liquid sheet formed from a slit with edges receding at the constant Taylor-Culick velocity.
Short capillary waves propagate ahead from the front. (iii) Hole expansion on a viscous film
(Debrégeas et al. 1995). (iv) Hole expansion on a water film. (v) Hole expansion on a surface
bubble (Lhuissier & Villermaux 2012a). (vi) Hole expansion on a soap film seen in transparency
(left) and in interferometry, highlighting the characteristic ‘aureole’ (Lhuissier & Villermaux
2009a).

the energy dissipation finite and independent of the fluid viscosity η (thus including
when η → 0). It is, in this respect, the analogue of Taylor’s microscale (Taylor (1935),
or Liepmann–Taylor scale if one likes to view it as the thickness of internal shear layers
(Dimotakis 2000)) in turbulent flows obtained by equating the viscous dissipation rate per
unit mass ν(u/δ)2 with the –viscosity independent– kinetic energy injection rate u2/(L/u)
with L and u the stirring scale and velocity, respectively, leading to the familiar relation
δ/L ∼ Re−1/2 if Re = uL/ν is the Reynolds number based on the kinematic viscosity ν
of the fluid. The end of the ‘cascade’ towards smaller scales where now u(δ) ∼ u(δ/L)1/3

is marked by the Kolmogorov scale δ/L ∼ Re−3/4 (Kolmogorov 1941a). Like in the rim
problem, δ → 0 when η → 0 while the energy dissipation rate remains finite.

Viscosity does impact this problem however, through a not yet alluded to quantity,
namely the rim extent L. We just saw that the dissipation scale δ in (3.17) adapts to fulfill
the mass and momentum constraints in (3.13). The rim extent follows a qualitatively
similar trend. For Oh � 1, the liquid collects in a rim with a close-to-circular cross-
section with radius L ∼ h[1 + (vt/h)2]1/4 →

√
vht given by mass conservation (see e.g.

Gordillo et al. (2011)) and where recirculation motions dissipate the necessary amount
of energy at a scale δ � L.

For Oh � 1 however, the picture is different. There is no collecting rim anymore,
because δ is larger than h from the start. Dissipation is spread-out diffusively along the
–essentially flat– film which is now set into motion by longitudinal viscous stresses. Savva
& Bush (2009) have shown that in this limit, a fair, short time, slender slope (h′ � 1)
description of the velocity u(x, t) along the film (with ẋ0 = u(x0, t) the film edge velocity)
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is given by
∂tu = 4ν∂2xu+ v2δ(x− x0), (3.18)

valid for x > h. The film curvature κ is of order h−1 for distances to the edge of order
h and essentially zero elsewhere, so that its spatial variation at the edge location x0 is
caricatured as a Dirac Delta, that is ∂xκ ≈ 2

hδ(x − x0). The velocity along the film is
thus given by the impulse response of a diffusion equation, providing

ẋ0 ∼ v
√

t

τvis
, and L ∼ h

(
t

τvis

)3/2

(3.19)

where τvis =
ηh

2σ
≡ ν

v2
(3.20)

with v the Taylor-Culick velocity in (3.14) above. The relaxation distance L of the viscous
stress from the film edge does depend on the liquid viscosity η, but this short-time
behavior is a transient, and the film edge finally relaxes towards v, independent of η (see
also Chepushtanova & Kliakhandler (2007)). During the transient as the edge accelerates,
the global momentum balance Ṗ = 2σ in (3.13) is however always fulfilled, provided the
film momentum P = ρ

∫
hu dx is fully integrated, from the film edge in x0 to distances

far away from it, namely larger than L, which itself increases in time.

3.2.2. Circular geometry: holes
Liquid films and sheets may nucleate holes. We devote the entire Section 4.2 to the

cause of the piercing event, but we describe here the opening dynamics of the hole
once it has been formed. The circular geometry offers a slight complication in the sense
that the border of the film curvature presents now two contributions, of opposite sign,
reading κ = 1/h− 1/r0(t) where r0(t) is the hole radius. The classical study by Taylor &
Michael (1973) has elegantly shown that the shape of the hole envelope is analogous to the
catenary discussed in Section 3.1.3 and that the condition for hole opening coincides with
the condition for the catenoid stability: The hole has to be large enough (r0/h > 0.76)
to open spontaneously, otherwise it heals (i.e. r0(t) → 0 in a finite time, see Courbin &
Stone (2006) for an experimental illustration). The axisymmetric version of the balances
in (3.13) is approximately given, in the inviscid limit for the scaled hole radius ξ = r0(t)/h
with t ≡ vt/h, by

ξ̇2 +
1

2
ξξ̈ = 1− π

4 ξ
(3.21)

which both restores the planar limit in (3.14), that is ξ̇ = 1, and describes hole healing
ξ ∼ (1− t)2/3 depending on ξ being much larger or smaller than π/4 ≈ 0.78, respectively
(see also Lv et al. (2018) for the healing dynamics in the presence of gravity).

The circular geometry has nevertheless a real consequence on this rim recession problem
in the viscous limit. The analogue of the initial dynamics (3.18) describing now the radial
velocity field u(r, t) in the film for r0/h� 1 is

∂t(ur) = 4ν

(
∂2r (ur)− ∂r(ur)

r

)
+ v2r0δ(r − r0) (3.22)

a two-dimensional diffusion equation which solves for the hole radius velocity ṙ0(t) =
u(r0, t) as

r0(t) = r0(0) et/2τvis , (3.23)
an exponential growth in contrast to the power law found in (3.19) for the planar limit
(Savva & Bush 2009). Geometry thus impacts the form of laws.
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Debrégeas et al. (1995, 1998) have given an “à la Dupré” description of this problem, by
attributing the entire film surface energy consumed by the hole opening to the dissipation
of energy by viscous stresses, an equality which fails quantitatively in the inertial limit
as recalled above, but which is legitimate for Oh � 1 when inertia is sub-dominant.
Equating the rate of viscous dissipation

∫ ∞

r0(t)

2πrh
η

2
[(∂ru)2 + (u/r)2]dr (3.24)

with u(r, t) = ṙ0r0/r to the rate of surface energy destruction 2πσhṙ20 over an essentially
constant in thickness film actually leads to (3.23).

Equation (3.23) is the axi-symmetric response to a genuine diffusive, viscous dynamics
and should not, as noted by Debrégeas et al. (1995), be confused with a viscoelastic effect.
When the mechanical response of the material is elastic, the initial stress propagation
along the film is mediated by a shock wave, a phenomenon also observed in soap films
coated by a rigid layer of surfactants (McEntee & Mysels 1969b; Frankel & Mysels 1969)
and responsible for the formation of a so-called ‘aureole’ propagating upstream from
the hole edge with a dramatic consequence on its stability (see Lhuissier & Villermaux
(2009a) and Section 6). When released, the extremity of a stretched rubber band recedes
at constant velocity, proportional to the speed of sound in the material, and to a function
of the initial stretch (Vermorel et al. 2007) while an isotropically stretched rubber sheet
will, when ruptured at a point, more likely dissipate energy by opening radial fractures
(Moulinet & Adda-Bedia 2015).

3.2.3. Savart sheet
The premonitory intuition of Félix Savart was that by diverting promptly a liquid

stream, one would gain information on the nature of the liquid itself. The configuration,
declined in two memoirs (Savart 1833c,d) out of four (the two others being Savart
(1833a,b), all published in 1833 in the Annales de Chimie Physique), consists in letting a
jet impacting normally onto a small solid disk. It has indeed proved to be an extraordinary
laboratory to study the consequence of liquid cohesion on the sensible world.

The incident momentum flux (per unity liquid density ρ) carried by the jet πd20/4u20 is
cancelled by the reaction force of the impactor, and is distributed radially in an isotropic
fashion. It is however reduced by an amount of order πdiδu0u, lost in the boundary layer
at the surface of the impactor (with diameter di). The thickness of that boundary layer
is of order (Schlichting 1987)

δ ∼
√
νdi
u0

. (3.25)

If δ is usually small compared to the diameter of the impactor, it may compare with the
sheet thickness itself whose inviscid value at the impactor lip is given by mass conservation

hinv =
d20
8di

(3.26)

It is only when the Reynolds number Re = ud0/ν is much larger than unity that the
ratio

β =
δ

hinv
= 2

√
(di/d0)3

Re
(3.27)

is appreciably small.
The step velocity across the sheet profile at the impactor lip relaxes by viscous

smoothing as it leaves the impactor over a short radial distance of order u0h2/ν towards
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Chapitre 2

Nappe liquide formée par
l’impact oblique de deux jets
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Fig. 2.1: (a) Schéma d’une nappe formée par l’impact oblique de deux jets
identiques. (b) Vue de face d’une nappe lisse obtenue avec de l’éthanol, 2α =
90˚, dj = 1.05 mm et uj = 2.1 m/s. (c) Vue de face d’une nappe fragmentée
obtenue avec de l’eau 2α = 90˚, dj = 1.05 mm et uj = 4 m/s .

Ce chapitre présente l’étude d’une lame liquide formée par la collision
de deux jets identiques, figure 2.1-a. La physionomie de la nappe dépend de
la vitesse uj et du diamètre dj des jets, de leur angle d’impact α ainsi que
des propriétés du liquide, c’est-à-dire la masse volumique ρ, la tension de
surface σ et la viscosité cinématique ν. Deux exemples de nappes obtenues
dans cette configuration sont présentés sur les figures 2.1-b et c pour deux
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Figure 6. Savart sheets and bell. (i) Axisymmetric liquid sheet states: (a) Smooth regime. (b)
Flapping regime for larger Weber number (higher than 1000). (c) Perturbation of the smooth
regime by imposing vertical oscillations of the impact rod. (ii) Close-up views of the free rim of
a smooth liquid sheet, for cases (a) and (b) above, adapted from Bremond et al. (2007). (iii) An
instantaneous view of a viscous Savart sheet with a liquid 320more viscous than water (the water
case with the same injection parameters is shown in the insert, adapted from Villermaux et al.
(2013)). (iv) Collision at an angle (90°) of two jets of ethanol (left) and water (right), adapted
from (Bremond & Villermaux 2006). (v) A stationary Savart bell exhibiting the characteristic
catenoid shape.

a uniform (shear-less) profile with velocity u and thickness h, carrying the rest of
momentum 2πrhu2, and the jet flow rate πd20/4u0 = 2πrhu, thus providing (Villermaux
et al. 2013)

u =
u0

1 + β
and h(r) =

d20
8r

(1 + β). (3.28)

The ratio of the impulse carried by the sheet in a given radial direction (the average over
the 2π angular directions is zero for an axisymmetric sheet), to the incident impulse is
thus

sheet impulsion

incident impulsion
∼ u2hdi

u20d
2
0

=
1

1 + β
, (3.29)

indeed smaller than unity. The above relations interpolate between the thin boundary
layer limit (β � 1) for which u ≈ u0(1−β) and the viscous limit (β � 1) which involves
corrections in β2 (Watson 1964).

Although the surface area of an element of volume travelling radially increases in
proportion of r/d0 (or of d0/h(r), equivalently), surface tension plays no role in its radial
dynamics, which is purely ballistic. The reason is that the net force in the plane of the
(essentially flat) sheet integrated over any closed contour

∮
σds = 0 (3.30)
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is exactly zero, as long as σ is constant over the sheet, as noted by Marmottant et al.
(2000). In the absence of other ingredients like the interaction with the surrounding
ambient medium, or heterogeneous hole nucleation processes studied in the next sections,
the velocity u is thus purely radial, and conserved. Cohesion only compensates for the
radial divergence of the streamlines in thinning the sheet for volume conservation, but at
the expense of no net work (see in this respect the historical mistake of Hagen reported
literally in Bouasse (1923), §107).

Following Taylor (1959c), it is admitted that the radial expansion is halted by capillary
confinement when the Taylor-Culick velocity in (3.14) equals the radial speed u or,
equivalently, when the momentum flux of the sheet equilibrates surface tension forces,
that is

ρu2h(RTC) = 2σ. (3.31)
We will see in section 4 that this is not exactly true and that the corresponding sheet
radius anticipated from (3.31)

RTC = d0
We

16

1

1 + β
(3.32)

−−−→
β→0

d0
We

16
with We =

ρu20d0
σ

(3.33)

actually represents an upper bound. As We increases by an increase of the injection
velocity u0, the Reynolds number increases as well, and hence β decreases. The overall
dependence of RTC on We is thus a steeper than the one known for the inviscid
case (RTC/d0 ∼ We), precisely because the relative momentum loss due to viscosity
progressively fades away for larger Re. Also, viscosity delays the transition to the flapping
régime to be analyzed in section 6. There are two concomitant reasons for this delay:
The liquid is slowed down, and the sheet is conversely thickened (3.28). For instance, the
sheet thickness at the maximal smooth radial extension is

h(RTC) =
d0
We

(1 + β)2 (3.34)

It is thus doubly difficult for the weakened shear u (by a factor 1 + β, see (3.28)) to
move a heavier because thicker sheet (by a factor (1 + β)2) perpendicular to its plane
and trigger an undulatory motion (even if the transit time has been augmented) hence
the mandatory recourse to higher Weber numbers for it to be possible (see Section 6).

Note finally that the same concepts apply to non axi-symmetric impacts like those
made from the collision of two identical jets at an angle, forming an elongated, bay leaf
kind of shape which is well represented by elementary mass and momentum balances, as
long as the rim does not fragment. The global extent of the sheet, its width and length,
are both proportional to We, like the radius of a circular sheet (Hasson & Peck 1964;
Bremond & Villermaux 2006).

3.2.4. Savart bell
Making a perfectly flat sheet from the impact of a perpendicular jet on a solid disk is

actually difficult (see the method of Clanet & Villermaux (2002) to achieve this singular
limit). The angle α with which the sheet leaves the impactor may not be equal to π/2. In
that case, for instance when α < π/2, the sheet bends in an axi-symmetric way, forming
a so-called bell, eventually closing at some downstream distance from the impact point
(Savart 1833c; Boussinesq 1869a,b; Taylor 1959a). The reason for the bending is liquid
cohesion, through Laplace pressure, balanced by the sheet centrifuge force. If r(z) is the
radius of the bell at the axial position z from the impact point, the sheet presents two



20 E. Villermaux

components of curvature, namely R−11 = 1/r
√

1 + r′2 and the other R−12 = r′′/(1+r′2)3/2

in the plane containing the z−axis. When gravity is negligible and when the pressure
difference between the inside and the outside of the bell is zero, equilibrium is described
by

ρu2h(r)

2σ

1

R2
=

1

R1
+

1

R2
(3.35)

where u and h(r) are both given in (3.28). Unlike for a bubble where the two radii of
curvature are both equal to the bubble radius, the equilibrium above is not left unchanged
by the substitution R1 ↔ R2 (Clanet 2007). Symmetry is broken, and the bell is not
spherical; it is actually a catenoid (Boussinesq 1869a,b)

L− r(z)
L− rm

= cosh

(
z − zm
L− rm

)
(3.36)

with zm being the distance at which the maximal radius rm is reached, both functions of
the initial sheet deflection r′(0) = tanα and of the lengthscale L = d0We/16 setting the
overall size of the bell, which closes on the axis at 2zm. The influence of gravity, when
aligned with the z−axis, can be quantified (Clanet 2007), and Lhuissier & Villermaux
(2012b) have studied the important case where the bell is pressurized with respect to its
environment, leading to a singular, unstable shape studied in Section 5.2.

4. Rupture of sheets and films
Having considered how equilibria, static or dynamic, are ruled in some caricatural

instances, we now come to breakup, starting with plane sheets and films.
Free liquid films –by free, we mean not confined between surfactants layers– are formed

in various instances: they arise as a result of various jet impacts (see section 3.2.3)
or splashes in the form of ejecta sheets (Worthington 1908), they constitute the shell
bounding surface bubbles (Blanchard 1963), they can also be made on purpose through
the extrusion of a liquid stream through a slit or annular thin jet for some spreading
applications, in liquid propulsion devices, or ornament fountains (see Dombrowski &
Fraser (1954) and Fig. 1). Liquid films are of course also involved in various flows of
effluents down inclined plates and coating processes (Craster & Matar 2009; Kalliadasis
et al. 2012).

Suspended liquid films, that is those not lying on a solid surface, usually breakup
through their boundary. There, surface tension forces are unbalanced, pulling the liquid
constitutive of the film into a receding rim, which undergoes various instabilities, before
forming cusps, ligaments, and isolated drops.

4.1. Phenomena at the rim: cusps
The main shortcoming of Taylor’s representation in (3.31) is that it is solely grounded

on momentum equilibrium, disregarding the fate of the liquid accumulating in the rim.
Another flaw is that in nature, the rims bordering liquid sheets do not remain straight
for long, and soon present a series of indentations, particularly obvious on the steady
state configuration of the Savart sheet.

In reality, the liquid does not accumulate in the rim, and is always removed in some
way; there are plenty of mechanisms serving this purpose: by gravity dripping from
stationary rims as those found in Savart sheets (Clanet & Villermaux 2002; Villermaux
et al. 2013), by centripetal forces when the liquid flows along a curved rim (Bush &
Hasha 2004; Bremond & Villermaux 2006) or when the rim trajectory is curved like in
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FIGURE 2. (a) Details of the sheet edge and definition of the length scales. The liquid
rim attached to the edge develops a quasi-steady shape with regularly spaced nodes and
ejection sites (We = 592 and the image height is 38.6 mm). (b) Magnified view of a
node showing the control sections I, II and III of the momentum balance at the node.
The velocity components parallel and perpendicular to the rim are u sin ✓ and u cos ✓
respectively (We = 579 and the image height is 13.5 mm). (c) Superposition of 25 images
equally spaced in time by 200 µs. The trajectory of the dark small particles in the sheet
illustrates the constancy of the liquid velocity, in norm and direction, up to the rim
(We = 303 and the image height is 36.7 mm).

fact that they are the only portions of the rim that are perpendicular to the radial flow
of the sheet, the other portions being either inclined or the bases of jets ejecting drops.
The nodes are therefore the only stagnation points of the flow at the edge.

The indentations are not stationary. They are dynamic structures which evolve in
time, are born, move and die randomly along the sheet edge. However, their lifetime
is much longer than the transit time of the liquid particles flowing through them (see
figure 2c), and for these particles, they thus appear as frozen stationary structures,
an observation we will use in § 3. The number of these indentations is not fixed.
It fluctuates slightly, as a consequence of the permanent annihilation and inception
of new nodes, around a mean value N, a function of the Weber number. Figure 3
illustrates this dynamics. When two adjacent nodes closely approach each other, they
merge, and N decreases by a unit (figure 3a). When two adjacent nodes get too
distant from each other, a new node forms on one of the large corrugations which
develop on the long rim portions that separate the nodes from the next ejection
sites, and N increases by a unit (figure 3b). The newly nucleated node subsequently
grows and recedes toward the sheet centre until it reaches the same radius Rn as
the other nodes. The number N is determined by the density of nodes for which the
annihilation rate equilibrates the inception rate. The equilibrium is stable, and the
global annihilation/inception dynamics maintains a self-sustained population of nodes
at the edge of the sheet.
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Figure 7. Cusps at the border of Savart sheets: shape and dynamics. Instantaneous views from
above and a comparison with Savart’s drawings, made by eye. There are in the mean of the
order of N ≈ 10 cusps around the sheet, at the tip of which droplets are formed. Their mean
shape is well defined, but they also nucleate, coalesce as they move along the sheet (adapted
from Gordillo et al. (2014) and Villermaux & Almarcha (2016)).

spinning cups or bursting bubbles (Eisenklam 1964; Lhuissier & Villermaux 2012a), by
non-Gallilean body forces when the rim is decelerated (Villermaux & Bossa 2011), by
an electric field for charged liquids (Rozhkov et al. 2015; Brosseau & Vlahovska 2017)
etc... In all cases, the liquid is torn-off from the rim at a lengthscale prescribed by a
corresponding instability, thus altering its straight shape, which gets distorted.

de Gennes (1996) had a very clever proposal to solve the Dupré-Rayleigh paradox
recalled in Section 3.2.1, by offering a non-dissipative solution to the rim recession
problem, involving droplets ejection from the rim, at 45° out of the sheet plane. In that
vision, both mass and momentum are conserved (as well as kinetic energy), with no
mass accumulation by the rim. de Gennes was not truthfully convinced by his scenario
which indeed proved to be incorrect (he writes: ‘Up to now, as far as I know, nobody has
seen droplets escaping during film rupture!’ which is also incorrect, but for other reasons
discussed in Section 6), a scenario which has nevertheless the right flavor of the true
scenario.

The liquid is evacuated from the rim essentially in the sheet plane (modulo weak
ejection orientation variations due to the turbulent motions in the rim) from singular
structures called cusps by Gordillo et al. (2014). These were already visible from Savart’s
drawings (Fig. 7). Like in the de Gennes scenario, the cusp structure accommodates
for both mass and momentum conservation although it leads, unlike in the de Gennes
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scenario, to a slightly shifted equilibrium condition compared to the Taylor equilibrium
(3.33).

These cusps represent the saturated state of the rim instabilities caused by the various
effects distorting the rim, like turbulent fluctuations and drop detachment for instance,
and their robust geometry is constrained by both mass and momentum conservation
principles. A sheet border is indented, each indentation presenting a bulge-like stagnation
point at its base called node which drain the liquid through side jets towards the apex
where these jets connect with the jets of their two adjacent cusps; there, the liquid is
ejected in the form of a corrugated ligament, whose breakup produces the final drops.

If hn is the thickness of the sheet, and θ the angle at the node of the cusp in the (e1, e2)
frame, Gordillo et al. (2014) have shown that the momentum exiting the stagnation bulge
(of size L, proportional to hn) is

m ' ρu2hnLe2 − 2σLe2 + σLe1. (4.1)

The rim orientation satisfies the condition for a stationary inclined shock, so that θ and
hn are linked by the condition that the momentum flux ρu2hn cos2 θ absorbed per unit
length of the rim is balanced by the capillary forces 2σ acting perpendicularly to it, and
thus

cos2 θ =
2σ

ρu2hn
, or tan θ =

√
ρu2hn

2σ
− 1 . (4.2)

Since the momentum flux exiting the node has the same direction as that of the rim, it
follows from (4.1) and (4.2) that

tan θ =
m · e2
m · e1

= 2
(
ρu2hn/2σ − 1

)
= 2 tan2 θ,

(4.3)

giving the corner angle of the cusp at its node (see Fig. 7a)

tan θ =
1

2
, that is θ ' 26.6◦. (4.4)

When applied to a Savart sheet where the thickness hn and radius Rn at the node
location are linked by (3.28), and further making use of relations (4.2) and (4.4), the
radial position of the node is expressed as a function of the Taylor-Culick radius (with,
say, β = 0 as suitable for water), as

1

cos2 θ
=

ρu20d
2
0

16σRn
=

5

4
, or Rn =

4

5
RTC. (4.5)

The node radius is smaller than RTC as is the radius Re at which the cusps side
jets collide, ejecting ligaments at velocity ue. Gordillo et al. (2014) have documented
quantitatively the hierarchy

Rn < Re < RTC (4.6)
and have explained why, because the oriented side jets at the node carry momentum,
thus cooperating with capillary retraction, equilibrium occurs for a sheet thickness hn
larger than the one expected by the naive balance (3.31). Because of this kick back to the
rim, the ‘effective’ recession speed of an indented sheet is larger than the Taylor-Culick
speed in (3.14), by a modest factor

√
5/4. Along the same lines, the ejection velocity of

the ligaments is found to be approximately ue . u0 sin2 θ, that is

ue
u0

. 1− Rn

RTC
=

1

5
, (4.7)
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independent of We, in relative agreement with the measurements reported by Taylor
(1959c) whose ratio is closer to 0.15, and those of Clanet & Villermaux (2002) who
report values ranging between 0.05 and 0.25 depending on We. The ejection velocities
are, moreover, distributed in intensity around the above estimate, and direction, scattered
above and below the sheet plane. Section 11 considers the energetics of the process.

These cusps are not stationary. They are dynamic structures which evolve in time,
are born, move, merge and die randomly along the sheet edge. However, their lifetime is
much longer than the transit time of the liquid particles flowing through them for which
they are frozen stationary structures, hence the description above. Their steady-state size
distribution has been studied by Villermaux & Almarcha (2016); elementary geometry
shows that there are, in the mean N ≈ 10 cusps at the periphery of a Savart sheet, so
that the mean drop size from the breakup of the ejected ligaments is

〈d〉 ∼ d0
√
u0/ue
N

∼ d0 (4.8)

unless they are stripped by gravity or centrifuge forces before reaching the cusps tips
(Clanet & Villermaux 2002).

We finally emphasize that these indentations are intrinsic to the dynamics of the sheet
edge and are not the result of any extrinsic forcing. The fact that they have random and
moving locations on the edge means that they do not result from some asymmetries in the
jet or in the impact disk, unlike in the study of Taylor (1959c) and Dressaire et al. (2013),
where the location and number of the cusps was forced by imposing large amplitude
azimuthal modulations of the sheet thickness at the impactor, or in Lhuissier et al.
(2014) where these modulations result from a viscoelastic instability in the impacting
region.

4.2. Spontaneous hole formation
Liquid films also happen to puncture far from their boundaries, nucleating a hole, or

a collection of adjacent holes on the plane of the film. We have seen in section 3.2.2 that
holes need to be large enough in radius compared to the film thickness to open irreversibly
(Taylor & Michael 1973). The criterion is identical for polymeric membranes (Ilton et al.
2016) and is somewhat different for charged liquids which feature electrostatic repulsion
at the hole lip (Betterton & Brenner 1999).

While the sequence of phenomena occurring after a hole has been formed and opens
in the plane of a film is well described and relatively well understood (see Section 4.1),
the fundamental question of the hole nucleation process itself has been less explored.
There are in fact many answers to this question, because there are many ways a film may
puncture.

4.2.1. Extremely thin films: thermal fluctuations
Extremely small, thin objects are sensitive to thermal fluctuations. The minimal energy

input to open a hole irreversibly is the surface energy σh2 (the hole radius must be of the
order of the film thickness h, or more). That energy can, provided a scenario leading to
film rupture exists, be supplied by the quantum kBT from the liquid thermal bath, leading
to h ∼

√
kBT/σ ≈ 10−10 m in water at ambient temperature, a critical film thickness of

the order of the inter-atomic distances. This thermally activated puncture scenario may
thus at most apply to extremely thin films, like Newton black films (Casteletto et al.
2003).
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1.6 ] Rupture ⇠�
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Fig. 1.6 – Les deux courbures opposées que l’interface d’un film adopte au voisinage d’un trou.
La premìere d’ordre 1/h tend à agrandir le trou tandis que la seconde d’ordre 1/r tend à le
refermer et à cicatriser le film.

d’agitation moléculaire que l’on peut prendre en première approximation d’ordre
kBT/~ où ~ � 10�34 J.s est la constante de Planck11.

Pour fixer les idées intéressons nous à une surface typique ⇧ = 1 cm2 sur une
durée ⇥t = 1 s. La probabilité de nucléation d’un trou devient d’ordre 1 pour
⇣h2 � 60 kBT où le facteur ln f � 60 traduit le nombre considérable d’essais sur
la période d’observation. L’épaisseur critique du film correspondante vaut alors
h � 1 � 10 nm d’après l’équation (1.20). Les fluctuations thermiques permettent
donc d’expliquer la nucléation d’un trou à travers les films noirs évoqués dans la
section précédente [168, 169, 142, 37].

En revanche, la dépendance de p à l’épaisseur étant en e�h2
, un film d’épaisseur

micrométrique soumis aux mêmes conditions se verrait prédire une espérance de
vie non physique. Inversement, pour un tel film une durée de vie de l’ordre de la
seconde impliquerait12 une fluctuation typique d’énergie de 10�15 à 10�14 J, avec la
contrainte notable qu’elle soit concentrée sur un volume plus petit que h3. Ainsi,
si l’on veut expliquer par l’approche précédente le perçage spontané de films de
1 à 100 µm d’épaisseur que l’on observe pour des bulles à la surface de l’eau par
exemple (voir partie III), il est nécessaire d’identifier une source de fluctuations
sensiblement plus forte que l’agitation thermique. À moins que des “défauts” ou
impuretés ne soient présents dans le film et o⌃rent la possibilité d’une nucléation
hétérogène réduisant sensiblement la barrière énergétique associée au perçage.

1.6.2 Déstabilisation à grande échelle

Le perçage d’un film ne résulte pas nécessairement uniquement d’une fluctua-
tion localisée. D’autres modes de rupture jouant sur des échelles plus grandes que
l’épaisseur peuvent conduire à la désintégration du film. Les e⌃ets Marangoni de
di⌃érence de tension de surface peuvent amincir le film sur une région étendue et fa-

11 Cette fréquence d’essai varie bien sûr avec la fréquence typique des fluctuations que l’on
considère.

12 Sous l’hypothèse d’un facteur de fréquence non nul quelconque dans la pratique, étant donnée
la dépendance logarithmique de E au facteur de fréquence.
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FIGURE 1. (Colour online) The impact of a glycerine drop which has been coloured with
methylene-blue dye, onto a thin substrate film of isopropanol (IPA), with �⇤ = �/DH =
0.052. The ejected sheet of the film liquid has risen above the drop where it buckles
and ruptures into a multitude of fine spray droplets, which rain down on the blue crown,
to promote the formation of the Marangoni holes. This occurs without any crown-edge
instability. Frames are shown at t = �0.03, 0.10, 0.60, 1.17, 2.00, 2.87, 4.77, 7.40, 9.60
and 16.8 ms from first contact. DH =5.00 mm and U =8.13 m s�1. Red =43, Wef =11 300.
See also supplementary movie 1 available at https://doi.org/10.1017/jfm.2018.178.

highly viscous drops consist of silicone oils, or glycerine/water mixtures of 94 %–
100 % by weight of glycerine. This generated drops with dynamic viscosities µ in
the range from 500 cP to 1250 cP. A limited set of experiments was performed for
lower drop viscosities of 5 cP and 50 cP, but these do not lead to the regular crowns
studied herein.

The drops are generated by pinch off from a plastic nozzle having inner diameter of
4.2 mm. The liquid is fed from a glass separator funnel with a gate valve to control
the flow rate. The resulting drop sizes vary for the different liquid viscosities and
surface tensions, as listed in table 1. Then, the drops fall through a 5 m long Plexiglas
pipe to minimize the sideways drift of the drop during the free fall, due to unavoidable
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Chapter 6. Perforation of a dilute emulsion-based liquid sheet driven by a

Marangoni effect

are visualized. In Figure 6.2(a), 1.5 ms after the drop impact, the liquid sheet is not
perforated, the modulations of the grey level (i.e. the thickness) are similar to the ones of
a pure water liquid sheet (section 4.3.2.1 Figure 4.14(c)). In Figure 6.2(b), 4.8 ms after
the drop impact, several holes have nucleated and grown in the liquid sheet. We also
observe the presence of brighter zones in the sheet corresponding to a localized thinning
of the liquid film (some are indicated with black arrows). In Figure 6.2(c), 5.9 ms after
the drop impact, almost the whole sheet is perforated; we still observe the presence of
brighter zones, which are larger and brighter than at t=4.8 ms. We find that the forma-
tion of a hole is systematically preceded by a localized thinning of the sheet (as depicted
by brighter zones in the sheet). In the following, the brighter zone that precedes a hole
is referred to as pre-hole. Below, we use the term “patch” to refer to both pre-hole and
hole.

1.5 ms 4.8 ms 5.9 ms

3 mm

a b c

Figure 6.2: Formation and destabilization of a dyed emulsion-based liquid sheet. The
origin of time, t, is taken at the drop impact. In (b,c), black arrows indicate some
pre-holes.

Figure 6.3 illustrates the dynamics of a patch. The origin of t is taken as the drop
impacts the target. At t = 3.30 ms we observe the formation of a pre-hole distinguishable
by a bright zone surrounded by a darker rim. Until t = 3.91 ms, the pre-hole diameter
significantly increases and in the same time the pre-hole becomes brighter and brighter
highlighting a thinning of the pre-hole. At t = 4.12 ms, we observe the formation of a
darker, i.e. thicker rim, highlighting the rupture of the liquid film and so the formation
of a hole in the sheet. From t = 4.12 to 4.32 ms, we observe the growth of the hole that
expands in the liquid sheet. The same observations are made for every hole that nucleates
in the liquid: a pre-hole, which widens and thins out the sheet with time, systematically
precedes the hole nucleation.

In the following, we will study the dynamics of the patches in the sheet. In the next
section, we first describe the image analysis performed to characterize the thickness profile
of patches.
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FIGURE 9. Detailed view of the holes’ growth, merging and ligament formation. The holes
numbered from 1 to 10 grow isotropically while advected by the flow velocity u, globally
oriented downwards. As their rims join, a web of approximately straight liquid ligaments is
formed, which subsequently resolves into a collection of drops. The two images are separated
by 2 ms and their width is 50 mm.
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Figure 8. Nucleation of holes on thick (larger than a micron) liquid sheets. (i) Holes on a
mercury sheet formed from flat fan atomizer, (ii) holes on a water sheet punctured by oil droplets
dispersed in the liquid (adapted from Dombrowski & Fraser (1954)). (iii) A network of holes
punctured by bubbles in a water Savart sheet shown at two consecutive instant of time (Lhuissier
& Villermaux 2013). (iv) A water droplet coalesces in a water sheet (a) while an ethanol droplet
punctures it (Néel & Villermaux 2018). (v) Impact of a drop loaded with partially miscible
oil droplets, nucleating many holes as it expands (adapted from Vernay et al. (2015a)). (vi)
Disintegration of a liquid iron jet poured onto a refractory brick (Lhuissier & Villermaux 2013).
(vii) Impact of a glycerine drop onto a thin substrate film of isopropanol. The ejecta sheet
punctures in a myriad of holes (Aljedaani et al. 2018).

4.2.2. Very thin films: van der Waals forces
Intermolecular forces have different origins depending on whether the molecules are

charged, permanently dipolar, or dipolar by induction. These forces, called generically
van der Waals forces (Israelachvili 1991), are attractive over a range of distances which
compares to the size of the molecules itself, namely a few nanometers. The corresponding
disjoining pressure −A/h3 where A is a Hamaker constant (Derjaguin et al. 1987), is
responsible for puncturing very thin films up to a few tens of nanometers (Vrij 1966;
Reiter 1992; Sharma & Reiter 1996; Erneux & Davis 1993; Champougny et al. 2017),
but does not operate with much thicker films, despite the fact that appreciably thicker
films, of the order of 200 nm (Thoroddsen et al. 2012b), and even more (Nierstrasz &
Frens 1998) have been claimed to be sensitive to this effect.

4.2.3. External solicitations
A liquid film can be transpierced by a sharp (with a radius of curvature smaller than

the film thickness) solid object, a projectile (see Fig. 5 and Bull (1904); Courbin & Stone
(2006)), a concentrated air jet (Berendsen et al. 2012; Lhuissier et al. 2016), a focused
laser beam (Wedershoven et al. 2015) or a spark (McEntee & Mysels 1969a; Lhuissier
& Villermaux 2009b), whose action is applied for a sufficiently long time. Like all fragile
objects, liquid films are also sensitive to the unsteadiness of their environment. The
application of a pressure gradient, or pressure difference across a film sets it in motion,
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and the corresponding acceleration may, because the film is a density interface when
surrounded by a gas, lead to destabilization through a Rayleigh-Taylor mechanism. An
impulsive pressure wave (Bremond & Villermaux 2005), or a violent explosion (Vledouts
et al. 2016a) cause the film, accelerated perpendicular to its plane, to grow thickness
modulations which ultimately cause its puncture with a well prescribed wavelength
examined in section 6. The same phenomenon is responsible for the crumpling of liquid
bells, and the formation of transverse indentations at the edge of flapping liquid sheets
(Lhuissier & Villermaux 2012b); it may affect films of arbitrary thicknesses, the studies
just mentioned had microns, to tens of microns thick films.

4.2.4. Internal flaws and defects
Solid hydrophobic particles introduced into a film can, when their size compares with

the film thickness, lead to its rupture as they force the two interfaces of the film to pinch
at the surface of the particle. Anti-foaming agents have taken advantage of this effect
for a long time (Garrett 1992; de Gennes 1998). However flaws, impurities or defects
in the liquid may not be solid. Immiscible oil droplets (Dombrowski & Fraser 1954), or
bubbles (Lhuissier & Villermaux 2013) also act as efficient hole nucleation sites in water
films for precise reasons that remain largely elusive. Denkov (2004) notes that, when by
chance an oil droplet reaches an aqueous interface, the resulting surface tension contrast
(oils have usually a weaker surface tension than water) drives a well-defined outward
superficial flow. Vernay et al. (2015a), adapting this result to a radially expanding liquid
sheet loaded with partially miscible oil droplets argue that it is responsible for the film
piercing, which they do observe experimentally.

4.2.5. Surface inhomogeneities and Marangoni stresses
Chemical and temperature inhomogeneities at the surface of a liquid translate into in-

homogeneities of surface tension. The corresponding Marangoni surface stress (Marangoni
1878) is communicated to the bulk of the liquid by viscosity in a way, when the liquid is
shallow like in films, which can be dramatic (Scriven & Sternling 1960). In the Bénard
problem of a liquid layer heated from below for instance (Bénard 1900, 1901), the mean
temperature decays from the hot plate to the liquid free surface. Since surface tension of
a liquid typically decreases with temperature, this gradient yields a surface shear stress
when the interface is distorted, setting the liquid into motion towards the cooler areas,
where the surface tension is higher (Levich & Krylov 1969). There, the film thickens when
at the same time, the flow away from the hotter regions results in film thinning. Any
initial disturbance of the film thickness or of the interface temperature is thus amplified
(Pearson 1958). This instability may lead to film rupture, and local drying of the heating
plate (Kabova et al. 2006; Vanhook et al. 1997; Boos & Thess 1999), namely the analogue
of holes formation. This effect, which may also be due to differential evaporation in
mixtures (Guéna et al. 2007) is, for this reason, used as an efficient cleaning process
(Leenaars et al. 1990; Matar & Craster 2001). Other experiments of Marangoni stress
induced spreading flows include those of Roché et al. (2014) and Hernández-Sánchez
et al. (2015) suggesting that this kind of mechanisms can affect films up to a millimeter
thick; when coupled to evaporation, it may also provoke the spontaneous emulsification
of weakly miscible mixtures (Keiser et al. 2017; Wodlei et al. 2018).

4.2.6. Thick, spontaneously puncturing films
Yet, if the case of extremely, or very thin films (Sections 4.2.1 and 4.2.2) is satisfactorily

understood, the case of thick films being neither sensitive to thermal fluctuations, nor to a
disjoining pressure, in the absence of sustained temperature, or pollutant concentration
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gradient (Section 4.2.5), remains an enigma. Even the precise role of defects (Section
4.2.4), when they are temperature or soluble chemical agent spots localized in space
in, or at the surface of the film, needs to be clarified. A fundamental issue is to know
whether a localized surface inhomogeneity spontaneously leads to film rupture in a finite
time (Bowen & Tilley 2013), or not (Kitavtsev et al. 2018), besides the possible role of
surfactants (Jensen & Grotberg 1992, 1993). The problem is particularly acute for liquid
films with high surface tension like water (Lhuissier & Villermaux 2012a) or mercury
(Dombrowski & Fraser 1954) whose surface is easily contaminated by ambient pollutants,
those films being known to puncture spontaneously even if paradoxically thick in the sense
of the above classification (Aljedaani et al. 2018).

Néel & Villermaux (2018) have uncovered a mechanism solving the paradox, relying
on the extreme sensitivity of the film to surface tension inhomogeneities. The surface
tension of a free liquid film is lowered by an amount ∆σ over a size a by chemical or
thermal contamination. At the same time this spot diffuses (within a time a2/D, with
D the diffusion coefficient of the pollutant in the substrate), the Marangoni stress ∆σ/a
induces an inhomogeneous outward interstitial flow which digs the film within a time

τ0 ∼
√
ρha2

∆σ
, (4.9)

with ρ the density of the liquid. When the Péclet number

Pe =
a2

Dτ0
(4.10)

is larger than unity, the liquid substrate motion reinforces the surface tension gradi-
ent, triggering a self-sustained instability insensitive to diffusional regularization. The
paradigm is that liquid surfaces are always somewhat dirty to some extent (Poulain
et al. 2018), and that even a minute amount of dirt is enough to initiate puncture. The
criterion in (4.9)–(4.10) makes precise what ‘dirt’ means.

4.3. Kinematic thinning

By contrast with a round jet, a flat liquid sheet initially at rest, or animated with
a uniform translational velocity along its plane will not amplify thickness corrugations
spontaneously, because surface tension is stabilizing for a flat sheet (see Section 8 and
Appendix A.5). However, a liquid sheet may be prepared in such a way that the velocity
u(x, t) of the fluid particles averaged over its thickness h(x, t) is initially inhomogeneous
along x, namely when u(x, t = 0) is not a constant. Analogously, the velocity at the
origin of space u(0, t) may be fluctuating in time, as it is notoriously the case for flat
fan injectors used in the agricultural spraying context for which the liquid is turbulent
at the nozzle exit. In that instance, the sheet will locally thin or thicken depending on
the sign of the initial velocity gradient (∂u/∂x)t=0 when spatial modulations of u(x, 0)
are imposed to the sheet, or of the sign of the acceleration (∂u/∂t)x=0 when the velocity
u(0, t) is modulated in time at the injector exit. This results from trivial kinematics: if
a slow particle released in x = 0 is preceded by a fast particle, their separation distance
will further increase, thus thinning the sheet in-between them. Conversely, a fast particle
will catch-up a slow particle ahead to form a shock. This phenomenology applies to jets
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Figure 9. Kinematic thinning leads to film rupture. (i) Agricultural flat fan nozzles (Albuz)
produce a turbulent sheet, possibly loaded with bubbles. Initial injection velocity modulations
lead to thinning of the sheet along large valleys which, when they are thin enough (of the order of
1µm or less), nucleate holes spontaneously. The arrows indicate the regions where this scenario
occurs. This case has to be contrasted with hole nucleation on very thin sheets where van der
Waals forces are at play: (ii) 40 nanometer thick polymer film on a solid substrate (Reiter 1992)
and (iii) bursting of relatively thin (250 nanometer) air films (Thoroddsen et al. 2012b).

also (Meier et al. 1992). The sheet thickness h(t) in Lagrangian time t reads

h(0)

h(t)
= 1− t× 1

u

∂u

∂t

∣∣∣∣
x=t=0

(4.11)

t =
x

u(0, 0)
. (4.12)

It blows-up in finite time at concentrated shocks when (∂u/∂t)x=0 > 0, and decays like
t−1 around large valleys when (∂u/∂t)x=0 < 0, as seen in Fig. 9 which also shows how
the thin, stretched sheet in the valleys nucleate holes spontaneously, holes which expand
preferentially along the valleys, where the liquid film is the thinnest. There, the sheet
thickness, computed from Taylor-Culick velocity in (3.14) is found to be about 1µm, a
value often encountered with clean water which coincides, at least quantitatively, with
its Debye screening length (Israelachvili 1991), although no precise connection has been
made yet (see the different scenarii discussed in Yaminsky et al. (2010)).

Of course, surface tension comes into play in the strongly distorted regions of the film
interface, namely around the neck between valleys and shocks. Burton & Taborek (2007)
have shown that the inviscid, slender slope conservation equations

∂tu+ u∂xu =
σ

ρ
∂3xh (4.13)

∂th+ ∂x(hu) = 0 (4.14)
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are compatible with a finite-time singularity h(t) ∼ (t? − t)α with α ≈ 0.7, presumably
due to a Bernoulli suction effect at the neck.

4.4. ‘Effervescent’ Atomization
The terminology ‘effervescent’, or ‘aerated liquid’ atomization and the corresponding

technique was introduced by A. H. Lefebvre in the late eighties (see Sovani et al. (2001)
for a review). It consists in dispersing a minute fraction of a gas phase within the liquid
to be atomized when the mixture is pressurized prior to its injection in a low pressure
chamber. As the pressure suddenly drops, the gas bubbles expand and fragment the
liquid into small volumes, typically much smaller than those which would have been
obtained if the same quantity of gas had been used to shear the liquid, as in common
co-flow atomizers (Lefebvre 1989), like coaxial jets (Marmottant & Villermaux 2004b).
This ‘effervescent’ process, though not routinely used yet is thus a smart alternative
for which a small cause (the addition of a small quantity of gas), has dramatic effects
(substantially reduced drop sizes), even under modest driving pressures. Its efficiency
relies on one hand in the change of topology of the liquid in the injection stream resulting
from the presence of the bubbles, and on the other hand in the fast bubble expansion
dynamics as the pressure suddenly releases. The coupling between these two effects, and
the associated detailed mechanisms were investigated by Lhuissier & Villermaux (2013)
using a Savart sheet seeded with small air bubbles, themselves inspired by the work of
Dombrowski & Fraser (1954) who were using a fan spray nozzle and a water/oil emulsion
(see Figs 8 and 9).

Note that the presence of a dispersed phase within the liquid to atomize is not
mandatory for the realization of the first step listed above, that is the nucleation of
holes. A similar effect is obtained by using a mixture of surfactants inducing Marangoni
stresses, which eventually puncture the sheet (see Rozhkov et al. (2010); Vernay et al.
(2015a) in the context of drop impact). This mechanism is also similar to the spontaneous
de-wetting (through hole nucleation, or spinodal decomposition) of a thin film from a solid
surface (Reiter 1992) even if it leads to a very different drop sizes population. The impact
of fine droplets of another liquid mediates the nucleation of holes as a result of Marangoni
localized stresses (Thoroddsen et al. 2006; Aljedaani et al. 2018). Hole formation on a
liquid film may also be the result of an inertial instability, as when the film is violently
accelerated perpendicular to its plane (see Sections 5 and 7), leading to patterns very
like those in Bremond & Villermaux (2005). In the industrial practice, Fig. 8 illustrates
that the two former steps leading to the spray are for instance observed in the GranShot
process (Uddeholm AB Sweden) where a single-phase iron melt is fragmented through
the disintegration of a planar liquid sheet. This process is a major industrial method
for granulation of melts at large output, up to several tons per minute. It is however
reputed to be “. . . not very flexible in term of particle size and shape, these being largely
determined by the physical and chemical characteristics of the melt” according to Yule
& Dunkley (1994) p. 216, and one could therefore expect ‘effervescence’ to give more
flexibility, if not control, to the process.

Overall, whatever the precise hole piercing mechanism may be, the process features
the following successive steps:

(i) Nucleation of holes across the sheet, in a more or less synchronous way,
(ii) Growth of these holes followed by the junction of the rims bordering them into a

web of ligaments which concentrates all the liquid constitutive of the sheet,
(iii) Break-up of this ligaments web into the collection of drops.

The key quantity is the surface density of the holes, or inter-holes centers distance λ. It
is easy to see that, by volume conservation, the average diameter 〈d〉 of the ligaments
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Crumpled water bells 535

FIGURE 16. Sequence: non-stationary water bell transiting by a jagged shape over which
particularly marked wrinkles develop. These azimuthal deformations then provoke the
puncture of the sheet, and its destruction, as seen on the last image of the sequence (see
also ‘Fig. 14’ in figure 1). Images are separated by a time interval of 21.5 ms and their width
corresponds to 110 mm. Enlargement: The wrinkles are evidenced immediately after the bell
fragmentation by the spatial organization of the drops.

the maximal local curvature |✓ | of the bell profile), i.e.

� > �c = 2⇡
r

�

⇢|✓ |u2
⇡ 1 mm. (5.16)

All of this is consistent with the observed multiscale drapes downstream from the cusp
(all spaced by a distance larger than �c) which can be as large as 10 to 20 times �c,
and with the fact that their amplification happens on a portion of the bell profile whose
curvature varies continuously from zero at the first inflection point to the maximal
value we used above.

We note finally that this instability could possibly be associated with the energy
dissipation mechanism in the jump (equation (4.9)).

510 H. Lhuissier and E. Villermaux

First
inflection

Fold 
(second 

inflection)

FIGURE 2. A crumpled liquid bell formed with tap water (with surface tension � =
73 ⇥ 10�3 N m�1, density ⇢ = 103 kg m�3 and dynamic viscosity ⌘ = 10�3 kg m�1 s�1).
The upward jet in the centre (with diameter d0 = 3 mm and Weber number We0 = 230)
is deflected as it impacts the top solid cylinder (with diameter dd = 6 mm) and forms a
stationary, globally axi-symmetrical, downward flowing liquid sheet collapsing on the axis
(below the picture bottom), a closed liquid bell. From top to bottom (streamwise) the bell is
convex then concave at the first inflection point just before the fold and then convex again at
the second inflection point, the fold. Image width is 106.7 mm.

all across the liquid sheet in a given transverse section; that is to say that the sheet
thickness h is everywhere negligible with respect to its characteristic local radius of
curvature �1

✓ ,

✓h ⌧ 1. (1.1)

Liquid bells have enjoyed a continuing interest in the 20th century because they
were expected to allow for precise measurements of the interface contamination rates
through the bell shape dependence on surface tension (Bond 1935; Puls 1936; Bond
& Puls 1937). Later, Hopwood (1952) and Lance & Perry (1953) observed angular
bells identical to our crumpled bells that they interpreted as non-physical solutions of
the bell shape equations (again in the limit ✓h ⌧ 1) whose generator profiles present
a loop. Taylor (1959a) discussed the influence of the cavity air flow on the bell
shape, and Parlanges (1967) applied his calculations to clarify the discrepancy between
measured and expected bell shapes.

More recently, Buckingham & Bush (2001) observed a polygonal water bell using
a viscous liquid (up to 100 times more viscous than water). The corresponding
mechanism may differ from the one we present here for crumpled water bells, as
it may also be a manifestation of the viscous buckling of the sheet, and/or of an axi-
symmetry breaking in the injection conditions. Clanet (2001) studied the stability of
water bells with respect to cavity pressure fluctuations, and determined an expression
for the pressure difference threshold above which the generator profile presents a
non-physical loop before rejoining the bell axis. We show in § 2 that this expression
is not valid for all injection conditions, and derive the correct criterion valid in the
whole parameter space. Using a very large impact disc, Brunet, Clanet & Limat (2004)
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. (Colour online) Fragmentation of a liquid shell with initial radius R0 = 2.5 cm
by the combustion of a mixture at � = 5, showing sequentially the instant of last pulse at
t = 0, the shell expansion at t = 0.003 s, the onset of the shell piercing at t = t? = 0.0045 s,
the nucleation and coalescence of the holes at t = 0.006 s, the formation of a web of
ligaments at t =0.009 s and finally the breakup of the ligaments in a dispersion of droplets
at t = 0.012 s.
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FIGURE 8. (Colour online) Interfaces dynamics and tracking. (a–d) A soap bubble with
R0 = 19.6 mm and � = 3.6 at the instant of the laser pulse at t = 0, at t = 0.6 ms and
t = 1.2 ms showing the flame propagation (radius rf ) and the shell expansion (radius R).
The corresponding spatio-temporal diagram displays the flame and shell trajectories. (b,e,f )
Same sequence for a liquid bubble with R0 = 24.2 mm shown at the instant of the laser
pulse, t = 1 ms and t = 2 ms after, and corresponding spatio-temporal diagram from which
the trajectory in figure 9 is extracted.

Since the burnt gases are much lighter than the fresh mixture and are released
on the inner confined side of the flame, they must expand, and by doing so, push
the different phases ahead of the flame front. These are, successively at increasing
distances from the flame, the envelope of the remaining fresh gases, the liquid shell
and the ambient air. The radial motion of these inertial phases is thus made at the
expense of an elevation of pressure in the burnt gases with respect to the initial
ambient pressure.

However, the expanding motion has typical velocities which are small compared
to that of sound in the unburnt gases at 20 �C (cu ⇡ 550 m s�1 in a stoichiometric
mixture), in the outer air (c1 ⇡ 340 m s�1) and even more to that in the liquid shell
(c ⇡ 1000 m s�1). Indeed, the flame radius velocity ṙf is never larger than 100 m s�1,
as seen in figure 7. Therefore, we do not expect the formation of shock waves.
Moreover, the pressure elevation necessary to drive the motion in the fresh mixture
is, relative to the ambient pressure itself, of the order of (ṙf /cu)

2, the square of a
Mach number which is small compared to unity.

(b)(a)

(d)

(e)(c) ��

��
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(a) (b)

FIGURE 23. (Colour online) (a) A blob smaller than 50 µm, first detected at the top
of a 13 µm-thick dirty bubble cap, is tracked. Red dots correspond to its position every
31 ms as it is drained. Only when it reaches the bubble foot does it puncture the cap,
very quickly. (b) Zoom close to the region where the burst occurs (left to right, top to
bottom). The first frame highlights the blob just before it reaches the bubble foot. The
second frame, 32 ms latter, shows the blob in the foot (white) before the nucleation of a
hole 66 µs later. Scale bars are 1 mm.

accumulation of insoluble surfactants, leading to local transverse shear that can assist
transverse diffusion. Second, stirring and mixing along the cap is more efficient than
transverse diffusion through the cap, lowering the probability of successful side-to-side
penetration and Marangoni opening on the cap. Next, we derive the criteria for such
impurities to have time to diffuse through the entire film before diffusing along the
cap, or draining out of it.

6.2. Transverse contamination: time-scale competition in cap versus foot
A soluble blob of surfactant of size a diffuses from one side of the film, of thickness
h, to the other side, over a time ⌧diff ⇠ h2/D, where D is the diffusion coefficient. Here,
we define a blob as an area or volume of inhomogeneity in or on the cap. The same
blob typically diffuses longitudinally along the cap over a time a2/D. The competition
of these two time scales determines whether the contaminant can rupture the film of
thickness h on both sides faster than its dilution along the cap. At first order, this
criterion reduces simply to h < a. In § 6.4, we return to longitudinal cap stirring time
scales and show that side-to-side diffusion is disadvantaged on the cap even when this
simple criterion is satisfied.

Now, we consider the foot of the bubble. First, it is typically, at most, twice as thin
as the cap, leading to a time scale of side-to-side diffusion that is ⇠h2/4D and, hence,
an efficient side-to-side rupture for h < 2a. A perturbation of size a can rupture, on
both of its film sides, a bubble cap thicker than 2a if such perturbation is at the
foot rather than on the cap. In addition to this simple geometric argument, a second
constraint governs the foot. In the marginal regeneration region, the film interface
is rigidified by surfactants accumulated by drainage, leading to local no-slip at the
interfaces. Hence, a shear across the film can develop, with intensity u/�, where �
is the shear layer thickness (figure 24). Such transverse shear can enhance diffusion
of soluble contaminant across the film, similarly to classical shear-enhanced transfer
in boundary layers (Lévêque 1928; Landau & Lifshitz 1959). We use this analogy
to derive other time scales, the competition of which ensures timely side-to-side
contamination and associated lethal film rupture.

Figure 24 illustrates the analogy of double boundary layers and shear-enhanced
transfer of contaminant of concentration C in a film of thickness h, and where � sets
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(a)

(b)

FIGURE 21. Natural two-stage burst at the foot of a thick bubble in ambient temperature
23 �C. (a) The initial phase of dark concentric pattern deepening for more than 100 µs
before rupturing in less than 33 µs in (b). Images were taken with 33 µs between each
frame and a scale bar of 0.5 mm. (b) The burst that is triggered with 800 µs between
each frame and a scale bar of 2 mm. The last frame in (a) corresponds to the first frame
in (b).

thick bubbles. In fact, minute fluctuations of composition of the atmosphere around the
bubble cap, any aerosol coalescing with it or any immiscible droplet or microbubble
in the liquid smearing the film with traces of pollutants can locally change the liquid
chemical or thermal composition.

We test further the extent of this effect with controlled needle piercing of the
bubbles at various temperatures. Figure 22 compares the thickness measurements,
obtained via the Taylor–Culick speed of rupture of the cap, from natural bursts and
triggered bursts. The metal needle was at ambient air temperature, Ta = 23 �C, and
moved into the film at various ages of the bubbles. A clear distinction is visible
between the thicknesses measured for naturally bursting bubbles and those triggered
for all temperatures, except at ambient water temperature (figure 22b). In this last
case, the water bubble and the needle have the same temperature. Moreover, the
thickness difference between the needle-triggered and natural bursts shifts as the cap
temperature increases from being cooler (figure 22a) to being hotter than the needle
(figure 22c,d). These thickness measurements are consistent with a highly efficient
localized Marangoni-driven thinning (Tcap <Tneedle) or thickening (Tcap >Tneedle) the cap.
It should be noted how such needle localized perturbations affect the measurement
of thickness h. Hence, care is needed when interpreting the relationship between
the thickness of a film and its rupturing speed when the film is pierced using
surface-active perturbations such as heat (Petit, Le Merrer & Biance 2015) or ethanol
(Sabadini, Ungarato & Miranda 2014). For h ⇠ 0.5–1 µm, the bubbles are thin enough
that even less efficient mechanisms such as non-Marangoni-driven intrinsic intrusions
(microbubbles or particles) can locally thin the film further for van der Waals forces
and thermal fluctuations to be able to act. In the next section, we formalize the
mechanism that best captures lethal rupture.

6. Criteria for puncture

6.1. Physical picture
We discuss a mechanism that captures the body of observations on lethal rupture
presented so far. We recall that (1) we observed that among all reported perturbations
(from drop impact to microbubble or particle inclusion), the ones involving or
coupled with a Marangoni thinning are the most lethal and efficient in rupturing
the cap (figures 19–22); (2) we observed a number of failed cap bursts where it
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separated from the particle surface, in a similar fashion to a
spallation layer. In the third radiograph, taken after 75 !s,
the glass particles are barely visible and the volume of the
particle cloud !in this case consisting of 463 !m diameter
beads" has grown by more than a factor of 6. The trajectories
of the blast wave and particle front are shown in Fig. 10 for

the case of 463 !m particles. Two radiographs are obtained
per trial, so Fig. 10 represents data compiled from six differ-
ent trials. Prior to penetrating the shock front at a distance of
about 0.8 m and a time of about 0.6 ms, the particles at the
leading edge of the particle cloud travel at a roughly constant
velocity. If a linear curve is fitted to the data up to this point,
the corresponding average velocity is about 1280 m/s. After
the particles move ahead of the blast wave, drag with the
surrounding quiescent air causes the particles to rapidly de-
celerate. The trajectory of the particles ahead of the blast
wave was fitted with a second order polynomial in Fig. 10.
At a distance of 1.5 m, the leading particles have decelerated
to a velocity less than 1000 m/s.

A series of experiments was carried out to determine the
effect of charge size on the particle trajectories. Charges with
a diameter of 8.9 cm containing 463 !m particles and 183 g
of sensitized NM were tested. The particle front reached a
nearly constant velocity after about 100 !s that was essen-
tially the same as for the larger charges. However, the par-
ticles penetrated the leading blast wave front at a distance of
about 0.6 m !in comparison with 0.8 m for 11.8 cm charges",
so the particle deceleration started earlier. Experiments were
also carried out with 925 !m particles in 11.8 cm diameter
charges. In this case, the particles first penetrated the shock
front at a distance of about 0.93 m, as shown in Fig. 11.
However, with the larger particle inertia for the larger par-
ticles, the velocity of the particle front remained nearly con-
stant, at an average value of 1160 m/s to a distance of at
least 1.8 m.

B. Particle streak gauge results

Experiments were carried out with the particle streak
gauge located at distances of 60, 90, 156, and 200 cm from
the center of the charges. By counting the number of particle
impacts in each segment of the foil !see Fig. 4", the cumula-
tive number of impacts was determined as a function of time,
and is shown in percentage form in Fig. 12 for experiments
with steel particles of three different sizes. The actual num-
ber of particle impacts of course depends on the distance and
the particle size. For example, for 463 !m particles, with the
drum gauge at 90 cm, the number of particle impacts re-

FIG. 8. !Color online" High-speed photographs of the explosive dispersal of
275 !m steel particles from an 11.8 cm diameter charge. Times are 0, 40,
80, 160, 240, 360, 560, and 840 !s, respectively. The flat plate behind the
charge contains the free-piston gauge shown in Fig. 7.

FIG. 9. Radiographs of particle dispersal for an 11.8 cm diameter spherical
glass-cased charge containing iron beads; 275 !m diameter particles in
frame !b" and 463 !m in frame !c". Time of radiographs, relative to initia-
tion of charge detonation: !a" 0, !b" 43, and !c" 75 !s.

FIG. 10. Trajectories of the leading particle front and blast wave for
11.8 cm charge containing 463 !m steel particles.

113529-6 Frost et al. J. Appl. Phys. 101, 113529 !2007"
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FIG. 1. Boiling of a superheated water drop in sunflower oil (sequence of images (a)–(d) at the bottom and enlargement
of (c) at the top). The whole drop (a), resting at the bottom of a glass container, vaporises explosively. As a consequence,
the radius R of the vapour bubble overshoots and oscillates around its equilibrium value. When R is minimum the positive
acceleration R̈ towards the denser phase promotes a Rayleigh-Taylor destabilisation of the bubble interface, in the form of
prominent lobes, which leads to the bubble fragmentation. The temperature of the system is 190 ◦C at ambient pressure, the
drop radius is 0.8 mm and the images a, b, c, and d are, respectively, taken at t = 0, 2, 4, and 40 ms after nucleation occurred.
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A liquid drop immersed into a host liquid can be strongly superheated before nucleation of
the first vapour bubble occurs. A millimetre-size water drop indeed survives several minutes at
T = 170–190 ◦C at ambient pressure into sunflower or silicon oil. When nucleation eventually
occurs, the drop may boil explosively, as shown in Figure 1 with sunflower oil as the host liquid.
In this case the bubble growth is only limited by the diffusion of heat and the whole drop vaporises
within milliseconds.

The boiling behaviour, however, changes dramatically when the host liquid wets the drop’s
liquid, as with the water/silicon oil system shown in Fig. 2. In this system the nucleation of the
bubble also occurs at the drop’s interface, since it is energetically favourable. However, the subsequent
boiling process is, here, rapidly stalled when the host liquid wets the drop and thus separates the
vapour bubble from the liquid of the drop. The bubble is either totally expelled (Figure 3(a)), or a
small stem of vapour remains, resulting in the regular, self-sustained, and minute-lasting boiling of
the drop (Figures 3(b) and 3(c)). From the homogeneous size and spacing of the bubbles we deduce
a constant evaporation rate for large time scales.
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Figure 10. Rupture of liquid shells. (i) Explosive fragmentation of a liquid shell expanded
by an exothermic chemical reaction (Vledouts et al. 2016a). (ii) Nucleation of a hole a the
foot of a water bubble at the surface of a pool, and its fragmentation (adapted from Lhuissier
& Villermaux (2012a) and Poulain et al. (2018)). (iii) Explosive boiling (van Limbeek et al.
2013). (iv) Explosion of magma bubbles recorded in nature (Gonnermann 2005) and re-created
artificially (Sonder et al. 2018). (iv) Explosion of a cohesive ball of metal spheres (Frost et al.
2007). (v) Fragmentation of a crumpled water bell (Lhuissier & Villermaux 2012b).

formed from a sheet with thickness h is

〈d〉 ∼
√
〈λ〉h, (4.15)

a diameter which also sets the mean drop size, as will be seen in Section 8. Lhuissier
& Villermaux (2013) have further shown that the overall drop size distribution from
this ‘effervescent’ process is universal provided the holes are not too distant (Néel
et al. (2020) have quantified what ‘distant’ means and how the drop size distribution
is correspondingly altered, see Section 10), and that it is solely related to the breakup
dynamics of the ligaments, irrespective of the geometric disorder of the holes at the
surface of the sheet (i.e. of the distribution of λ). This drop size distribution will be
discussed in Section 9.

5. Shells
Liquid sheets are often bent by a pressure difference between their sides, like for inflated

bubbles for instance. A spherical liquid shell, or a bubble lying at the surface of a pool
are not bordered by a rim. Their bursting mechanisms are therefore different from those
of bounded liquid sheets.

5.1. Exploding bubbles and drops
We consider envelopes of cohesive material enclosing a substance or a mixture of

substances whose internal pressure increases rapidly, in other words, an explosion. This
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configuration is the three dimensional analogue with liquids of the ring configuration
initially imagined by Mott (1947) for solids in two dimensions (see also Grady (2006);
Zhang & Ravi-Chandar (2007, 2008), and Section 2.3 for its discrete version with
magnets). This problem, in which the envelope fragments distribution is the result of a
competition between deformation and cohesion, is relevant to a collection of phenomena
spanning over a broad range of length scales, among which are: Exploding blood cells and
bacteria (antibiotics like penicillin disrupt cell walls by explosive lysis, Flores-Kim et al.
(2019)), spore dispersal from plants (Ingold 1971; Hassett et al. 2013), boiling droplets
(Frost 1988; van Limbeek et al. 2013; Antonov et al. 2019), underwater explosions (Cole
1948), magma eruption in volcanoes (Kedrinskii 2009; Sonder et al. 2018), up to the torn
patterns of supernovae in the Universe (Burrows 2000), among other examples. Case
shells, bombs are obvious examples where one would like an a-priori knowledge of the
final fragments as a function of the energy released by the explosion, and of the physical
properties of the enclosing envelope (Zeldovich & Raizer 2002; Kedrinskii 2005; Frost
et al. 2007).

The problem examined here is best discussed in the spherical geometry, and admits
two limits, from the strong, supersonic version involving a detonation (Sedov 1946),
a ‘very intense explosion’ in the words of Taylor (1950a), to the milder deflagration
version consisting, in expanding a liquid bubble filled with a gas mixture undergoing
an exothermic reaction, like a hydrogen/oxygen mixture for instance (Marangoni &
Stefanelli 1873), which propagates at low Mach number within the bubble. The interest
of this configuration is that the course of events can be followed step by step and in real
time, from an initially connex cohesive material (here a liquid shell), to its dispersion
into a collection of stable fragments, each step being subjected to a precise description
(Vledouts et al. 2016a).

5.1.1. Explosive fragmentation of a liquid shell

A reactive mixture is ignited inside a liquid bubble. A flame propagates at constant
velocity ṙf , converting the fresh mixture with density ρu into burnt gases with density
ρb. Since the burnt gases are much lighter than the fresh mixture and are released on the
inner confined side of the flame, they must expand, and by doing so, push the different
phases ahead of the flame front. These are, successively at increasing distances from the
flame, the envelope of the remaining fresh gases, the liquid shell, and the ambient air.
The radial motion of these inertial phases is thus made at the expense of an elevation of
pressure in the burnt gases with respect to the initial ambient pressure. The important
quantity is the shell radius acceleration R̈. Vledouts et al. (2016a) have shown that it is
related to the pressure at the flame front by

p(rf ) = ρuR̈

(
R2

rf
+

ρ

ρu
h+

ρ∞
ρu

R

)
(5.1)

where ρ is the density of the liquid shell, h its thickness, and ρ∞ the density of the outside
medium (air). The pressure at the flame front is of the order of the recoil pressure ρuṙ2f
and since the first term dominates in the right hand side of (5.1) for short times after
ignition when rf = ṙf t� R, the shell radius acceleration is such that

ρu
R2

0R̈

rf
=

3

2
ρuṙ

2
f , (5.2)
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where R0 is its initial radius, giving

R

R0
= 1 +

1

4

(
rf
R0

)3

(5.3)

The shell radius expands like R(t) ∼ t3, with an acceleration R̈ ∼ t itself strengthening
in time, a violent explosion indeed.

5.1.2. Stability
The dense spherical shell is sandwiched between two media with lighter densities (the

inner unburnt gases, and the outer ambient air), so that, being accelerated radially, it
is liable to develop an inertial instability in the sense of Rayleigh-Taylor (see Appendix
A.1 and A.2). The development of this instability is, however, altered by the presence
of two close-by density interfaces, a proximity which is stabilizing (Keller & Kolodner
1954), as first demonstrated experimentally by Bremond & Villermaux (2005). If R̈ is
the acceleration of a density interface, the cut-off wavenumber of the instability is

kc =

√
ρR̈

σ
(5.4)

whose inverse must be compared to the shell thickness h. If kch � 1, the standard
analysis of Lord Rayleigh (1883) holds, for which both the most amplified wavenumber
kc/
√

3, and its growth rate ∼ (ρR̈3/σ)1/4 are independent of h. But when

kch� 1 (5.5)

the coupled distortions of the nearby interfaces hinders the instability development, which
now occurs around a wavenumber given by (see Appendix A.2)

k ≈ 1

2
k2ch, with a growth rate ω =

√
ρR̈2h

2σ
(5.6)

going to zero as h → 0. The rear and front (in the direction of the shell expansion)
interfaces amplify disturbances inducing thickness modulations of the shell, piercing it
when they are of the order of its initial mean thickness.

Using the expression for the growth rate in (5.6), and further defining the relevant
Weber number

We =
ρ ṙ2fh

σ
, (5.7)

we find the instability time t? and destabilization radius R(t?)

ṙf t?
R0
∼We−1/4, and

R(t?)

R0
− 1 ∼We−3/4 (5.8)

It follows that the instability wavelength λ at the piercing time is (Vledouts et al. 2016a)

λ

R0
≈ 2π

We3/4
, (5.9)

defining the inter-distance between the growing holes which, through the ‘effervescent’
mechanism described in Section 4.4, also sets the mean drop size as in (4.15). The shape
of the drop size distributions is discussed in Sections 9 and 10.
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5.2. Singular Savart Bell
A liquid film flowing along a curved path experiences centripetal acceleration, as in

Savart bells, a particular liquid shell resulting from the dynamical equilibrium described
in Section 3.2.4.

Stationary axi-symmetrical pressurized bells (i.e. with internal pressure larger than the
ambient) can exhibit sharp pointed shapes. They are characterized by a double inflection
of the bell generator profile (with curvature R−12 ), corresponding to not globally convex
bells. Lhuissier & Villermaux (2012b) have shown that this shape is incompatible with
the usual assumption that the detail of the flow across the liquid sheet constitutive of
the bell is unimportant. They have considered the equilibrium of a curved liquid sheet
of finite thickness, that is when

h

R2
(5.10)

is small, but nonzero, sustaining a pressure difference between both sides, and have shown
that several curvatures may be a solution under given flow conditions. The inflection of
the bell profiles is then explained in terms of a spontaneous transition from a ‘negative’
to a ‘positive’ curvature which conserves mass flow, linear and angular momenta. That
inflection is also a transition from a super to a subcritical flow (with respect to capillary
waves with velocity given by (3.14)), having the status of a capillary hydraulic jump on
a freely suspended sheet, a novel object in Fluid Mechanics.

The local curvature of the sheet along a streamline can be very large at the critical
condition. This is the cause for the azimuthal wrinkles forming at the jump which result
from the inertial destabilization of the sheet (a finite-thickness Rayleigh-Taylor instability
as described above and in Appendix A.2), due to the centripetal acceleration fluid
particles experience as they flow along the highly curved bell profile in the vicinity of the
singular sheet fold. This finding, explaining why the bells are so fragile in these conditions
and rupture easily, also explains the singular shape at the edge of freely flapping sheets,
discussed in Section 6.

5.3. Surface bubbles
A surface bubble is an out-of-equilibrium, close-to-hemispherical liquid shell sitting at

the surface of a liquid pool in which it progressively empties. Its shape depends on both
gravity and capillary while its cap continuously drains down to rupture. It is one of the
most common objects in nature since an immensely large number of bubbles burst every
second at the surface of the ocean, feeding the atmosphere in a considerable amount of
water vapor, salt and a collection of chemical/biological material (Veron 2015; Cochran
2017).

A bubble bursts because its cap (the liquid shell) spontaneously nucleates a hole on
its surface, preferentially close to its foot. At burst, two distinct processes (discovered
by Knelman et al. (1954)) further produce fragments, the ‘jet drops’ emitted from the
collapse of the unbalanced cavity left by the bubble cap burst (Blanchard 1963; Ghabache
& Séon 2016), and the ‘film drops’ resulting from the destabilization of the cap itself
(Blanchard & Sysdek 1988; Resch & Afeti 1991; Spiel 1998).

Lhuissier & Villermaux (2012a) have depicted the complete evolution of an air bubble
formed in a water bulk, from the time it emerges at the liquid surface, up to its
fragmentation in dispersed drops. From the description of the drainage of the bubble cap
film of tap water bubbles, they discovered that the mechanism of marginal pinching at
the bubble foot and associated convection motions in the bubble cap, known as marginal
regeneration drive both the bubble cap drainage rate, and are responsible for its puncture.
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Indeed, a bubble is sustained by a surface tension gradient between its foot (where σ is
smaller) and its pole. Surface tension differences are due to the presence of impurities
and surface contaminants of various kinds, in a small amount in water; it is not possible
to make a bubble from distilled water, but the water surface is readily contaminated at
the contact with ambient air. For a bubble with radius R, the cap film thickness h is set
by an equilibrium between Marangoni convection moving the liquid upwards, and viscous
drainage at the bubble foot. It decays in time t as (Lhuissier & Villermaux 2012a)

h ∼ a
(ηa
σt

)2/3(R
a

)7/3
, (5.11)

a law which is distinct from the drainage law in soap films (Isenberg 1978), or in very
viscous bubbles (Debrégeas et al. 1998). The convection motions opposing the viscous
drainage of the liquid along the cap also introduce periodically spots of ‘dirt’ in the sense
of Section 4.2.6 over the bubble cap, thus possibly triggering the mechanism discovered by
Néel & Villermaux (2018), for film bursting. It was, along these lines, argued by Poulain
et al. (2018) that the celebrated relationship between the cap thickness at bursting hb
and the bubble radius

hb ∝
R2

L (5.12)

discovered by Spiel (1998) could be interpreted from (5.11) as the manifestation of a
competition between Marangoni and mixing effects at the bubble foot, leading to

L = aSc
2/3 (5.13)

with Sc = ν/D the Schmidt number of the impurities in the water if D denotes their
diffusion coefficient.

The mean bubble lifetime 〈tb〉 is an increasing function of its radius

〈tb〉 ∼ tv × Sc
(
R

a

)1/2

(5.14)

where tv = ηa/σ is a viscous time. Lhuissier & Villermaux (2012a) have further shown
that hole piercing at the bubble foot is a random Poisson process, and determined the
(broad) distribution of bubbles lifetimes of which Poulain et al. (2018) have provided
extensive measurements in different conditions.

Subsequent to a hole nucleation event, the cap bursting dynamics conditions the
resulting spray. Lhuissier & Villermaux (2012a) have given the details of the processes
leading to the (Rayleigh-Taylor) centrifuge destabilization of the hole rim expanding
along the curved bubble cap, the mean drop sizes 〈d〉 and their number N as

〈d〉 ∼
(
R3h5b

)1/8
, and N ∼

(
R

a

)2(
R

hb

)7/8

, (5.15)

as well as the distribution of the droplets sizes emanating from one bubble burst, thus
offering, combined with known bubbles production rates over the ocean, an adjustable
parameter free prediction for the aerosol flux and spray structure (for droplets & 1µm)
caused by bubble bursting in this precise context (see also Veron (2015) for a collection
of recent data).

In sum, natural and ubiquitous water contaminants enable the birth of a bubble and
sustain it as it ages, but they ultimately also kill it. Dirtiness thus conditions the entire life
of surface bubbles. But if there is a bad, there is also a good dirt regarding the bubbles
lifetime expectancy: It was found by Poulain & Bourouiba (2018) that some specific
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islesseffectively"atomized"thansaliva.Theeyesarecharacteristically

closed.Exposure1/30,000second.
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Figure 1). The water level was maintained at 40 cm. An
artificial beach was placed at the end of the tank to minimize
reflected waves and dissipate wave energy.
[9] In the experiments presented here, we studied three

wind speeds, U10 of 31.3, 41.2, and 47.1 ms!1. Two distinct
sets of experiments performed in fresh water are reported.
We first performed a series of experiments where we used a
high speed camera (Phantom 5.1) equipped with a 180 mm
zoom lens and mounted on a tripod outside of the tank
(Figure 1). The high speed camera acquired small frames
(1000 " 1000 pixels) at a rate of 1000 Hz and with an image
field of view of 6.38 cm " 6.38 cm; the crests of the waves
were usually visible in the field of view. The camera was
focused at a distance of 0.24 m from the back-side wall at a
fetch of 5.49 m. A fluorescent backlight module was fixed to
the back-side wall of the tank to provide a uniform contin-
uous lighting. The spatial resolution in the remaining air-side
of the image was not sufficient to accurately measure droplet
size distributions over a satisfactory range of droplet radii.
However, the high temporal resolution permitted a detailed
look at the evolution of the spray generation processes and
allowed us to gain insight into the physical mechanisms
responsible for spray generation at these high wind speeds.
A total of 10 high speed imaging segments, 4 s each, were
acquired for each wind speed (see Figure 2 for example).
[10] In order to acquire reliable drop size distributions,

a second series of experiments were performed using a high
resolution camera (Nikon D300) equipped with a 180 mm
zoom lens. The camera was mounted on a tripod perpen-
dicular to the tank wall and took vertically oriented images
(4288 " 2848 pixels) in the along-wind plane. This pro-
duced a field of view of 5.26 cm (vertically) by 3.49 cm
(horizontally) with the bottom of the image placed 5.99 cm
above the still water level. Focus depth and fetch were
identical to that of the high speed imager. A 60 mA, 20 cm"
10 cm, LED light module was fixed to the back side wall of
the tank to provide uniform flashed lighting. The image
resolution was 12.27 mm/pix and the depth of field was
2 cm. The camera and backlight were synchronized and
triggered by a pulse generator. The backlight was set in flash
mode with a flash duration of 35 ms; this provided enough

Figure 1. Schematic of the experimental setup in the small wind-wave tank at the University of Delaware’s Air-Sea Inter-
action Laboratory.

Figure 2. Images of the surface and spray generation taken
with the high speed camera at a rate of 1000 fps. Each image
is 6.38 cm " 6.38 cm and separated by 5 ms. The formation
of a large globule/filament that subsequently fractionates
into several drops is clearly visible. The 10-m equivalent
wind speed is U10 = 31.3 ms!1.
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4  Anatomy of sneeze ejecta

Figure 5 shows a sequence of close-up snapshots of 
sneeze ejecta recorded at 2000 fps. The duration of the 
sneeze is 150 ms. In addition to the expected droplet 
ejecta, our experiments reveal the presence of ligaments 
of various sizes. Here, the largest ligaments are 3 cm in 
length and are ejected at speeds of up to 35  m/s, with 
twisting and stretching observed during flight. The drop-
let sizes in this recording ranged from 160µm to one mil-
limeter, with a maximum observed speed of 14 m/s. The 
effects of viscoelasticity were clearly important as exhib-
ited by the multiple beads-on-a-string structures apparent 
on the ligaments.

In order to characterize further the fluid breakup and 
estimate the effect of viscoelasticity on this process, we 
examine Fig. 6 in more detail. There, a dense field of sneeze 
ejecta is imaged both from the top and side. The side and 
top views were recorded at 8000 and 2000 fps with syn-
chronized start times. The total duration of the sneeze was 
134.5 ms with an estimated Reynolds number for the gas 
cloud of ReG = 105. We observed a large number of droplet 
and ligament fragments with the longest ligaments being as 
wide as the field of view, approximately 12 cm. The con-
tinuous breakup of the ligaments into droplets was apparent 

outside of the respiratory tract. Furthermore, a myriad of 
other fragmentation processes was revealed.

The first column of Fig. 6 illustrates the expansion of 
fluid sheets, the bursting of a bag-like fluid structure, and 
the transition from sheets to ligaments (Sect. 4.1). The 
second column features the stretching of the residual liga-
ments and the associated droplet formation (Sect. 4.2). The 
third column reveals the final stage of the fragmentation 
process, the pinch-off of the ligaments into droplets. These 
three phases of fragmentation were observed systematically 
in the dozens of violent respiratory exhalation recordings.

4.1  Sheet extension and bag burst

In sneezes, we observe the formation of multiple bags of 
mucosaliva (e.g., Figs.  7, 8, 9). The resolution of the raw 
images in Figs 7, 8, 9 has been increased using a least-
squares approximation for display purposes (Munoz et al. 
2001). In Fig. 7, we show an example of multiple expand-
ing sheets after rupture. The white outlines show the bag 
edges, which are retracting in the directions indicated by 
the arrows. Residual ligaments from the piercing and 
retraction of the bags are also apparent. In Fig. 8, a bag 
located just downstream of the lower lip is displayed. 
There, as the liquid exits the mouth, the fluid is flattened 

(a)

(b)

Fig. 6  Stages of sneeze ejecta imaged from a the side and b the 
top, respectively. The first column features the initial sheet and bag 
bursting after 8 ms. The second column shows the ligament forma-
tion, elongation, and pearl formation at 21 ms, and the third column 

depicts the final stage of fragmentation into droplets at 117 ms. The 
side view was recorded at 8000 fps, and the top view at 2000 fps. 
Scale bars are 1 cm

The lifetime of these ligaments depends on the extensional
viscosity of the fluid, and it is well known that adding dilute
amounts of a high molecular weight flexible macromol-
ecule to a Newtonian solvent will keep the shear viscosity
almost unchanged, whereas the extensional viscosity will
increase dramatically [31,32].
We have used four different dilute polymeric solutions

and three different canonical atomization processes. Table I
summarizes the material properties of these fluids.
All four solutions are made by dissolving small

amounts of poly(ethylene oxide) (PEO) of different average
molecular weights (300 kg=mol and 1000 kg=mol) in a
water-glycerol (60%–40% wt.) solvent. The coil overlap
concentrations are, respectively, c! ¼ 0.28% and 0.14% for
the 300 K and 1000 K solutions. An important measure
for these fluids is the time scale characterizing the chain
unraveling process in an elongational flow [33], referred to
as the elongational relaxation time (τE). We show in the
Supplemental Material [34] that, beyond a critical strain
rate (_ϵ≳ τ−1E ), the extensional viscosity of these solutions
increases dramatically. This critical strain rate varies with
the molecular weight and concentration [38–40]. It can
easily be exceeded in the final stages of atomization in
which capillary-driven pinch off processes lead to thin
threads ½RðtÞ → 0& and extremely high values of the local
strain rate _ϵðtÞ ∼ −2 _R=RðtÞ. Thus, the enhanced exten-
sional viscosity of a dilute solution will inhibit the
capillary-driven thinning of liquid ligaments and may
retard the subsequent atomization process.
To illustrate the fragmentation-coalescence process, we

show, in Fig. 2(a), the break up of a single fluid filament
(drawn rapidly out of a bath of fluid) into a set of droplets.
This process is a capillary-dominated phenomenon
between the neighboring liquid blobs that initially emerge
on the ligament (shown as magenta circles). The geometry

of the precursor liquid thread sets the size distribution of
these initial blobs. Knowing that the geometry of the initial
ligaments determines the final droplet size distribution in a
Newtonian spray [7], we analyzed the droplet size distri-
bution for the Newtonian solvent and all four viscoelastic
solutions, gathering a set of almost five thousand droplets
for each liquid. In Fig. 2(b), we show the PDF for the
Newtonian solvent and for all four viscoelastic test fluids
(corresponding to 0.2 ≤ De ≤ 10). Remarkably, the visco-
elastic solutions show a universal behavior which is
independent of both the molecular weight and the concen-
tration of the dissolved polymer. All show a size distribu-
tion that is well described by a Gamma distribution;
however, the polymer solutions have a much broader size
distribution. The viscoelastic data are characterized by a
Gamma distribution with n ¼ 4 (compared to n ¼ 6 for the
Newtonian solvent). As in the Newtonian case, the corre-
sponding best fit from a log-normal distribution fails to
correctly capture the probability distributions at large sizes
(identical trends are obtained in atomization tests with paint
“resins”; see the Supplemental Material [34] for details).
For Newtonian fluids, Villermaux and co-workers

[10,11,41] show that the value of n characterizing the final
Gamma distribution is determined by the smoothness of the
initial ligaments when they detach from the core liquid jet.
The index n is a measure of the corrugation in the initial
ligaments which the final spray of droplets inherits in its size
distribution. They show that the value of n can be predicted
just by the geometrical shape of the initial ligament

n≡ hdi20=ðhd2i0 − hdi20Þ; ð2Þ

in which h…i indicates a number average and di ¼ 2ri are
the diameters of the protoblobs that one can fit in the profile
of the ligament at the instant of pinch-off from the core liquid
jet [shown with magenta circles in Fig. 2(a) and by the
dashed circles in Fig. 3(c) below]. A very uniform ligament
at t ¼ 0 leads to a very large value of n and, consequently, a
very narrow final droplet size distribution. By contrast, a
highly corrugated initial ligament in which fluctuations in
the local blob diameters are large leads to smaller values of n
and broader size distributions.
The universal decrease in the values of n for viscoelastic

sprays arises from the high extensional viscosity which
changes the geometry of initial ligaments from smooth to
more corrugated shapes. Tracking the geometry of ligaments
in atomization is an ongoing visualization challenge.
A much simpler test is an axial “step-strain” test, consisting

(a)

(b)

FIG. 1. Snapshot of the liquid jet in the air-assisted atomization
for (a) the Newtonian solvent and (b) the viscoelastic solution
(PEO-300 K-0.01% wt. in the solvent).

TABLE I. Properties of the viscoelastic test fluids.

Mw c=c! η0½mPa · s& τE½μs& L De Oh

300 K (0.036, 0.36) (3.21, 3.32) (60, 360) 27 (0.2, 1.3) 0.04
1000 K (0.07, 0.37) (3.22, 3.31) (996, 2800) 50 (3.6, 10) 0.04
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Figure 11. Shear, flags, spray and exhalations. (i) The bursting of soap films involve a flapping
Squire instability with the outside gaseous environment (Lhuissier & Villermaux 2009b). (ii)
Sheets (Savart sheets and a plane sheet extruded from a slit) in the Squire flapping régime
exhibiting the secondary wavy corridor transverse destabilization mechanism (Bremond et al.
2007; Lhuissier & Villermaux 2012b). (iii) Liquids sheared by a fast gas stream exhibiting the
characteristic ligaments formation at the interface: water-air (Marmottant & Villermaux 2004b),
ocean spray (Veron et al. 2012), a polymeric viscoelastic liquid (Keshavarz et al. 2016), and the
phenomenon seen in a dense spray using an X-ray phase-contrast imaging technique (Wang et al.
2008). (iv) Human exhalation from a sneeze: The historical imaging of the phenomenon by H.
E. Edgerton at MIT (Turner et al. 1941), and its modern version (Scharfman et al. 2016) on the
right.

bacterial secretions in the liquid enhance the lifetime of bubbles, hindering hole nucleation
like surfactants do (see also Fig. 6 in Néel & Villermaux (2018)). Initially, marginal
regeneration governs the bubbles cap thinning rate, similarly to water bubbles as in
(5.12). However, due to their enhanced lifetime, it is eventually evaporation that governs
their thinning, thus also dramatically decreasing the cap thickness at burst (Champougny
et al. 2018). Miguet et al. (2020) have nevertheless underlined the importance, in order
to lock to this final régime, of working with surfactants exempt from impurities, these
triggering the classical Marangoni piercing mechanism described above.

While still in need of a full rationalization, such observations are certainly relevant to
understand how very fine particles are introduced in the atmosphere from the ground/sea
level.

6. Gone with the wind: shear, flags, spray and exhalations
A liquid volume may fragment as a result of a velocity difference with its surrounding

environment and indeed, a broad class of ‘atomization’ processes involve a shear at the
interface. The disintegration and dispersion of a liquid volume by a gas stream is a phe-
nomenon which encompasses many natural and industrial operations: The entrainment
of spray droplets by the wind over the ocean, the generation of pharmaceutical sprays,
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the dispersion of liquid propellants in combustion engines, or the exhalation of postillions
are among the many obvious examples (see Section 1.2).

6.1. Shear at the interface
By shear, we do not only mean the simple drag force exerted, for instance, on receding

rims opening on soap films at low Reynolds number in a still atmosphere (Mysels &
Vijayendran 1973; Frens 1974; Reyssat & Quere 2006), we mean something else, a new
ingredient responsible for the destabilization of the interface of a liquid volume in relative
motion with its environment, triggering a subsequent sequence of events leading to its
fragmentation.

The interface separating two initially parallel streams having different velocities u1 and
u2 is naturally unstable: this is the Kelvin-Helmholtz paradigm recalled in Appendix A.3.
The shear ∆u = |u2−u1| is always destabilizing and, in the absence of other length scales
in the problem, destabilization of the interface occurs around a wavelength given by

λ ∼ σ

ρ2(∆u)2
(6.1)

where ρ2 is the density of the lightest stream. However, the above results only applies
in the rare situations where a sharp velocity discontinuity at the interface is a good
description. It may be relevant to the initial destabilization of high speed jets issuing
into a quiescent environment from a nozzle at very high Reynolds number (Hoyt &
Taylor 1977) and is also found to be a good model for the flapping instability of fast thin
liquid sheets for which the boundary layers have no time to form (Section 6.3 below).

For a large class of other systems, the existence of boundary layers at the interface
has to be taken into account. Producing a shear between parallel streams implies
conveying channels separated by a splitter plate at the wall of which boundary layers
form. Therefore, in addition to the intrinsic length scale in (6.1) are the two boundary
layer thicknesses δ1 and δ2 of each stream. These two are linked to each other by the
continuity of stress at the interface and in practice, only the one in the fastest stream
(say, u2) matters (see Eggers & Villermaux (2008)). Generalizing Rayleigh’s treatment
of the shear instability of a smooth velocity profile (see Appendix A.3) to the case with
density differences between the phases, Villermaux (1998a) has shown that the most
amplified wavelength and its growth rate are (when u2 � u1)

λ ∼ δ2
(
ρ1
ρ2

)1/2

, and Re(−iω) ∼ ρ2
ρ1

u2
δ2

(6.2)

provided

Weδ =
ρ2(∆u)2δ2

σ
(6.3)

>

(
ρ2
ρ1

)1/2

(6.4)

Mode selection and growth rate are now independent of surface tension but are solely
given by the shape of the velocity profile of the fast stream. Even in the presence of surface
tension, the shear does not affect the layer for wavelengths shorter than λ given in (6.2).
The Rayleigh mode selection thus overcomes the selection of the Kelvin-Helmholtz mode
as long as σ/ρ2u22 < δ2(ρ1/ρ2)1/2, resulting in (6.4) above.

As recalled in Appendix A.3, this instability mechanism of inflexional velocity profiles
is inviscid, as opposed to the viscous mechanism of boundary layer profiles. Viscous
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corrections do exist however for u2δ2/ν2 smaller than about 100 (Betchov & Szewczyk
1963). They were considered for jets by Gordillo & Pérez-Saborid (2005), in particular.

6.2. Viscoelastic fluids
The case of viscoelastic fluids is however more dramatic (Rallison & Hinch 1995).

As explained by John Hinch in an appendix to Azaiez & Homsy (1994), large non-
Newtonian stresses are confined to the shear layer at the interface only, and thus one
anticipates that the stabilizing effect of the normal stresses on the long unstable waves is
just that of an elastic membrane or (dynamical, shear sustained) surface tension on the
Kelvin-Helmholtz instability. For a viscoelastic liquid with elastic shear modulus G and
relaxation time τ , the effective surface tension writes, according to J. Hinch, as

σ ∼ Gτ2(∆u)2

δ1
(6.5)

in our notations where δ1 stands for the boundary layer thickness in the liquid. The
most amplified wavelength and its growth rate are given, Mutatis Mutandis, by (A 20)
in Appendix A.3.

The phenomenology of shear instabilities with viscoelastic liquids is qualitatively
similar to those with normal fluids (primary shear destabilization, ligaments formation,
broad droplets size distribution, see e.g. Keshavarz et al. (2016)), but a systematic
experimental study is still lacking. It would, however, be welcome: many exhalations
in nature involve non-Newtonian fluids, including human exhalations (Scharfman et al.
2016). The postillions expelled from the mouth at a cough, or sneeze have been torn-off
by a rapid air flow from a layer of mucus in the lung, a mucus whose rheological properties
are far from Newtonian. Understanding better their mode of production is necessary to
make sense of the inherently very broad size distribution of particles sizes released at a
sneeze (Duguid 1946; Morawska et al. 2009; Zayas et al. 2012) which has, to date, not
received a satisfactory description.

6.3. Thin films: flapping
The case of thin fast liquid sheets projected in a gaseous environment at rest is the

closest to ideal realization of the pure Kelvin-Helmholtz scenario, albeit in its thin layer
limit, which favors a sinusoidal mode of instability, conferring to the sheet a characteristic
flapping motion. This is the Squire instability explained in Appendix A.4. The sheets are
formed, for instance, by the deflection of a jet impacting a solid surface, or by extruding
the liquid through a thin slit, as with standard flat fan agricultural nozzles.

The growth rate of the corresponding Squire instability t−1squire ∼
√
ρ2/ρ1 × u1/

√
λh

depends on the sheet thickness h, and on the gas to liquid density ratio whereas the
most amplified wavelength λ is given by (6.1) above (see Appendix A.4 and Hagerty &
Shea (1955); Dombrowski & Johns (1963); Crapper et al. (1973); Villermaux & Clanet
(2002)).

As for the ‘Liquid intact length’ of jets in (8.16) in Section 8.2 below, the distance, or
‘radius of intact sheet’ (for a Savart sheet) is given by R = u1tsquire with u1 the conserved
liquid velocity. This is the distance it takes for the flapping amplitude motion to be intense
enough for a secondary mechanism, involving a thin film Rayleigh-Taylor instability
called the ‘wavy corridor mechanism’ examined below, to operate. This distance reflects
the time of growth of the primary undulations amplitude, the second mechanism being
comparatively much shorter, hence the proportionality of R to tsquire. The breakup radius
of a Savart sheet for which h(R) ∼ d20/R is thus, in the Squire régime and in place of
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a) b) c) d) e)

Fig. 1 Visualization of primary breakup processes of round nonturbulent liquid jets in gaseous crossflow: a) We = 0, no breakup; b) We = 3, column
breakup; c) We = 8, bag breakup; d) We = 30, multimode breakup; and e) We = 220, shear breakup.

bag/shear) breakup, and shear breakup, as shown in Figs. 1b–1e.
At the smallest velocities, W e ≤ 4, the liquid jet column was some-
what deformed, to yield an ellipsoidal cross section, and deflected
in the direction of the crossflow velocity. This behavior is caused
by reduced gas pressures along the sides of the jet due to accel-
eration of the gas across the liquid jet, with the lateral motion of
the liquid jet eventually stabilized by surface tension. This behavior
is somewhat analogous to the behavior of individual drops during
secondary breakup when subjected to shock wave disturbances in
the deformation regime.18−23 The increased drag forces due to the
flattened shape of the liquid jet enhances its tendency to be deflected
in the crossflow direction due to the gaseous crossflow. Given some
degree of flattening of the liquid jet, somewhat thicker nodelike
regions begin to appear along the length of the liquid jet with dis-
tances between the nodes generally comprising several liquid jet
diameters. The spacing of these nodes progressively decreases with
increasing crossflow Weber numbers. Subsequently, larger acceler-
ations of the cylindrical liquid connections between the nodes cause
them to be deflected in the crossflow direction more rapidly than the
nodes, giving the liquid jet a looplike structure. Finally, continued
deflection of the connections in the crossflow direction relative to the
nodes eventually causes the connections to break, with the resulting
free sections of the liquid connections eventually forming a string
of drops along their length by a process very similar to Rayleigh
breakup of liquid jets, leaving the nodes as larger drops among the
rest. The general appearance of the flow at these conditions can be
seen at the bottom of Fig. 1b.

As crossflow velocities increase, the next primary breakup regime
that is observed for W e = 4–30, is the bag breakup regime. Bag
breakup appears in Fig. 1c, for W e = 8. In this regime, crossflow
Weber numbers have reached values where the spacing between the
nodes is comparable to the liquid jet diameter. Once the liquid jet
has flattened significantly between the nodes, baglike structures ap-
pear between the nodes that are very similar to the baglike structures
appearing at the center of the deformed drops in the bag breakup
regime observed during the secondary breakup of drops subjected to
shock wave disturbances.18−20 This behavior involves the formation
of bags as a result of the deformation of the central portion of the
liquid jet between nodes due to the higher pressure of the stagnating
gas flow on the upstream side of the liquid jet than on its downstream
side. With increasing distance along the liquid column (or time in
the crossflow), the bags grow in the crossflow direction and then
begin to progressively break up, beginning at their farthest position
of deflection in the crossflow direction (or tip), in a mechanism very
similar to the bag breakup of drops undergoing secondary breakup
due to shock wave disturbances.22 This is followed by breakup of the
connecting liquid columns between the nodes, and along the sides
of the bags, into relatively large drops, once again by the mechanism
of Rayleigh breakup, similar to bag breakup during secondary drop
breakup due to shock wave disturbances.22 This behavior tends to
separate drops according to size along the liquid column, with the
smallest drops formed by breakup of the bag appearing first, fol-
lowed by larger drops formed by breakup of the connecting liquid
columns, and finally the largest drops that are associated with the
nodes.

Shifting to conditions at the largest crossflow velocities consid-
ered during the present investigation (or the largest crossflow Weber
numbers), W e > 110, primary jet breakup enters the shear breakup
regime. Shear breakup appears in Fig. 1e, for W e = 220. Similar
to column and bag breakup, the shear breakup process begins by
deflection of the liquid jet in the crossflow direction, but with neg-
ligible distortion of the jet cross section. In this case, wavelike dis-
turbances appear on the upstream side of the deflected liquid jet,
probably as a result of Rayleigh/Taylor instabilities, that is, as a
result of acceleration of a fluid of greater density toward a fluid of
lesser density in this region. The spacing of these disturbances along
the liquid jet is on the order of 0.1 of the jet diameter, and they do
not develop into the nodes observed in the liquid column and bag
breakup regimes. Instead, they grow into ligaments that form along
the periphery of the liquid jet and separate from its downstream side
(in the crossflow direction). These ligaments are terminated when
drops form from their ends, very similar to secondary drop breakup
when drops are subjected to shock wave disturbances in the shear
breakup regime.18−21 With increasing distance along the liquid jet,
the distance between these disturbances tends to increase, resulting
in progressively increasing diameters of both the ligaments and of
the drops forming from the end of the ligaments. This behavior is
also analogous to the progressive increase of the size of the liga-
ments, and the drops formed from them, as a function of time, during
secondary drop breakup when drops are subjected to shock wave
disturbances in the shear breakup regime.18−21

Finally, there is a range of crossflow velocities, for W e = 30–110,
between the bag and shear breakup regimes, that involves a com-
plex mixture of the properties of the bag and shear breakup regimes,
called the multimode (or bag/shear) breakup regime.1 Multimode
breakup, for W e = 30, is shown in Fig. 1d. In this case, the spacing
between disturbances along the surface of the jet is such that forma-
tion of both bags and ligaments can be accommodated, leading to
a regime of breakup of round liquid jets in crossflow analogous to
the multimode breakup regime for the secondary breakup of drops
subjected to shock wave disturbances.

Primary Breakup Regimes
By the exploitation of the similarities between the primary

breakup regimes of round nonturbulent liquid jets in crossflow,
and the secondary breakup of drops subjected to shock wave dis-
turbances, the breakup regimes of round nonturbulent liquid jets
in crossflow were correlated in terms of crossflow Weber and
Ohnesorge numbers as first proposed by Hinze26 for the secondary
breakup of drops exposed to shock wave disturbances at large liq-
uid/gas density ratio conditions similar to present observations. This
approach has also been used subsequently by most investigators
of secondary drop breakup; see Refs. 18–23 and references cited
therein. It is easily shown that the crossflow Weber and Ohnesorge
numbers govern breakup regime transitions: For conditions where
viscous forces are small, gasdynamic forces (or drag) on the liq-
uid jet must be stabilized by surface tension forces, which im-
plies that deformation and breakup regime transitions correspond
to particular critical Weber numbers, that is, W ecr = const, whereas,
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a) b) c) d) e)

Fig. 1 Visualization of primary breakup processes of round nonturbulent liquid jets in gaseous crossflow: a) We = 0, no breakup; b) We = 3, column
breakup; c) We = 8, bag breakup; d) We = 30, multimode breakup; and e) We = 220, shear breakup.

bag/shear) breakup, and shear breakup, as shown in Figs. 1b–1e.
At the smallest velocities, W e ≤ 4, the liquid jet column was some-
what deformed, to yield an ellipsoidal cross section, and deflected
in the direction of the crossflow velocity. This behavior is caused
by reduced gas pressures along the sides of the jet due to accel-
eration of the gas across the liquid jet, with the lateral motion of
the liquid jet eventually stabilized by surface tension. This behavior
is somewhat analogous to the behavior of individual drops during
secondary breakup when subjected to shock wave disturbances in
the deformation regime.18−23 The increased drag forces due to the
flattened shape of the liquid jet enhances its tendency to be deflected
in the crossflow direction due to the gaseous crossflow. Given some
degree of flattening of the liquid jet, somewhat thicker nodelike
regions begin to appear along the length of the liquid jet with dis-
tances between the nodes generally comprising several liquid jet
diameters. The spacing of these nodes progressively decreases with
increasing crossflow Weber numbers. Subsequently, larger acceler-
ations of the cylindrical liquid connections between the nodes cause
them to be deflected in the crossflow direction more rapidly than the
nodes, giving the liquid jet a looplike structure. Finally, continued
deflection of the connections in the crossflow direction relative to the
nodes eventually causes the connections to break, with the resulting
free sections of the liquid connections eventually forming a string
of drops along their length by a process very similar to Rayleigh
breakup of liquid jets, leaving the nodes as larger drops among the
rest. The general appearance of the flow at these conditions can be
seen at the bottom of Fig. 1b.

As crossflow velocities increase, the next primary breakup regime
that is observed for W e = 4–30, is the bag breakup regime. Bag
breakup appears in Fig. 1c, for W e = 8. In this regime, crossflow
Weber numbers have reached values where the spacing between the
nodes is comparable to the liquid jet diameter. Once the liquid jet
has flattened significantly between the nodes, baglike structures ap-
pear between the nodes that are very similar to the baglike structures
appearing at the center of the deformed drops in the bag breakup
regime observed during the secondary breakup of drops subjected to
shock wave disturbances.18−20 This behavior involves the formation
of bags as a result of the deformation of the central portion of the
liquid jet between nodes due to the higher pressure of the stagnating
gas flow on the upstream side of the liquid jet than on its downstream
side. With increasing distance along the liquid column (or time in
the crossflow), the bags grow in the crossflow direction and then
begin to progressively break up, beginning at their farthest position
of deflection in the crossflow direction (or tip), in a mechanism very
similar to the bag breakup of drops undergoing secondary breakup
due to shock wave disturbances.22 This is followed by breakup of the
connecting liquid columns between the nodes, and along the sides
of the bags, into relatively large drops, once again by the mechanism
of Rayleigh breakup, similar to bag breakup during secondary drop
breakup due to shock wave disturbances.22 This behavior tends to
separate drops according to size along the liquid column, with the
smallest drops formed by breakup of the bag appearing first, fol-
lowed by larger drops formed by breakup of the connecting liquid
columns, and finally the largest drops that are associated with the
nodes.

Shifting to conditions at the largest crossflow velocities consid-
ered during the present investigation (or the largest crossflow Weber
numbers), W e > 110, primary jet breakup enters the shear breakup
regime. Shear breakup appears in Fig. 1e, for W e = 220. Similar
to column and bag breakup, the shear breakup process begins by
deflection of the liquid jet in the crossflow direction, but with neg-
ligible distortion of the jet cross section. In this case, wavelike dis-
turbances appear on the upstream side of the deflected liquid jet,
probably as a result of Rayleigh/Taylor instabilities, that is, as a
result of acceleration of a fluid of greater density toward a fluid of
lesser density in this region. The spacing of these disturbances along
the liquid jet is on the order of 0.1 of the jet diameter, and they do
not develop into the nodes observed in the liquid column and bag
breakup regimes. Instead, they grow into ligaments that form along
the periphery of the liquid jet and separate from its downstream side
(in the crossflow direction). These ligaments are terminated when
drops form from their ends, very similar to secondary drop breakup
when drops are subjected to shock wave disturbances in the shear
breakup regime.18−21 With increasing distance along the liquid jet,
the distance between these disturbances tends to increase, resulting
in progressively increasing diameters of both the ligaments and of
the drops forming from the end of the ligaments. This behavior is
also analogous to the progressive increase of the size of the liga-
ments, and the drops formed from them, as a function of time, during
secondary drop breakup when drops are subjected to shock wave
disturbances in the shear breakup regime.18−21

Finally, there is a range of crossflow velocities, for W e = 30–110,
between the bag and shear breakup regimes, that involves a com-
plex mixture of the properties of the bag and shear breakup regimes,
called the multimode (or bag/shear) breakup regime.1 Multimode
breakup, for W e = 30, is shown in Fig. 1d. In this case, the spacing
between disturbances along the surface of the jet is such that forma-
tion of both bags and ligaments can be accommodated, leading to
a regime of breakup of round liquid jets in crossflow analogous to
the multimode breakup regime for the secondary breakup of drops
subjected to shock wave disturbances.

Primary Breakup Regimes
By the exploitation of the similarities between the primary

breakup regimes of round nonturbulent liquid jets in crossflow,
and the secondary breakup of drops subjected to shock wave dis-
turbances, the breakup regimes of round nonturbulent liquid jets
in crossflow were correlated in terms of crossflow Weber and
Ohnesorge numbers as first proposed by Hinze26 for the secondary
breakup of drops exposed to shock wave disturbances at large liq-
uid/gas density ratio conditions similar to present observations. This
approach has also been used subsequently by most investigators
of secondary drop breakup; see Refs. 18–23 and references cited
therein. It is easily shown that the crossflow Weber and Ohnesorge
numbers govern breakup regime transitions: For conditions where
viscous forces are small, gasdynamic forces (or drag) on the liq-
uid jet must be stabilized by surface tension forces, which im-
plies that deformation and breakup regime transitions correspond
to particular critical Weber numbers, that is, W ecr = const, whereas,
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Fig. 1 Visualization of primary breakup processes of round nonturbulent liquid jets in gaseous crossflow: a) We = 0, no breakup; b) We = 3, column
breakup; c) We = 8, bag breakup; d) We = 30, multimode breakup; and e) We = 220, shear breakup.

bag/shear) breakup, and shear breakup, as shown in Figs. 1b–1e.
At the smallest velocities, W e ≤ 4, the liquid jet column was some-
what deformed, to yield an ellipsoidal cross section, and deflected
in the direction of the crossflow velocity. This behavior is caused
by reduced gas pressures along the sides of the jet due to accel-
eration of the gas across the liquid jet, with the lateral motion of
the liquid jet eventually stabilized by surface tension. This behavior
is somewhat analogous to the behavior of individual drops during
secondary breakup when subjected to shock wave disturbances in
the deformation regime.18−23 The increased drag forces due to the
flattened shape of the liquid jet enhances its tendency to be deflected
in the crossflow direction due to the gaseous crossflow. Given some
degree of flattening of the liquid jet, somewhat thicker nodelike
regions begin to appear along the length of the liquid jet with dis-
tances between the nodes generally comprising several liquid jet
diameters. The spacing of these nodes progressively decreases with
increasing crossflow Weber numbers. Subsequently, larger acceler-
ations of the cylindrical liquid connections between the nodes cause
them to be deflected in the crossflow direction more rapidly than the
nodes, giving the liquid jet a looplike structure. Finally, continued
deflection of the connections in the crossflow direction relative to the
nodes eventually causes the connections to break, with the resulting
free sections of the liquid connections eventually forming a string
of drops along their length by a process very similar to Rayleigh
breakup of liquid jets, leaving the nodes as larger drops among the
rest. The general appearance of the flow at these conditions can be
seen at the bottom of Fig. 1b.

As crossflow velocities increase, the next primary breakup regime
that is observed for W e = 4–30, is the bag breakup regime. Bag
breakup appears in Fig. 1c, for W e = 8. In this regime, crossflow
Weber numbers have reached values where the spacing between the
nodes is comparable to the liquid jet diameter. Once the liquid jet
has flattened significantly between the nodes, baglike structures ap-
pear between the nodes that are very similar to the baglike structures
appearing at the center of the deformed drops in the bag breakup
regime observed during the secondary breakup of drops subjected to
shock wave disturbances.18−20 This behavior involves the formation
of bags as a result of the deformation of the central portion of the
liquid jet between nodes due to the higher pressure of the stagnating
gas flow on the upstream side of the liquid jet than on its downstream
side. With increasing distance along the liquid column (or time in
the crossflow), the bags grow in the crossflow direction and then
begin to progressively break up, beginning at their farthest position
of deflection in the crossflow direction (or tip), in a mechanism very
similar to the bag breakup of drops undergoing secondary breakup
due to shock wave disturbances.22 This is followed by breakup of the
connecting liquid columns between the nodes, and along the sides
of the bags, into relatively large drops, once again by the mechanism
of Rayleigh breakup, similar to bag breakup during secondary drop
breakup due to shock wave disturbances.22 This behavior tends to
separate drops according to size along the liquid column, with the
smallest drops formed by breakup of the bag appearing first, fol-
lowed by larger drops formed by breakup of the connecting liquid
columns, and finally the largest drops that are associated with the
nodes.

Shifting to conditions at the largest crossflow velocities consid-
ered during the present investigation (or the largest crossflow Weber
numbers), W e > 110, primary jet breakup enters the shear breakup
regime. Shear breakup appears in Fig. 1e, for W e = 220. Similar
to column and bag breakup, the shear breakup process begins by
deflection of the liquid jet in the crossflow direction, but with neg-
ligible distortion of the jet cross section. In this case, wavelike dis-
turbances appear on the upstream side of the deflected liquid jet,
probably as a result of Rayleigh/Taylor instabilities, that is, as a
result of acceleration of a fluid of greater density toward a fluid of
lesser density in this region. The spacing of these disturbances along
the liquid jet is on the order of 0.1 of the jet diameter, and they do
not develop into the nodes observed in the liquid column and bag
breakup regimes. Instead, they grow into ligaments that form along
the periphery of the liquid jet and separate from its downstream side
(in the crossflow direction). These ligaments are terminated when
drops form from their ends, very similar to secondary drop breakup
when drops are subjected to shock wave disturbances in the shear
breakup regime.18−21 With increasing distance along the liquid jet,
the distance between these disturbances tends to increase, resulting
in progressively increasing diameters of both the ligaments and of
the drops forming from the end of the ligaments. This behavior is
also analogous to the progressive increase of the size of the liga-
ments, and the drops formed from them, as a function of time, during
secondary drop breakup when drops are subjected to shock wave
disturbances in the shear breakup regime.18−21

Finally, there is a range of crossflow velocities, for W e = 30–110,
between the bag and shear breakup regimes, that involves a com-
plex mixture of the properties of the bag and shear breakup regimes,
called the multimode (or bag/shear) breakup regime.1 Multimode
breakup, for W e = 30, is shown in Fig. 1d. In this case, the spacing
between disturbances along the surface of the jet is such that forma-
tion of both bags and ligaments can be accommodated, leading to
a regime of breakup of round liquid jets in crossflow analogous to
the multimode breakup regime for the secondary breakup of drops
subjected to shock wave disturbances.

Primary Breakup Regimes
By the exploitation of the similarities between the primary

breakup regimes of round nonturbulent liquid jets in crossflow,
and the secondary breakup of drops subjected to shock wave dis-
turbances, the breakup regimes of round nonturbulent liquid jets
in crossflow were correlated in terms of crossflow Weber and
Ohnesorge numbers as first proposed by Hinze26 for the secondary
breakup of drops exposed to shock wave disturbances at large liq-
uid/gas density ratio conditions similar to present observations. This
approach has also been used subsequently by most investigators
of secondary drop breakup; see Refs. 18–23 and references cited
therein. It is easily shown that the crossflow Weber and Ohnesorge
numbers govern breakup regime transitions: For conditions where
viscous forces are small, gasdynamic forces (or drag) on the liq-
uid jet must be stabilized by surface tension forces, which im-
plies that deformation and breakup regime transitions correspond
to particular critical Weber numbers, that is, W ecr = const, whereas,
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Fig. 1 Visualization of primary breakup processes of round nonturbulent liquid jets in gaseous crossflow: a) We = 0, no breakup; b) We = 3, column
breakup; c) We = 8, bag breakup; d) We = 30, multimode breakup; and e) We = 220, shear breakup.

bag/shear) breakup, and shear breakup, as shown in Figs. 1b–1e.
At the smallest velocities, W e ≤ 4, the liquid jet column was some-
what deformed, to yield an ellipsoidal cross section, and deflected
in the direction of the crossflow velocity. This behavior is caused
by reduced gas pressures along the sides of the jet due to accel-
eration of the gas across the liquid jet, with the lateral motion of
the liquid jet eventually stabilized by surface tension. This behavior
is somewhat analogous to the behavior of individual drops during
secondary breakup when subjected to shock wave disturbances in
the deformation regime.18−23 The increased drag forces due to the
flattened shape of the liquid jet enhances its tendency to be deflected
in the crossflow direction due to the gaseous crossflow. Given some
degree of flattening of the liquid jet, somewhat thicker nodelike
regions begin to appear along the length of the liquid jet with dis-
tances between the nodes generally comprising several liquid jet
diameters. The spacing of these nodes progressively decreases with
increasing crossflow Weber numbers. Subsequently, larger acceler-
ations of the cylindrical liquid connections between the nodes cause
them to be deflected in the crossflow direction more rapidly than the
nodes, giving the liquid jet a looplike structure. Finally, continued
deflection of the connections in the crossflow direction relative to the
nodes eventually causes the connections to break, with the resulting
free sections of the liquid connections eventually forming a string
of drops along their length by a process very similar to Rayleigh
breakup of liquid jets, leaving the nodes as larger drops among the
rest. The general appearance of the flow at these conditions can be
seen at the bottom of Fig. 1b.

As crossflow velocities increase, the next primary breakup regime
that is observed for W e = 4–30, is the bag breakup regime. Bag
breakup appears in Fig. 1c, for W e = 8. In this regime, crossflow
Weber numbers have reached values where the spacing between the
nodes is comparable to the liquid jet diameter. Once the liquid jet
has flattened significantly between the nodes, baglike structures ap-
pear between the nodes that are very similar to the baglike structures
appearing at the center of the deformed drops in the bag breakup
regime observed during the secondary breakup of drops subjected to
shock wave disturbances.18−20 This behavior involves the formation
of bags as a result of the deformation of the central portion of the
liquid jet between nodes due to the higher pressure of the stagnating
gas flow on the upstream side of the liquid jet than on its downstream
side. With increasing distance along the liquid column (or time in
the crossflow), the bags grow in the crossflow direction and then
begin to progressively break up, beginning at their farthest position
of deflection in the crossflow direction (or tip), in a mechanism very
similar to the bag breakup of drops undergoing secondary breakup
due to shock wave disturbances.22 This is followed by breakup of the
connecting liquid columns between the nodes, and along the sides
of the bags, into relatively large drops, once again by the mechanism
of Rayleigh breakup, similar to bag breakup during secondary drop
breakup due to shock wave disturbances.22 This behavior tends to
separate drops according to size along the liquid column, with the
smallest drops formed by breakup of the bag appearing first, fol-
lowed by larger drops formed by breakup of the connecting liquid
columns, and finally the largest drops that are associated with the
nodes.

Shifting to conditions at the largest crossflow velocities consid-
ered during the present investigation (or the largest crossflow Weber
numbers), W e > 110, primary jet breakup enters the shear breakup
regime. Shear breakup appears in Fig. 1e, for W e = 220. Similar
to column and bag breakup, the shear breakup process begins by
deflection of the liquid jet in the crossflow direction, but with neg-
ligible distortion of the jet cross section. In this case, wavelike dis-
turbances appear on the upstream side of the deflected liquid jet,
probably as a result of Rayleigh/Taylor instabilities, that is, as a
result of acceleration of a fluid of greater density toward a fluid of
lesser density in this region. The spacing of these disturbances along
the liquid jet is on the order of 0.1 of the jet diameter, and they do
not develop into the nodes observed in the liquid column and bag
breakup regimes. Instead, they grow into ligaments that form along
the periphery of the liquid jet and separate from its downstream side
(in the crossflow direction). These ligaments are terminated when
drops form from their ends, very similar to secondary drop breakup
when drops are subjected to shock wave disturbances in the shear
breakup regime.18−21 With increasing distance along the liquid jet,
the distance between these disturbances tends to increase, resulting
in progressively increasing diameters of both the ligaments and of
the drops forming from the end of the ligaments. This behavior is
also analogous to the progressive increase of the size of the liga-
ments, and the drops formed from them, as a function of time, during
secondary drop breakup when drops are subjected to shock wave
disturbances in the shear breakup regime.18−21

Finally, there is a range of crossflow velocities, for W e = 30–110,
between the bag and shear breakup regimes, that involves a com-
plex mixture of the properties of the bag and shear breakup regimes,
called the multimode (or bag/shear) breakup regime.1 Multimode
breakup, for W e = 30, is shown in Fig. 1d. In this case, the spacing
between disturbances along the surface of the jet is such that forma-
tion of both bags and ligaments can be accommodated, leading to
a regime of breakup of round liquid jets in crossflow analogous to
the multimode breakup regime for the secondary breakup of drops
subjected to shock wave disturbances.

Primary Breakup Regimes
By the exploitation of the similarities between the primary

breakup regimes of round nonturbulent liquid jets in crossflow,
and the secondary breakup of drops subjected to shock wave dis-
turbances, the breakup regimes of round nonturbulent liquid jets
in crossflow were correlated in terms of crossflow Weber and
Ohnesorge numbers as first proposed by Hinze26 for the secondary
breakup of drops exposed to shock wave disturbances at large liq-
uid/gas density ratio conditions similar to present observations. This
approach has also been used subsequently by most investigators
of secondary drop breakup; see Refs. 18–23 and references cited
therein. It is easily shown that the crossflow Weber and Ohnesorge
numbers govern breakup regime transitions: For conditions where
viscous forces are small, gasdynamic forces (or drag) on the liq-
uid jet must be stabilized by surface tension forces, which im-
plies that deformation and breakup regime transitions correspond
to particular critical Weber numbers, that is, W ecr = const, whereas,
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Figure 12. Illustrations of the wavy corridor mechanism: (i) Liquid jet in a transverse cross
flow of air. The centripetal acceleration imparted to the liquid flowing along its curved path
destabilizes the jet (Sallam et al. 2004). (ii) Undulated Savart sheet in the flapping régime. For
large enough amplitudes, primary undulations undergo a transverse destabilization (thickness
modulations seen by interferometry) caused by the accelerations imposed to the liquid at the
passage of the primary undulations (Bremond et al. 2007). (iii) Evidence for the centrifugation
of liquid particle at the passage of a sharp cusp on a crumpled Savart bell, and the consequence
of this acceleration on the transverse thickness field of the sheet (Lhuissier & Villermaux 2012b).

(3.33)

R

d0
∼
(
ρ2
ρ1

)−2/3
We−1/3 (6.6)

holding for We & 40
√
ρ1/ρ2 of order 103 for a water sheet moving in air (density ratio

ρ2/ρ1 ≈ 10−3) with velocity u1 (Huang 1970; Villermaux & Clanet 2002).
To the primary Squire undulated pattern of the sheet is superimposed, via the mech-

anism described next in Section 6.4, a thickness modulation field. On a bounded liquid
sheet, these thickness modulations induce a differential recession speed at their edge,
which may lead to a periodic cutting of the sheet into periodic spanwise strips of width λ
given in (6.1) above (see Fig. 9 and Kim & Sirignano (2000)). These strips further recoil
into a ligament of diameter

〈d〉 ∼
√
λh (6.7)

which also sets the average droplets sizes formed by this process, with viscous corrections
when applicable (Dombrowski & Johns 1963; Han et al. 2004; Kooij et al. 2018).

6.4. The wavy corridor mechanism
The shear instability generates the characteristic waves extending spanwise, perpen-

dicular to the direction of the mean flow with a wavelength given either by (6.1) or by
(6.2) depending on Weδ. It is the first step of the inertial destabilization of the interface,
leading to its fragmentation. The second step consists in the destabilization of these
primary waves themselves, through a mechanism we explain now.

As they grow in amplitude, the primary shear waves destabilize in the spanwise
direction to form streamwise ligaments separated by a well defined wavelength λ⊥. The
mechanism responsible for this secondary instability was first proposed by Marmottant
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& Villermaux (2004b) to describe the fragmentation of a slow liquid stream (density ρ1)
by a fast gas stream (density ρ2). The fundamental idea exploits the fact that, in shear
instabilities, the group velocity uc ≈ u2

√
ρ2/ρ1 of the most amplified perturbation is

intermediate between the velocity of the slow stream u1 and that of the fast stream u2.
Fluid particles in the slow stream are thus periodically accelerated perpendicular to the
interface (as if transported in a wavy corridor) which, therefore, suffers a Rayleigh-Taylor
instability. In the reference frame of the liquid, the interface with elevation ξ ∼ a sin(ωt)
experiences an oscillatory acceleration of intensity

|g| ∼ aω2 (6.8)

with ω ∼ uc/λ and a the amplitude of the primary shear waves. The transverse insta-
bility of the primary wave crests occurs when the Rayleigh-Taylor instability timescale
(σ/ρ1|g|3)1/4 (see (A 8) in Appendix A.1) gets shorter than the residence time of the
waves ω−1, setting both the critical amplitude ac and transverse wavelength λ⊥ as

ac
λ
∼ λ⊥

λ
∼We

−1/3
λ (6.9)

where Weλ = Weδ ×
λ

δ
(6.10)

From the resulting protrusions of the –now indented– waves crests emerge liquid ligaments
which are further accelerated in the fast gas stream where they fragment in stable
droplets. The volume of the ligaments is of order λ3⊥ and they typically produce broad
droplets size distributions with average size 〈d〉 ∼ 0.1λ⊥.

This process is sometimes called shear assisted atomization in the context of liquid
propulsion engines. It is responsible for the formation of sea spray by strong winds over
sharp crested waves (Anguelova & Barber 1999; Veron et al. 2012).

The above wavy corridor mechanism operates more generally when a liquid flows
through a curved path and experiences therefore a centripetal acceleration. As such,
it also applies to liquid films and sheets. Depending on the intensity of the centripetal
acceleration and on the thickness of the film, either the infinite depth (Appendix A.1),
or the finite thickness (Appendix A.2) versions of the Rayleigh-Taylor instability apply.
This mechanism explains the cellular fragmentation of liquid jets bent in a cross-flow (see
the experiments by Sallam et al. (2004) and the corresponding theory in Section 3.11.3
of Eggers & Villermaux (2008)), the transverse indentations of undulated liquid sheets
(Bremond et al. 2007) and the fragmentation of soap films by the transverse instability
of their flapping receding rim (Lhuissier & Villermaux 2009b), as well as the spontaneous
burst of crumpled water bells (Lhuissier & Villermaux 2012b). It is distinct from the mass
concentration mechanism in a vibrating, non-flowing soap film discussed by Boudaoud
et al. (1999).

7. Impacts
Impacts between cohesive bodies sometimes result in their fragmentation. The role of

the impact is two-fold: it may first simply communicate to the body a stress sufficient
to overcome cohesion, as in the generic example of the magnets necklace in Section 2.3.
This is often how solids break. Second, an impact may also trigger a shape change of the
body to make it sensitive to an intrinsic instability. This is the case with liquids where
fragmentation under impact is mediated by the transient formation of ligaments, which
naturally breakup into drops (Section 8). Note that this distinction is not exclusive, since
the fragmentation of some slender solid bodies by impact does involve the development
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FIG. 2: Facing views of bursting liquid films for three incoming wave Mach numbers. From top to bottom, M = 1.03, 1.07, 1.21.
Time goes from left to right with a time step �t = 0.05 ms. The width of each window is 1.5 cm. The thickness of the film is
about 2 microns.
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Figure 4. Sequence of events following the laser pulse impact on a MEK drop for We = 330.
Images are recorded stroboscopically (i.e. on di↵erent drops) from side- and back-views. The
former are shown in a frame co-moving with the propulsion speed U . At t = 0.27 ms, the drop
has deformed into a semi-transparent sheet with radius R(t) and non-uniform thickness h(r,�, t)
that is bordered by a rim. The pointers in the three subsequent pictures indicate the onset of
fragmentation of the sheet. First, rim breakup occurs by the radial expulsion of ligaments (at
t = 0.54 ms) that subsequently destabilise. Second, corrugations of the sheet appear that finally
pierce holes. This sheet breakup occurs close to the rim, leading to neck breakup at t = 1.1 ms,
and close to the centre of the sheet leading to centre breakup at t = 1.7 ms. A final web of
ligaments is shown for t = 2.5 ms.

In both systems the sheet breaks by the nucleation of holes in two distinct regions: neck
breakup (b, e) and centre breakup (c, f ). Neck breakup occurs before centre breakup and
may repeat several times during the sheet expansion.

The observation of the neck breakup requires a high spatial and temporal resolution.
The process is strongly localised in space and di�cult to separate from other breakup
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(a)

(b)

(c)
(d)
(e)
( f )
(g)
(h)

(i)

( j)
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FIGURE 1. Effect of increasing impact velocity on the splashing of the drop: from left
to right, the impact velocity V is 1.28 m s�1 (first column), 2.01 m s�1 (second column),
2.28 m s�1 (third column) and 2.58 m s�1 (fourth column). From top to bottom, each
sequence of images corresponds to the instants when T is (a) �1.131 ms, (b) 0.029 ms,
(c) 0.03 ms, (d) 0.05 ms, (e) 0.09 ms, ( f ) 0.21 ms, (g) 0.28 ms, (h) 0.319 ms,
(i) 0.609 ms, (j) 0.899 ms and (k) 1.189 ms. Images (c–g) have a higher spatiotemporal
resolution than the other images in the same column. The temporal resolutions of the
high-speed cameras are 10 µs and 58 µs. The liquid is ethanol and the radius of the
drop is R = 1.04 mm. The critical velocity for splashing is V⇤ = 2.19 m s�1.

accurate measurement of the tiny sizes (just a few microns) and large velocities
(⇠20 m s�1) of the fragments ejected. Nonetheless, in appendix B we will make
use of the experimental results on splashing water droplets provided in Thoroddsen,
Takehara & Etoh (2012) to give further support to our theory.

Figure 1 shows the time sequence of events occurring right after a drop of a liquid
with viscosity µ = 1 cP falls onto the solid at increasing impact velocities. For the
smallest value of V (figure 1, first column), a liquid sheet of thickness Ht ⌧ R is
expelled radially outwards and tangentially to the wall with a velocity Vt � V for
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outwards from near the droplet’s apparent contact line. If
the sheet is ejected at high enough velocity, it lifts up from
the substrate and subsequently breaks up into droplets (a
corona splash) [35]. At lower ejection speeds the sheet
initially lifts away from the substrate, but it falls back down
onto the substrate, where it rapidly slows before splashing
can occur. Figure 1 shows at which speeds or, equivalently,
Weber number (We ¼ ρU2R=γ, where ρ and γ are droplet
density and surface tension, respectively) splashing occurs
as a function of substrate stiffness. For any given substrate,
there is a threshold velocity for splashing, which increases
with increasing substrate compliance. The rigid (acrylic)
splash threshold, U ¼ 2.18 m=s, is shown by the dashed
line in the figure. The splashing behavior on the stiffest
silicone substrates approaches this limit.
Figure 2 illustrates impact behavior. All images show

droplets of the same size that have hit different substrates
at the same speed (2.61" 0.02 m=s) approximately

t ¼ 350 μs after impact. For the 10 mm thick samples
(all except the bottom left-hand image) there is a smooth
transition from violent splashing to no splashing with
decreasing E. The position of the leading edge of the
ejection sheet shows that ejection is significantly faster on
stiffer substrates than on softer ones. Videos of the droplet
impacts on acrylic and silicone with E ¼ 165 and 45 kPa
are given in the Supplemental Material [36].
The reduction in splashing on soft substrates is due to

deformations caused during the droplet impact process. We
showed this by impacting droplets on a 3 μm thick coating
of a soft gel (E ¼ 80 kPa) spin coated onto a glass slide
[this limits deformations to OðμmÞ]. Impacts on this
surface were almost identical to impacts on acrylic surfaces
(with the same splash threshold velocity of U ¼ 2.18 m=s)
and much more violent than impacts on a deep substrate
made from the same silicone (see, e.g., Fig. 2). This also
rules out the splash reduction being caused by changes in
the surface properties of silicone with E.
Although substrate deformations absorb energy from

an incoming droplet [37], they do not merely absorb
the relatively large energy excess required to splash
on a soft surface. The preimpact energy of a droplet is
Winit ¼ 2πR3ρU2=3þ 4πR2γ, with the majority of this
being kinetic energy. Thus, splashing on the softest sub-
strate can require over 75% higher Winit than on rigid
substrates (Fig. 1). We can estimate the energy absorbed by
the substrate during impact and spreading by calculating
the surface energy of the droplet at its maximum spread
radius Rmax. At this point, the kinetic energy is approx-
imately zero (the energy in ejected microdroplets is mini-
mal), so the droplet energy ∼2γπR2

max [38]. Figure 3(a)
shows this, normalized by Winit. For each droplet impact
speed, the energy dissipations on soft substrates and hard
substrates are only a few percent apart. This is nowhere
near enough to explain the observed splashing reduction,
and suggests that the substrate stiffness has relatively little
effect on the kinetics of the bulk of the droplet.
Instead, the splash-suppression mechanism predomi-

nantly removes energy from the very small volume of
liquid that forms the ejecta. The resulting ejection sheet is
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FIG. 1. Splashing behavior of ethanol droplets on flat solid
substrates as a function of Young’s modulus and impact speed.
All droplets have R ¼ 0.97 mm, so U2 is proportional to the
Weber number (right-hand axis). Circles, no splash; crosses,
splash. The continuous curve indicates the splashing threshold
(the lowest speed at which splashing was observed). This
approaches the rigid-substrate splash threshold (dashed line) as
E increases.

FIG. 2. Examples of ethanol droplet impacts on flat substrates with a range of stiffnesses. All droplets have a radius of
0.88" 0.02 mm and impact speed of 2.61" 0.02 m=s. Images shown are taken approximately 350 μs after impact. All silicone
substrates are 10 mm thick, except the bottom left-hand image, which is 3 μm thick. The scale bar is the same for all eight images.
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FIGURE 1. Observing the initial contact dynamics and micro-splashing. (a) Sketch of the
optical setup. The impact is viewed through a glass substrate. The drop acts as a lens to
intensify the illumination. (b) Snapshot from Thoroddsen & Sakakibara (1998) revealing
smeared streaks. (c) Undulations on the ejecta (left arrows) and ejected droplets (rightmost
arrow), shown at t = 72 µs after impact. The scale bar is 1 mm. (d) Direct observation of the
instability at the base of the fingers, for H ' 75 cm (Re = 20 200, We = 1020). The frames
are taken from a 500 000 f.p.s. video sequence and shown 2, 8, 16, 24, 34 and 40 µs after the
first contact. The arrows (from top to bottom) point to the faint ring of microbubbles left at
the edge of the entrapped air disc, the undulations in the neck region and the fingers shedding
droplets. The scale bars are both 500 µm long, owing to the slightly oblique view. See also
supplementary video 1 available at journals.cambridge.org/flm. (e) Close-up image of the
azimuthal instability, showing 32 regular undulations (arrow). (f ) Sketch identifying the cusp
in the free surface, location of the instability. (g) Fingers further along during the spreading.

fingers and forcing the onset of micro-splashing. While the classical cylindrical jet and
drop are stable to azimuthal undulations, our geometry of a sharp cusp can support
the proposed azimuthal undulations, as is shown schematically in figure 2, while
continuity can be satisfied through vertical deformations of the air troughs.

These azimuthal undulations in the neck region are often obscured by shadows, and
can only be counted under certain lighting conditions, as in figures 1(c–e) and 4(a).
Figure 3(a) compares the number of the undulations to the number of the primary
fingers which develop later on the edge of the jet, for larger spreading radii (see
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Figure 13. Hard and soft impacts. (i) Impact of a laser pulse on a liquid drop which flattens,
expands, is transpierced by holes, and fragments (adapted from Klein et al. (2020)). (ii) Series of
events of the fragmentation of a d0 = 6mm water drop falling in an ascending air stream showing
the flattening of the drop into a pancake shape with radius R(t) and thickness h(t), the inflation
of a bag with shape ξ(r, t) bordered by a thicker corrugated rim, whose breakup leads the final
drop sizes d (Villermaux & Bossa 2009). (iii) Two historically important pictures featuring the
soft impact of a drop deforming in air (Lane & Green 1956), and the drawing of a water drop
crushed on a flat hard substrate by Leonardo da Vinci (da Vinci 1508). (iv) Impact of a drop on
a solid substrate (adapted from (Riboux & Gordillo 2015)). (v) Drop impact on gradually softer
materials, and rarefied ambient pressures (Howland et al. 2016). (vi) Micro-splashing from the
first ejecta-sheet at drop impact a solid (Thoroddsen et al. 2012a). (vii) A water drop impaling
on a solid target, expanding and featuring multi-sized radial ligaments at its rim, from which
drops form (Villermaux & Bossa 2011). (viii) Time series of liquid films impacted by a shock
wave for three different Mach numbers M = 1.03, 1.07 and 1.21 pierced by holes colliding to
form ligaments webs (Bremond & Villermaux 2005).

of an instability (buckling, see e.g. Gladden et al. (2005)). We describe below several
examples of liquid bodies like drops (the archetype of the stable shape) which fragment
once impacted, along with the mechanisms of their shape change into ligaments.

7.1. Hard impacts
By ‘Hard’, we mean a cohesive but deformable object (a liquid volume) impacted by

another rigid object, the paradigm of this being the crushing of a drop on a solid surface.

7.1.1. Drop impact on solid surface
Among the relevant studies documenting fragmentation on impacts are those of Ashgriz

& Poo (1990) and Qian & Law (1997) who have quantified the conditions for coalescence
or satellite formation in binary collisions of drops, Stow & Stainer (1977) who have mea-
sured the number of fragments of a water drop colliding with various solid surfaces, dry,
wet, smooth and rough, and measured their size distribution, Mundo et al. (1995) who
performed similar measurements with liquids of different surface tension and viscosity,
Yarin & Weiss (1995) who measured the fragment size distributions of a drop impacting
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a shallow layer of the same fluid, Roisman et al. (2006) who made various measurements
on the spray resulting from an impact on a dry solid, and Xu et al. (2007) who singled-
out the importance of the solid surface texture, and ambient gas conditions on splashing
and resulting fragments distribution while more recently Thoroddsen et al. (2012a) and
Riboux & Gordillo (2015) or Wang & Bourouiba (2018) measured some ejection velocities
and drops sizes, and Burzynski et al. (2020) also some distributions.

As for all fragmentation processes, a broad collection of fragment sizes is produced
following drop impact, with a typical positively skewed size distribution presenting many
small drops, and fewer larger drops. Despite a recent important activity on the topic
(drops impacts on hydro-phillic, -phobic, textured, rough, heated etc... surfaces), the
remark made by Stow & Stainer (1977) more than 40 years ago is still largely topical :

Almost without exception, recent investigations of splashing have concentrated on
the observation of the hydrodynamics of the impact itself with little or no attention
being paid to the final consequences of the event.

Fragmentation indeed remains the poor cousin of drops impact. For instance, there is
not a single section devoted explicitly to this aspect in the recent review by Josserand &
Thoroddsen (2016). This is not new; as noted by Rowlinson (2002) (p. 56):

...the study of cohesion failed to prosper in the 18th century under the internal
difficulties of its own subject matter and the external competition of other more
exciting branches.‘Everything has its fashions, even philosophy has its own’, wrote
Réaumur in 1749, and cohesion became an unfashionable subject for many of the
leading figures of the day.

The problem can however be apprehended with relatively simple guidelines: we consider
a droplet with radius r0 impacting at speed u0 normally onto a rigid, flat surface which
absorbs its momentum, and redistributes it radially in an axi-symmetrical fashion, into
an expanding sheet. The Savart sheet in Section 3.2.3 is the strict analogue, continuous
and steady version of this problem. Because they resort to slightly different phenomena,
we distinguish two régimes, one before the crushing time r0/u0, and the other after,
starting with the latter.

(i) After the crushing time (t > r0/u0): the main droplets
After the drop has crushed on the solid (this steps lasts for about r0/u0), its volume
Ω = 4

3πr
3
0 is entirely converted into a circular sheet with radius R(t). Note that a

spherical drop deposited on a surface at zero velocity keeps its shape, and that its initial
radius r0 is not affected. Hence, the effect of an impact at velocity u0 results for R(t)−r0
in a correction F (u0, t, σ...) which must vanish for u0 → 0. In other words, The expanded
drop radius R(t) must write

R(t) = r0 + F (u0, t, σ...). (7.1)

The interesting case is obviously not the limit u0 → 0, but rather when the effect of the
impact results in a strong shape change with a maximal radius extension Rmax � r0.
In that case, the liquid constitutive of the drop shapes into a radially expanding, and
recoiling sheet, whose typical thickness h is such that the aspect ratio h/R is very small.
We call u(r, t) and h(r, t) the radial velocity and thickness of the expanding drop (Fig. 13),
for which we write the Euler equations in the slender slope approximation |∂rh(r, t)| � 1,

∂tu+ u∂ru = 0 Ballistic motion, (7.2)
r∂th+ ∂r(ruh) = 0 Mass conservation. (7.3)

We do not consider any interaction with the surrounding environment, nor viscous effects,
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a limit which suits to the configuration of a drop impacting a solid target matching its
own size in opened air, ingeniously pioneered by Rozhkov et al. (2002).
The pressure p(r, t) in the liquid is essentially zero after the crunching time. At the
impact point in r = 0, it is roughly

p(0, t) ≈ ρu0r0δ(t), (7.4)

the Dirac Delta contribution ρu20δ(t)×(r0/u0) standing for the duration of the momentum
transfer giving rise to the pressure surge, the source of the sheet radial motion. It lasts
for the crushing time r0/u0 which is safely taken as zero provided the resulting overall
evolution of R(t) lasts for a time much larger than r0/u0, as is checked a posteriori.
We seek for a time-dependent solution of the form (Villermaux & Bossa 2011)

h(r, t) =
f(t)

r
, and u(r, t) = − ḟ

f
r (7.5)

where ḟ denotes df(t)/dt. The solution for R(t) is constrained by two conditions which
express that

(a) the radially expanding fluid particles are arrested at some distance from the
impact point R(t) by capillary confinement,
(b) these fluid particles feed the sheet rim where they progressively all collect.

Global mass conservation thus writes
∫ R

0

2πrh(r, t)dr = Ω −
∫ t

0

2πR(t)
(
u(R, t)− Ṙ

)
h(R, t)dt (7.6)

where the second term in the right hand side of (7.6) is the net volume accumulated at
time t in the rim.
Momentum conservation at the rim approximately complies to the standard Taylor-
Culick’s law (modulo a time-varying correction involving R̈ which we discard for clarity)

ρ h(R)
(
u(R, t)− Ṙ

)2
≈ 2σ (7.7)

from which, using Eqs. (7.5) and (7.6), we have

f(t)R(t) =
Ω

2π

(
1− t

τ

)2

, with τ =

√
ρΩ

πσ
. (7.8)

The ballistic motion in the absence of pressure gradient along r expressed by (7.2)
translates, given the form of u(r, t) chosen in (7.5), to f(t) = A/t with A = Ω/(2πu0) a
(dimensional) constant whose value is set by the initial sheet expansion velocity, given
by Ṙ(0) = u0 (see next paragraph, where we detail the crushing dynamics itself). The
sheet radius is finally

R(t) ∼ u0τ
t

τ

(
1− t

τ

)2

, (7.9)

describing an asymmetric one-period oscillatory motion lasting τ , and providing a rep-
resentation for the motion within the sheet u(r, t) and of its thickness h(r, t) as

u(r, t) =
r

t
, h(r, t) ∼ Ω

u0 r t
, (7.10)

relations which were found to be adequate by, successively, Villermaux & Bossa (2011),
Vernay et al. (2015b) and Wang & Bourouiba (2017) for t � r0/u0. The maximal
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amplitude of the motion, reached at t/τ = 1/3, is

Rmax/r0 ∼
√
We (7.11)

where the impact Weber number is We = u0τ/r0, a well known scaling dependency
(see e.g. Chandra & Avedisian (1991); Rozhkov et al. (2002); Roisman et al. (2002);
Mehdizadeh et al. (2004); Ukiwe & Kwok (2005)). Two remarks are in order:

(a) This model for R(t) holds provided the Weber number
√
We ∼ τ/(r0/u0) is

large, expressing a clear separation between the drop crushing time (lasting r0/u0),
and the comparatively long inertia–capillary expansion and recoil dynamics of the
deformed drop (lasting τ).
(b) Although the scaling in (7.11) can be derived equating kinetic energy with
surface energy, the evolution of R(t) is highly dissipative. Dissipation does not
occur at the impact location, nor in the sheet whose motion is conservative, but
at the rim where all the incoming kinetic energy of the particles arrested at the
rim is absorbed. It is overall a fixed fraction of the initial drop kinetic energy (see
Section 11).

The kinematics of R(t) explains why and how the liquid initially constitutive of the drop,
which progressively accumulates in a toroidal ligament (the sheet rim), will degenerate
into radial ligaments (first witnessed by da Vinci (1508), see Fig. 13 and also Marmanis
& Thoroddsen (1996)), finally forming drops.
The fundamental ingredient is that the rim sits on a non-Galilean frame which is ever
decelerated (R̈ < 0 until t/τ = 2/3, see (7.9)), thus forcing the radial expulsion of liquid
masses with respect to the rim, through a Rayleigh-Taylor like process (see Allen (1975)
and Appendix A.1). The rim, because of its toroidal shape, is primarilly sensitive to the
familiar capillary instability, the very one responsible for its destabilization (see references
in Section 4.1 and Zhang et al. (2010)), which occurs however here on a stretched substrate
(see Section 8.2) because the radius R(t) expands, with stretching rate Ṙ/R. Once
articulated together, these ingredients provide quantitative predictions to understand
the fragmentation scenario: the body force −ρR̈ pushes the unstable bulges constitutive
of the rim outwards at a lengthscale matching the rim’s diameter, thus forming the
radial ligaments whose breakup produce a droplets size distribution characteristic of
very corrugated ligaments (see Fig. 13 and Section 9). The average droplet size is

〈d〉
r0
∼We−1/4 (7.12)

Of course, in this his slowed down, expanding rim destabilization mechanism, ligament
shedding occurs from the start (Wang & Bourouiba 2018) when −R̈ is maximal, and
proceeds all the way via the turning point of the sheet radius trajectory (when Ṙ = 0,
as the stretching cancels) when most of the liquid has pilled-up in the corrugated rim,
up to the cancellation of expulsion force when R̈ = 0; Fragmentation is thus typically
completed at t/τ ≈ 2/3.

(ii) Before the crushing time: ejecta sheet and ‘fines’
We have explained in Section 3.2.1 that because viscous dissipation occurs at a very small
scale when Oh � 1, the momentum transfer at a collision may lead to the formation
of tiny objects, which may also be formed before the drop crunch is completed (i.e. for
t < r0/u0). We analyze this fine-grained aspect of the phenomenon here, exploring what
happens ‘inside’ the Dirac Delta of the pressure surge mentioned in the previous section.
Two régimes are distinguished:
1) The geometrical penetration radius of a spherical droplet on a rigid floor is initially
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a ∼ √u0r0t. The induced flow u(r, t) ruled by ∂tu + u · ∇u = −∇p/ρ and ∇ · u = 0
obeys initially, when the velocity amplitude |u| is small enough to neglect the cross-term
u · ∇u (see Lamb (1932), Art. 11 and Cooker & Peregrine (1995))

∂tu = −1

ρ
∇p, (7.13)

and thus ∇2p = 0. (7.14)

In other words, if the liquid has moved over a distance a in the r-direction, then it has
moved over the same distance in the direction perpendicular to the impact plane. The
consequence of the Laplacian character of the pressure is that since a is the only initial
lengthscale of the problem (besides r0 � a), the net volume of liquid whose motion is
slowed down is of order a3, setting its massm ∼ ρ a3 (not to be confused with the deflected
mass ρu0t a2, feeding a radially ejected lamellae). The cancellation of the corresponding
momentum initially carried in the impact direction gives rise to a force f = u0ṁ, and
therefore to an isotropic pressure at the impact point given by

p(0) ∼ f

a2
(7.15)

∼ ρu20
√

r0
u0t

, (7.16)

an early time divergence familiar in impact problems (Wagner 1932; Cointe & Armand
1987; Philippi et al. 2016). The pressure gradient ∂rp in the radial direction is of order
p(0)/a so that, from the dynamics in (7.13), u/t ∼ u0/t, giving simply

u ∼ u0, (7.17)

hence the initial condition Ṙ(0) = u0 leading to the sheet trajectory in (7.9) after the
crushing time.
The rate of increase of the mass in motion ṁ is proportional to the driving force p(0)×a2,
so that the velocity is constant. With this estimate for u, the amplitude of the discarded
nonlinear term |u·∇u| in the Euler equation above is of order u20/a ∼ 1/

√
t, indeed smaller

than 1/t as t → 0. The intensity of this induced flow is smaller than the geometrical
expansion velocity of the penetration region ȧ ∼

√
u0r0/t as long as t < r0/u0, consistent

with the empirical observation that a lamellae is seen to emerge from the impact region
when the penetration distance is a fraction of r0, and that the ejection velocity of the
resulting lamellae (and detached droplets), is of order u0 when complications with liquid
viscosity, ambient medium, and substrate roughness are negligible (see Xu et al. (2007);
Riboux & Gordillo (2015)).
2) The linear pressure impulse solution in (7.13) does not, however, apply everywhere
in the penetration region. Close to the contact line between the drop and the solid, the
radial velocity u is itself of order ȧ, making the nonlinear term |u · ∇u| of order u2/δ(t)
where δ(t) is some lengthscale setting the width of the pressure and velocity gradients
close to the contact line. If δ(t) is itself initially zero and an increasing function of time,
the nonlinear term is more singular than u20/t, suggesting that the early time dynamics
balances inertia with pressure, at least in a small region of size δ. Writing p ∼ f/(aδ) so
that ∂rp ∼ f/(aδ2), the balance between |u · ∇u| and |∇p|/ρ at the contact line writes

u2

δ
∼ 1

ρ

f

aδ2
, or u ∼ u0

a

δ
, (7.18)

providing δ ∼ u0 t, (since u ∼ ȧ) (7.19)
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so that the local pressure in the contact line region (Mandre et al. 2009) is now of
order f/(aδ) ∼ ρu0r0/t, indeed more singular than p(0) in (7.16). Detailed calculations
(Birkhoff et al. 1948; Riboux & Gordillo 2014) show that the contact line velocity is closer
to u = 2ȧ (see Howinson et al. (1991), and Philippi et al. (2016) for a fully self-similar
description), albeit affected by viscous corrections when a non-slip condition applies at
the solid surface. Expressing that the deflected mass ρu0t a2 all enters the ejected lamellae
which carries its momentum provides the lamellae thickness h as u0∂t(ρu0ta2) ∼ ρu2ah,
that is h ∼ (u0/r0)a2/ȧ ∼ t3/2 (see e.g. Riboux & Gordillo (2014); consistently h < δ as
t→ 0).
This very early dynamics produces a fast (ȧ ∼ 1/

√
t), thin (h ∼ t3/2) lamellae, sometimes

called ‘first-ejecta sheet’ (Fig. 13) which, because it is decelerated by the necessary
capillary confinement (R̈ < 0 as above) produces tiny droplets by a process similar
to the one described for the main droplets after the crushing time. This régime prevails
as long as δ < a, that is t < r0/u0, then leaving place to the one in (7.17). The small
droplets are called ‘fines’ in contexts where they are feared for their long persistence in
air, and associated large contamination radius when they are drifted by the wind (see
Section 1.3). Their occurence has been precisely documented by Néel et al. (2020) for
the collision of liquid rims in the effervescent atomisation process.

7.1.2. Liquid film hit by a shockwave
Liquid sheets, especially when they are embedded in an explosion (Section 5.1.1), or

are flowing rapidly in a gas phase in which they flap (Section 6.4), suffer accelerations
perpendicular to their plane. We have emphasized the importance of this phenomenon
on their destabilization, through thickness modulations, prelude of holes nucleation
(Appendix A.2).

A paradigm of this phenomenon is the case of a soap film impulsively accelerated
perpendicular to its plane, when hit by a parallel shockwave in air (qualitatively similar
observations are made when the film is curved, like for a bubble, see Layes et al. (2003)).
The shock strength is measured by the Mach number M = v/c, the ratio of the shock
velocity v to the sound speed c. Since the acoustic impedance of water is much larger
than that of air, the shock is nearly completely reflected at the liquid film surface, a
rebound which communicates an impulse setting the film into motion. Elementary gas
dynamics (Henderson 1989) provides the film velocity u(t) and the acceleration time τ
as

u(t) = u

(
1− e−t/τ

2(M2 − 1)

)
, with

u

c
=

2(M2 − 1)

2γM2 − γ − 1
(7.20)

τ =
ρhc

P

γ + 1

2γM2 − γ + 1
(7.21)

where P is the gas ambient pressure in front of the shock and γ ≈ 1.4 for air. The final
velocity coincides with the gas velocity behind the shock, while the acceleration time,
reflecting the liquid inertia, depends on the film thickness h.

Even at a moderate Mach number M of order unity, the acceleration time τ is, for a
few microns thick film, extremely short (of the order of 10−5s), much shorter than the
development time of the thin-film Rayleigh-Taylor instability responsible for its burst.
The acceleration g (in the notation of Appendix A.2) is thus essentially impulsive

g = u δ(t) (7.22)

and a transient gain analysis (because the acceleration is, strictly speaking, time depen-
dent) predicts the wavelength whose amplitude matches the film thickness h, thus piercing
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the film into a collection of holes, as a function ofM along with the time it takes to do so
(see Fig. 13). Holes are denser in the film plane, and nucleate sooner for a stronger shock
(Bremond & Villermaux 2005). This academic setup, which confronts precise predictions
with a simple –yet not straightforward– especially designed experiment, demonstrates
the importance of the thin-film limit description of liquid sheet stability.

7.1.3. Drop hit by a laser pulse
A fundamentally very similar problem to the one described above (although directly

motivated by the extreme ultraviolet light production for nanolithography, see Klein et al.
(2015)) consists in shooting within a very short time an intense laser pulse on a drop of
light-absorbing liquid. Part of the injected light energy vaporizes a fraction of the liquid
drop mass which, as it is released from the drop surface at the thermal velocity propels,
by momentum conservation, the rest of the drop at constant velocity.

The corresponding surface normal stress deforms the drop into a pancake shape which
expands radially and thins very much like a drop impacting a solid does. At the same
time the sheet expands, Rayleigh-Taylor modes corrugate its thickness for the same
reason explained in Section 7.1.2, and its rim destabilizes for the reason explained in
Section 7.1.1 above.

Eventually, the resulting liquid sheet is thus fragmented by at least two distinct
processes, the rim shedding ligaments breakup process, and a holes-mediated, ‘effer-
vescent’ like process (Section 4.4). The study of Klein et al. (2020) also underlines the
deterministic role played by inhomogeneities in the laser beam on the final perforation
pattern of the expanded liquid sheet.

7.2. Soft impacts
By ‘Soft’, we mean a cohesive but deformable object (a liquid volume) impacted by,

or projected into, another medium which deforms as well; the paradigm of this being the
formation of raindrops.

7.2.1. Raindrops
Like many natural objects, raindrops are distributed in size. By extension of what is

known to occur inside the clouds, where small droplets grow by accretion of vapor and
coalescence, raindrops in the falling rain at the ground level were believed to result from
a complex mutual interaction with their neighbors. Villermaux & Bossa (2009) suggested
that the raindrops polydispersity, generically represented according to Marshall-Palmer’s
law (Marshall & Palmer 1948), can be quantitatively understood from the fragmentation
products of non interacting, isolated drops. Both the shape of the drop size distribution,
and its parameters are related from first principles to the dynamics of a single drop
deforming as it falls in air, ultimately breaking into a dispersion of smaller fragments
containing the whole spectrum of sizes observed in rain.

Large liquid globules fall by their own weight from the base of the clouds (Hobbs &
Rangno 2004), experiencing a drag resistance from the air, the deforming medium in
which they fall. This net drag force results from an inhomogeneous pressure repartition
at the surface of the globule, which thus deforms in a pancake shape whose radius R(t)
is only limited by capillary confinement. From an analysis very similar to the one in
Section 7.1.1 (which also proved to be useful for drops hit by a laser pulse, see Section
7.1.3 above and Gelderblom et al. (2016)), it is easily shown that the dynamics of R(t)
is ruled by

R̈

R
=

1

τ2

(
1− 6

We

)
(7.23)



46 E. Villermaux

where τ is a characteristic time familiar in the aerodynamics of drops (Ranger & Nicholls
1969) and We is based on the air density ρa, free-fall velocity U ∼

√
(ρ/ρa) g d0 and size

of the globule d0 as :

τ =
d0
2U

√
ρ

ρa
, and We =

ρa U
2d0
σ

. (7.24)

Viscous corrections can be incorporated in (7.23), but are superfluous for a low viscosity
liquid such as water and millimetric drops (Kulkami & Sojka 2004).

The maximal size dmax of a stable drop at terminal velocity in quiescent air for which
both U =

√
(ρ/ρa) g dmax and We = 6 (see 7.23) is

dmax = a
√

6 (7.25)

with a ∼
√
σ/ρg the capillary length, giving dmax ≈ 6 mm, a value which indeed coincides

with the cut-off sizes recorded in natural rain (Marshall & Palmer 1948; Mason 1971).
Larger globules bursts in a catastrophic manner (Fig. 13), involving the inflation of a
bag bordered by a thick rim which collects most of the liquid, and whose breakup forms
a continuous, exponential-like (∼ e−d/〈d〉) distribution of fragments sizes (see Section 9)
parametrized by its mean 〈d〉, called the Marshall-Palmer distribution.

It was known since Bentley (1904), and von Lenard (1904) that the size distribution
steepness 〈d〉−1 is solely related to the rate of rainfall R (typically measured in mil-
limeters per hour): drops sizes are more broadly distributed in heavy storms than in
fine mists. Villermaux & Bossa (2009) have shown, on the basis of the above single drop
fragmentation scenario supplemented by a simple mass balance, that these two quantities
are related to each other by

〈d〉−1 ∼ R− 2
9 , (7.26)

thus giving a status to the scaling exponent 0.21 originally measured by Marshall &
Palmer (2/9 = 0.222...). This scenario also gave the clue to rationalize the puzzling
observation that apparent fall velocities of some drops can be larger than the terminal
velocity expected from their size (Villermaux & Eloi 2011).

Of course, raindrops occasionally collide as they fall towards the ground. However
the topological change from a big drop into smaller stable fragments –the raindrops– is
accomplished within a timescale much shorter than the typical collision time between the
falling drops. One swallow does not a summer make: The effects of these rare, decorative
events is completely screened by the single drop, spontaneous breakup phenomenon,
which in itself contains the whole spectrum of drop sizes (Villermaux & Bossa 2010).

7.2.2. Impact on deformable surfaces
There is a continuum of substrate stiffnesses between the rigid floor used for standard

(hard) drop impact, and the dilute gas of the raindrop (soft) problem above. The collision
of a drop with a layer of the same liquid is an intermediate case between hard and soft.
Starting from the hard side, Howland et al. (2016) have interestingly considered gradually
softer materials by varying the level of cross-linkage of silicone gels. Splashing of a liquid
drop is found to be delayed on a softer substrate, which deforms like a spring as long as
the peak pressure in the contact line region p ∼ ρr0u0/t at early time (see Section 7.1.1,
(ii), 2)) is larger than its Young modulus E. This damping effect delays and slows down
the ejecta sheet, which may even be suppressed (Fig. 13). Very deformable substrates
like soap films prevent splashing completely (Courbin & Stone 2006). Wet dense granular
materials like quicksand behave, when impacted, either as a liquid, or as a brittle solid
depending on their initial packing fraction (Soundar Jerome et al. 2016).
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7.3. Chemical synthesis by impact
Impacts are clearly associated with fragmentation, with the dismantling of macroscopic

ensembles, but less obviously with the synthesis of complex architectures from elementary
pieces. This is only true at first sight since we have already mentioned that, as a tradeoff
between disgregation and cohesion, fragmentation amounts to an aggregation process
(Section 2), a fact we will further emphasize in Section 9. It is both surprising, and
intriguing to realize that this phenomenology also occurs at the molecular scale.

In the views of Lavoisier, the founder of Chemistry as a discipline (Lavoisier 1789),
there is an essential difference between mechanical and chemical forces (Tome II, Ch.
V), and there is no way that any kind of Trituration, Porphirisation & Pulverisation
(Tome II, Ch. IV) could alter the chemical nature of a constituent. This is not true; it is
however only in the course of the 19th century that it was realized, mostly in a piecemeal
fashion, by chance, that the effect of a mechanical action like grinding and milling
(‘dry’ chemistry in the words of Faraday, meaning solvent-free) could produce a chemical
transformation. Takacs (2013) gives an extensive historical account of what is now known
as Mechanochemistry: new chemical compounds are formed when constituents in gas
phase are sealed in an agitated box where solid balls collide repetitively. Do & Friscic
(2017) and Howard et al. (2018) explain the required technology (very rudimentary
mixer mills, oscillating vessels enclosing grinding balls, see also the method of Kroto
et al. (1985)), the type of reactions concerned, and show how this method is sometimes
advantageous compared to the standard one (consisting in heating a stationary vessel),
because it is faster, and less energy consuming.

What these authors do not explain however, is the principle of the method, which
is still unknown and, to some extent, controversial. Tenants of the orthodox chemistry
advocate the ‘hot spot’ theory which says that Arrhenius activation (the rate of reaction
is usually proportional to e−U/kBT ) is solely responsible for chemical conversion, and
that high temperatures T are reached at the collision points between the balls (which is
true), favoring the reaction there; that phenomenon has indeed been known for a long
time with shock waves (Vielle 1900), or imploding bubbles (sonochemistry). Others claim
that mechanochemistry is unique in that mechanical action is capable of effecting chem-
ical changes that are significantly different from the familiar thermochemical reactions.
Triboelectricity, plasma formation, light emission from the cracks at the surface of the
colliding balls are evoked as primary causes (see Takacs (2013)).

While many causes may contribute to the same effect, it is certainly an exciting
endeavor to decipher which is dominant in this fascinating problem. A collision between
spherical balls generates an outward radial expulsion flow from the impact point and it
is maybe not completely coincidental that the complex structures formed by this process
are usually planar, with an ortho-radial symmetry, as if they had been formed on a plane,
the one perpendicular to the collision direction (see e.g. Grätz et al. (2018a,b) and Fig.
15); this might be fortuitous.

8. Jets, threads, smooth ligaments
Jets are collimated streams of cohesive matter, usually flowing from a circular nozzle

(when formed from a slit, one refers to a sheet, or planar jet, from a circular aperture,
one refers to a coaxial jet etc...). In the simplest case, a jet is thus a cylinder continuously
extruded from an orifice. As such, it is the best approximation to the columnar structure
Plateau (1849) has shown to be unstable, precisely because it is cohesive (see Appendix
A.5). Jets breakup spontaneously; they have been, for this reason since the dawn of
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science, the laboratory of many ideas, brilliant investigations, notorious mistakes, and
refined analysis. Their physics has been reviewed elsewhere (see Eggers & Villermaux
(2008), including the historical perspective) and we recall here the essential elements of
the fragmentation of a columnar jet with (smooth) radius h0:

(i) Long varicose undulations with amplitude ε imposed to the jet cross-section lower
its average radius 〈h〉 = h0(1−ε2) and consequently its surface energy; the jet is therefore
unstable (Plateau 1849).
(ii) The driving force of the instability is Laplace pressure σ/h from the jet curvature

h−1, sub-dominantly counter-balanced by the axial curvature h′′ for undulations longer
than h0.
(iii) Most of the instability period is spent at moving the liquid along the jet from

constricted sections to nearby thicker sections. When capillarity balances inertia, we
have ρh30 × h0/t2c ∼ σ/h0 × h20, that is (Lord Rayleigh 1878)

tc =

√
ρh30
σ

(8.1)

and when viscous stresses are the dominant resistive forces, we have η/h0×h0/tv ∼ σ/h0,
so that (Lord Rayleigh 1892)

tv =
ηh0
σ

(8.2)

(iv) A cohesive column does disconnect under the sole action of surface tension forces,
meaning that its radius goes to exactly zero in a finite time (as opposed to a relaxation
towards zero which would require the intervention of an extra mechanism to explain
disruption). An ultimate, universal regime, where the constricted radius h is the only
lengthscale, describes the singularity as h → 0 (Eggers 1993; Day et al. 1998). For
instance,

ḧ ∼ −σ/h2, leading to h ∼ (tc − t)2/3 in the inviscid limit, (8.3)

ḣ ∼ −σ/η, leading to h ∼ (tv − t)1 in the viscous limit. (8.4)

The celebrated exponent 2/3 reflects capillarity driven inertial motions (Keller & Miksis
1983; Peregrine et al. 1990); there are other exponents in situations with additional
ingredients (see Eggers & Villermaux (2008)). The duration of this final regime represents
typically a small fraction of the overall instability period (Chen & Steen 1997; Robinson
& Steen 2001). With non-newtonian liquids like polymers (Amarouchene et al. 2001), or
with dense suspensions like slurries (Chateau & Lhuissier 2019) these universal scalings
precede however other ultimate thinning laws which are specific to each system.
(v) In all cases, the fragments products of a smooth uniform steady jet have an average

diameter given by the column radius 〈d〉 ∼ h0, with possible smaller satellites (see Section
10). Strongly corrugated ligaments, through a comparatively longer dynamics preceding
the short-termed final singularity, give rise to a broader continuous distribution examined
in Section 9.

8.1. Production of jets
8.1.1. Steady injection

A standard jet is produced by extruding a liquid at constant flowrate q = πh20v0
through a circular orifice of radius h0 at velocity v0 (Non-circular jets present peristaltic
pulsations studied by Lord Rayleigh (1879) and others, see Section 6 in Eggers &
Villermaux (2008) for a historical perspective). The very existence of a jet assumes
than it has not fragmented before having formed, in other words, that the breakup
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Fig. 3 .  Triple f lash radiographs of je ts  from scaled charges. 
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two, this type of charge does not leav!: 
a low velocity slug in the hole.) The 
brittle fracture mechanism of jet for-
mation is still another type. There are 
even some charges which may form a 
part of the jet by one mechanism and 
the remainder by another. 

If we consider that it is possible to 
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have ail of these mechanisms, and al-
most any intermediate modification. 
it is not surprising that there are so 
many apparently contradictory data. 

With all of these mechanisms of jet 
formation available, the job of devel-
oping a jet with predetermined char-
acteristics becomes both more and 
less difficult; less difficult because 
there are so many ways of developing 
the desired characteristics for each 
portion of the jet and more difficult 
because such a small change in design 
may completely change the character 
of the jet. 

After determining the characteris-
tics for the jet which it was believed 
would develop the required hole, the 
problem was therefore to select from 
the available mechanisms a combina-
tion of those which would produce 
such a jet. It was apparent that no 
single mechanism of jet formation 
would meet the jet specifications. A 
modification of the spherical conver-
gence mechanism seemed to be the 
only one which could develop the re-

quired mass of metal forming the tip 
of the jet. A liner was therefore de-
signed in which the apex portion was 
a spherical section, with the hope that 
a detonation front could be developed 
which would favor the development 
of a detached slug rather than an elon-
gated jet. Tangent to, and as an exten-
sion of. this spherical section (Fig. 
10) was a truncated conical section. 

The development of the detonation 
front will be discussed later but test 
findings and subsequent flash radio-
graphs confirmed the presence of the 
detached slug (Fig. 11). However, 
the hole dev@loped by this jet in a 
target. although having the required 
depth of penetration, had too much 
taper and was too small at the bot-
tom. The conical section of the liner 
was therefore modified to a section 
of an ellipsoid of revolution which. 
it was hoped, would reduce the quan-
tity of metal in the forward portion 
of the jet and increased it in the after 
portion. That this was accomplished 
is shown in flash radiographs in Fig. 

........ -_ . 
Fa;. ll-FLAsH RADIOGRAPH CO:\FIR1!T:\G THE FOR\TATIO:\ OF A 

Ih:TACIfED Sr.u; 1"\ THE JET. 

FIG. l2-FLASH RADIOGRAPH SIIOWI:\G REIWCT!O"\ OF Qr.AYrIn 
OF 'V[ETAL 1\ FORIYARI> PORTIO:\ OF JET A'dl 1"\ '1'111 

'\FTER POSITI<l\. 

I' ETROLE I M T R Ai' en 0.'\" •. \ 1M L 

Chapitre III Jets à grande échelle 126

Figure 3.28: Séquences comparatives d’un jet issu de la chute d’une bille et d’un jet créé par une
cavité façonnée à l’air comprimé. Ces deux jets ont des vitesses d’éjection et des viscosités très
proches. En haut : le temps entre les deux premières images est �t1−2 = 29 ms et il y a ensuite
�t = 24 ms entre chaque image, vjet = 1.61 m.s−1, H = 5.5 cm, L = 5.6cm, Hmax = 10.3 cm et
µ = 800 mPa.s. La bille a un rayon de 11.9 mm et une densité de 1.119. En bas : le temps entre
les deux premières images est �t1−2 = 60 ms et il y a ensuite �t = 24 ms entre chaque image,
vjet = 1.59 m.s−1, H = 5.0 cm, L = 8.9 cm, Hmax = 9.5 cm et µ = 833 mPa.s.

vitesse d’éjection du jet soient les plus proches possibles. Nous constatons que ces jets

ont un aspect très semblable, si ce n’est que celui issu de la bille est un peu plus fin.
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Figure 3.29: (a) Profils du jets de la figure 3.21 lors du début de son ascension. �t = 5 ms entre
deux profils. (b) Ces mêmes profils remis à l’échelle selon l’expression R(z, t) = C

√
t+t0

z+z0
comme

sur la figure 3.17. Courbes en pointillés rouge : hyperbole d’équation z = C
x
− z0.

Dans la partie 3.3.5, nous avons trouvé que les jets suivaient au début de leur

ascension une évolution de la forme r(z, t) = C
√

t + t0�(z + z0). Pour vérifier si les jets

issus des billes peuvent aussi être décrit de cette façon, nous avons extrait le profil d’un

jet à plusieurs instants régulièrement espacés et l’avons représenté sur la figure 3.29 (a).

Nous avons ensuite tracé z en fonction de r(z, t)�√t + t0 en figure 3.29 (b) : les flancs

des profils du jet à différents instant sont alors tous rassemblés sur la même hyperbole.
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Figure 14. Jets. (i) Ascending jet of water falling back on itself under its own weight in a
pulsating motion typical of fountains (Villermaux 1994). (ii) Several falling jets, including a fast
capillary jet keeping its radius constant at breakup, and jets stretching by gravity (Le Dizès
& Villermaux 2017). (iii) The development of a jet formed by the explosion of a charge on a
conical shape liner (DiPersio et al. 1960). (iv) Pulsed jets featuring shocks (Meier et al. 1992).
(v) Jets eruption from the collapse of cavities at the surface of a pool (Ghabache et al. 2014b).
(vi) A mold of the thin long cavity made by the trajectory of a shaped charge jet transpiercing
a solid (Poulter & Caldwell 1957). (vii) ‘Pokrovski’ jet formed by the impulsive acceleration of
a curved liquid surface (Antkowiak et al. 2007) and a sketch by Lavrentiev & Chabat (1980).

time tc, say, is longer than the transit time 2h0/v0 of the fluid particles over at least
one jet diameter from the nozzle exit: The critical Weber number ρv20h0/σ of the
jetting/dripping transition is about 4 (Le Dizès 1997), with gravity corrections (Clanet
& Lasheras 1999). The resulting column in uniform translation remains as such (up to
its capillary destabilization) as long as it does not interact with its environment, nor
with external fields like gravity for instance. If gravity g = −gez is aligned with the
direction of the ejection velocity v0 = ±v0ez, then the jet velocity slows down when v0

is oriented upwards (the jet falls back on itself in a pulsating motion typical of fountains,
see Villermaux (1994)), and accelerates when it is oriented downwards (the jet stretches)
since

v∂zv = ±g (8.5)
The jet radius remains essentially unaffected for distances from the orifice of the order of
v20/g, and thins (with v0 downwards) for larger distances, by conservation of the flowrate
q as

h(z) =

√
q

πv(z)
(8.6)

with v(z) =
√
v20 + 2gz (8.7)

Because the jet gets thinner and slenderer as it accelerates, viscous stresses become soon
negligible (for z larger than

√
νv0/g), as well as curvature effects, and is therefore well

described by the inertial dynamics in (8.5).
When the direction of the ejection velocity is at an angle with respect to g, the jet
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trajectory forms a parabola as long as shear with the environment does not alter it. This
alteration results in a slowing down of the fluid particles which happens sooner when
the jet has fragmented into droplets, either by its own capillary instability, or because
the Kelvin-Helmholtz instability has peeled-off its surface (see Section 6). The spreading
jet from the fire hoses of firefighters and the Geneva lake jet are notorious examples of
jets trajectories influenced by ambient air drag. For the same reason, jets of very small
particles like spores are arrested at a finite distance from their ejection location by viscous
air drag, describing, instead of a parabola, the well know ‘sporabola’ (Buller 1909-1950;
Noblin et al. 2009). There was besides, at some point, a competition to make the ‘fastest’
jet (Yafetto 2008; Tagawa 2012; Avila et al. 2015); it is true that reaching high velocities,
and therefore high jet momentum is mandatory for applications to needle-free micro-jet
injection (Cu et al. 2019), water jet cutting, or perforation (Poulter & Caldwell 1957).

Viscous stresses induced by a faster coaxial stream can also be used to accelerate tiny
jets for making them even thinner, a technique sometimes called ‘flow focusing’ (Ganan-
Calvo 1998; Ganan-Calvo & Gordillo 2001), or ‘selective withdrawal’ (Cohen et al. 2001)
which is widespread in microfluidics to produce mono-size droplets, or encapsulations
(Utada et al. 2005).

Strong focusing is achieved by applying an electric field to conducting liquids interfaces
thanks to the divergence of the electric field intensity at sharp points, competing with
surface tension forces to give rise to the celebrated static ‘Taylor cone’ solution (see
Gañán-Calvo (1997) and the review in Eggers & Villermaux (2008)). A thin jet emanates
at the tip of these cones to form all sorts of very thin threads and fibers which possibly
breakup into droplets (so-called ‘Electrosprays’) or are used for themselves in various
applications with considerable technical importance (Yarin et al. 2014).

8.1.2. Unsteady injection
There is a broad class of jets in nature which are not formed from a continuous

source, but whose injection flowrate is time-dependent, and is often an impulse. This
is in particular the case for explosions from shaped charges (Birkhoff et al. 1948; Pugh
et al. 1952; Poulter & Caldwell 1957; DiPersio et al. 1960), or in some inkjet printing
technologies (Wijshoff 2010; Basaran et al. 2013). The common principle in all these
situations is the violent collapse of a cavity at the surface of a liquid, concentrating the
fluid impulse into a narrow region of space at the base of the cavity from which a fast jet
emerges with radius h(z, t) and velocity v(z, t). The cavity may crunch by the collision
of surface waves (Zeff et al. 2000), the capillary (Ghabache et al. 2014a), or gravitational
relaxation of a hollow (Ghabache et al. 2014b), or because it is impulsively shocked (Dear
et al. 1988; Antkowiak et al. 2007), among other examples.

The injection flowrate q(t) ∼ h(0, t)2v(0, t) at the base of the jet is now time-dependent,
typically decaying in time, and is a function of the jet radius at its base h(0, t) ≡ h0 and
of the injection velocity v(0, t) ≡ v0, these two quantities having, in general, no reason
to be linked to each other.

The determination of the jet shape h(z, t) from a given set of initial conditions is still an
open problem. Arnaud Antkowiak (Antkowiak 2013) has made a promising remark that
may help to find a path to the solution. The reasoning is as follows: a particle injected at
the base of the jet at time τ with velocity v0(τ) will be, under a purely ballistic motion
along the jet, at distance z at time t such that

z = (t− τ)v0(τ) (8.8)

or t = τ +
z

v0(τ)
(8.9)
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At a given location z, the temporal variation of the velocity v(z, t) = v0(τ) with t and τ
linked by (8.9) is thus

∂v

∂t

∣∣∣∣
z

=
v̇0(τ)

1− z v̇0(τ)
v20(τ)

(8.10)

where v̇0(τ) = ∂τv0(τ).
The interest of the above relation is that it demonstrates the consequences of the

decay rate of the injection velocity v0(τ) on the resulting jet’s fate. Let, for instance,
v0(τ) ∼ τ−β where β is a positive exponent (we are generically interested in situations
where the injection flowrate q(t) decays in time because of the base injection velocity
decay). We have two régimes:

(i) Either the decay of v0(τ) is fast, with β > 1 and in that case we have asymptotically
t ∝ z/v0(τ) and ∂tv ∝ −v20(τ)/z so that

v(z, t) ∼ z

t
, (8.11)

a self-similar form trivially expressing ballistic motion (∂tv + v∂zv = 0) found in several
instances involving impacts (Villermaux & Bossa 2011; Ghabache et al. 2014b; Vernay
et al. 2015b).
(ii) Or, the decay of v0(τ) is slow, with β < 1 and in that case t ∝ τ and ∂tv ∝ v̇0(τ)

so that
v(z, t) ∼ v0(t), (8.12)

meaning that there is, at large time, a memory of the injection condition in the jet
which adapts adiabatically to v0(t) at any downstream location, in a succession of quasi
steady-states.

This elegant result does not solve alone, however, for the the jet shape h(z, t) which
is, along the same one-dimensional description, ruled by mass conservation as

∂th+ v∂zh = −1

2
h ∂zv (8.13)

In the adiabatic régime in (8.12), one has simply h(z, t) = h0(t), which requires the
knowledge of the radius at its base, not a-priori given, and which should be interpreted
case-by-case from additional ingredients. In the self-similar régime of (8.11), looking for
solutions in the form of monomials like h(z, t) ∼ zatb fulfilling (8.13), we have a + b =
−1/2, but again, nothing constrains the form of the jet (i.e. the exponent a) from the
above local conservation principles, even if its shape, and dynamics (the exponent b) are
linked (Ghabache et al. 2014b). Equation (8.13) can be solved (see e.g. Gekle & Gordillo
(2010)) along the same lines as for (8.10) to provide

h(z, t) =
h0(t)√

1 + z ∂zv0(τ)v0(τ)

(8.14)

where h0(t) ≡ h(0, t) and ∂zv0(τ) ≡ ∂zv(z, τ)|z=0 = −v̇0(τ)/v0(τ), making it clear that
even if the stretching rate at the base of the jet ∂zv(z, τ)|z=0 is known once a form of the
injection velocity v0(τ) has been conjectured, the unknown base jet radius h0(t) leaves
the jet radius h(z, t) undetermined.

Additional principles, or conservation laws, are needed to close the problem and
understand the empirical fact that fast impulsive jets ultimately look like needles with
a uniform radius shrinking in time, independent of the precise mechanism which has
generated them.
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8.2. Mode selection on a varying substate
It is clear from the examples discussed above that the capillary stability of smooth jets

and threads has to be, in general, considered on a moving substrate. This means that the
thinning of the jet radius, in time, space or both has to be accounted for in the instability
analysis.This seemingly simple question is in fact not so easy to answer quantitatively.
Consider as a canonical example a liquid thread, falling from a nozzle by it own weight
under the action of gravity. As it falls, the thread eventually fragments into drops, a fact
that we understand because it has locally a columnar shape, and thus suffers a capillary
instability (Appendix A.5). How far from the nozzle exit does breakup occur ? Even a
distracted look at the possible scenarii lets one glimpse the potential difficulties of a
precise analysis:

A distance z is the product of a velocity v by a time t (see (8.9))

z = v t (8.15)

Capillary breakup occurs within a residence time along the jet which depends on the
thread radius h and on the physical properties of the liquid. This time is either the
capillary time tc =

√
ρh3/γ when inertia and surface tension are solely at play, or the

viscous capillary time tv = ηh/γ if viscous effects dominantly slow-down the unstable
dynamics. We also know that most of the time for breakup is spent at developing the
instability about the quasi-columnar shape of the thread, the subsequent phenomena
occurring around the pinching instant at the drops separation being comparatively much
faster. When the jet issues from the nozzle ballistically, keeping its velocity v0 and radius
h0 constant, the problem is indeed simple, and amounts to estimate the relevant timescale
to compute the so-called ‘Liquid intact length’ of the jet. For instance, this length is
L = v0tc in the inertial limit (see Eggers & Villermaux (2008) for other cases), giving

L

h0
∼
√
We, with We =

ρv20h0
σ

(8.16)

Subtleties arise when the axial velocity of the jet depends on axial distance z. A jet
falling in the direction of gravity accelerates. If fed at a constant flow rate at the nozzle,
stationarity implies that the thread radius thins with increasing distances from the exit
(see (8.6)). Therefore, if both v and h depend on downstream distance, which estimates
will correctly represent the breakup distance L ? Those at the nozzle exit, those at the
breakup distance, or a mixture of the two ? As the radius thins, the instability may
switch from an inertia to a viscous dominated régime (the Ohnesorge number Oh = tv/tc
increases). Then, which timescale, tc or tv should be considered to compute L ?

The detailed problem is even more subtle : The capillary instability amplifies pref-
erentially a varicose perturbation (Appendix A.5). The most amplified wavelength is
proportional to the local radius h, the other wavelengths having a weaker growth rate.
Since the jet stretches, mass conservation also implies that the distance between two
adjacent instability crests increases with distance from the nozzle exit, thus weakening the
growth rate of a mode initially close to maximal amplification. Concomitantly, the most
amplified mode shifts towards smaller wavelengths because the jet radius diminishes, also
contributing to amplification damping. The capillary instability has thus to compete with
another phenomenon, namely jet stretching, characterized by another timescale (∂zv)−1.

There are thus in-fine three timescales potentially influencing the instability time: tc,
tv and (∂zv)−1 which all depend intrinsically on the distance to the nozzle z. Deciding
a-priori which one will dominate and how is a hazardous exercise.

Deciphering the relative importance of the coupled effects mentioned above requires an
instability analysis accounting for both the substrate deformation (jet stretching), and
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for the modification of the local instability dispersion relation as the jet thins (to describe
the growing relative influence of viscosity). That question has been first envisaged in the
very viscous limit by Tomotika (1936) using an original Lagrangian formulation. The
particular case where v increases linearly with z was considered by Frankel & Weihs
(1985, 1987), and by Clarke (1969), Senchenko & Bohr (2005), Sauter & Buggish (2005),
Javadi et al. (2013) and Le Dizès & Villermaux (2017) for a gravitationally accelerated
jet.

The method consists in computing, by a WKBJ technique, the amplitude gain a
perturbation can reach at a given location as it is transported along the jet, and look for
the wavelength for which amplification is maximum. These detailed calculations answer
our questions above:

Breakup occurs when the capillary instability growth rate overcomes the stretching
rate of the jet at the same location.

This is the operational criterion for reaching the appropriate scaling laws of breakup
lengths L:

(i) When the jet, fed at constant flowrate q is initially viscous (Oh > 1), the local
stretching rate is given by ∂zv(z) ∼

√
g/(2z) (see (8.7)) while the viscous capillary

growth rate based on the current radius is of order σ/(ηh) = γ(2gz)1/4/(η
√
q). The

latter overcomes the former at a distance L of order

L ∼ (q2g)
1/3
( η
σ

)4/3

, (8.17)

first obtained by Javadi et al. (2013), fitting approximately well their experiments.
(ii) For an initially non-viscous jet (Oh � 1), the local jet stretching rate is still

∂zv(z) ∼
√
g/(2z) while the inviscid capillary growth rate based on the current radius

is now of order
√
σ/ρh3 =

√
σ/ρ (2gz)3/8/q3/4. The latter overcomes the former at a

distance L of order

L ∼ (q6g)
1/7
( ρ
σ

)4/7

(8.18)

as inferred by Le Dizès & Villermaux (2017) who have also discussed how these scalings
are affected by the way the initial perturbation noise is introduced, either at the orifice
exit (localized perturbation), or all along the jet (ambient noise). Mean droplets sizes
follow from this analysis.

Let us finally mention that the above breakup criterion had been anticipated by
Tjahjadi & Ottino (1991) in the formation of emulsions by stirring and by Villermaux
(2012) in the context of the filamentation of molten silicates like clinker (a mixture of
limestone and clay used in the production of cement), angel hair, glass wool, or Pele’s
hair (named after Pele, the Hawaiian goddess of volcanoes), those long and thin solid
fiber formed during the eruptions of volcanoes, at the flank of which they are found.
These object are so violently stretched during eruptions that they thin down to fractions
of a millimeter, and solidify before having broken up.

9. The post Plateau-Rayleigh era: Corrugated ligaments
By ‘post’ we refer to the works which, after Savart (1833a) had first documented the

phenomenon, Plateau (1849) had understood the origin of the instability, Lord Rayleigh
(1878) had computed its growth rate and Weber (1931) had given a long wave description
of it, have concentrated on the physics of the ultimate, singular breakup of a liquid
thread into disjointed droplets on one side, and on the other side those which have
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addressed the inherent multiplicity of droplets sizes. The modern developments on the
first aspect are reviewed in Eggers (1997), and we concentrate here on the second, namely
the fragmentation products per-se.

9.1. Paradigm of the corrugated ligament

The smooth, infinitely long columnar structure with uniform cross-section is an ide-
alization of nature. Even an approximation of such a long uniform cylinder is actually
difficult to produce experimentally; Plateau (1849) used soap films to minimize the role
of gravity but a fast jet emanating from a nozzle smaller than the capillary lengthscale is
a safer means. However in nature, drops commonly form from the breakup of ligaments
which have a finite length, and are corrugated with an uneven cross-section. Since
they represent the last but one step before the formation of drops, understanding their
dynamics is paramount to understand the ubiquitous diversity of drops sizes in sprays.

Besides their tendency to give rise to the standard capillary instability, corrugations
have an intrinsic dynamics, and are continuously produced on a finite-size ligament: on an
initially rough ligament, small sections feed larger adjacent sections but as they shrink
in size, their associated growth rate changes. Also, the Taylor-Culick recession of the
ligament ends feeds the core of the ligament with capillary waves (Schulkes 1996; Clasen
et al. 2009; Hoepffner & Paré 2013). These waves are dispersive (see e.g. Duchemin et al.
(2015)) and travel long distances when their wavelength is smaller than the ligament
(mean) radius because they are stable, with a non-zero group velocity (see Appendix
A.4). These waves possibly overlap with other preexisting waves (Driessen et al. 2014;
Doméjean et al. 2016), thus altering dynamically the corrugations landscape of the
ligament, and broadening its spectrum (Stone & Leal 1989), a phenomenon also known
for gravity waves (Falcon et al. 2007; Redor et al. 2019). Corrugations may also be due to
internal motions within the ligament, as these remnant from the liquid bulk from which
the ligament has been stripped-off either because the bulk is already turbulent (Goodridge
et al. 1996), or as a result of the instability causing the stripping, as a shear for instance.
Being constantly ‘hesitant’ between local amplification, and longitudinal propagation
(Villermaux 2009), the capillary instability thus develops on a ‘noisy’ substrate, a fact
known to broaden the drops sizes distribution after breakup (see Zhao et al. (2019) for
thermally activated noise).

The result of all these contributions is a landscape of random corrugations which,
because they have diverse origins, are essentially uncorrelated with each other. In par-
ticular, the correlation length along a ligament does not exceed its local radius. This
legitimates the caricature of a ligament as made of a collection of adjacent blobs with
random diameters d, each interacting with its neighbors in which it possibly empties, or
on which it possibly feeds though an aggregation type of dynamics driven by capillary
forces.

9.2. Inverse cascade of aggregations: lessons from a necklace of magnets

We have inaugurated our discussion by noticing that in fragmentation matters, one
must wonder about aggregation in the first place. The magnets necklace was our starting
example in Section 2.3. We have seen how the fragments are produced from an inverse
cascade of aggregation of clusters, each carrying an increasing number of beads n through
the cascade. We now describe briefly the construction mechanism of their distribution.

In the limit of a continuous spectrum for the fragment size n, the rate of change of
b(n, t) dn, the number of fragments having sizes between n and n+ dn at time t is given
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by (Smoluchowski 1917)

∂tb(n, t) =
1

2

∫ ∞

0

K(n′, n−n′, t)b(n′, t)b(n−n′, t)dn′−b(n, t)

∫ ∞

0

K(n, n′, t)b(n′, t)dn′

(9.1)
which describes how the distribution changes by the aggregation operation n−n′+n′ → n,
at a rate given by the so-called Kernel K(n − n′, n′, t). This formulation involves the
cluster sizes only when the physical problem does not present strong spatial correlations
and/or segregation phenomena forcing, for instance, small clusters to interact preferen-
tially with other small clusters. On the contrary, all clusters are liable to interact with
the entire population of clusters in the Smoluchovski formulation. This limit corresponds
to an absence of correlation between the sizes of the aggregating fragments, that is when
the correlation coefficient (the sum applies to all i fragments along the necklace)

C(p, t) =

∑
i(ni − 〈n〉) (ni+p − 〈n〉)∑

i(ni − 〈n〉)2
(9.2)

vanishes at all times and for all neighboring clusters (i.e. for p > 1), a condition indeed
fulfilled in the necklace problem.

A solution to this equation is known for a limited number of kernels only and in general
one relies on asymptotic techniques to study the asymptotic behavior of b(n, t) at long
times (Leyvraz 2003). In typical applications, such as aggregation in chemical reactors
(Curl 1963) or aggregation of dust grains in the atmosphere (Friedlander 2000) or in a
turbulent interstellar domain, collisions occur because particles are set to move at random
by the agitation of the underlying medium (Ilievski et al. 2011), but may also move on
their own driven by attractive forces (Bleibel et al. 2011).

Equation (9.1) can be written in terms of the probability density function p(n, t) =
b(n, t)/B(t) where B(t) =

∫∞
0

b(n, t)dn is the total number of fragments. The equation
of evolution of B(t) can be deduced from (9.1),

∂tB(t) =
1

2

∫ ∞

0

b(n, t)

∫ ∞

0

K(n, n′, t)b(n′, t)dn′dn (9.3)

Introducing the rate of aggregation

r(n, n′, t) =
1

2
K(n, n′, t)B(t), (9.4)

we obtain for p(n, t)

∂tp(n, t) = p(n, t)

{∫ ∞

0

∫ ∞

0

r(m,n′, t)p(m, t)p(n′, t)dn′dm− 2

∫ ∞

0

r(n, n′, t)p(n′, t)dn′
}

+

∫ ∞

0

r(n− n′, n′, t)p(n− n′, t)p(n′, t)dn′ (9.5)

which does not look more engaging than the original formulation in (9.1) except that,
in this problem like in others (Villermaux & Almarcha 2016), the rate of aggrega-
tion decreases with the fragment sizes: small fragments are lighter and reconnect at
a much faster pace than massive fragments. We thus make the following caricature: large
fragments are massive and thus only contribute to the global dynamics by attracting
small fragments while small fragments are likely to aggregate to any other fragment in
the current distribution. Large/small depends on the fragments size n compared to a
threshold n?, to be determined by an extra criterion, a function of the details of the
interaction between the clusters. In this idealization, aggregation up to n? complies with
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Smoluchowski’s dynamics at a constant rate r while it is zero among sizes larger than
n?. Thus (9.5) reduces to

∂tp(n, t) = −rp(n, t)

∫ n?

0

p(n′, t) dn′ + r

∫ n?

0

p(n− n′, t)p(n′, t) dn′ (9.6)

which expresses the partial convolution of p(n′, t) with itself. For n? → ∞ (all sizes
aggregate at a constant rate r) we recover the classical kinetic aggregation equation whose
solution is an exponential distribution p(n) = e−n/〈n〉/〈n〉 with 〈n〉 ∼ ert (Smoluchowski
1917; Leyvraz 2003). Introducing the Laplace transform p(s, t) of p(n, t)

p(s, t) =

∫ ∞

0

e−nsp(n, t)dn (9.7)

we have from (9.6)

∂tp = r p

(
−
∫ n?

0

p(n, t)dn+

∫ n?

0

e−nsp(n, t)dn

)
(9.8)

This equation has no analytical solution but is, when n? is finite as first noticed by
Villermaux & Duplat (2003) in the context of scalar mixing, tangent to

∂tp = r′
(
−p+ p1+1/ν

)
(9.9)

with ν and r′ yet unknown, both being a function of n? and r. The distribution of
the cluster sizes relative to their mean x = n/〈n〉 such that p(n, t) = f(x)/〈n〉 tends
asymptotically towards a Gamma distribution of order ν

f(x) =
νν

Γ (ν)
xν−1e−νx (9.10)

which constitutes the first important result of this partial convolution theory since it
provides the shape of the clusters distribution.

In order to compute the –still unknown– parameter ν, we further expand e−sn ≈
1− ns+ n2s2/2 +O(s3) and write (9.8) as

∂tp = r

(
−〈np〉s+

(
〈n2p〉

2
+ 〈n〉〈np〉

)
s2

)
+O(s3) (9.11)

with

〈np〉 =

∫ n?

0

np(n, t)dn, 〈n2p〉 =

∫ n?

0

n2p(n, t)dn (9.12)

Since p(s, t) is also the generating function of the moments of p(n, t), that is p(s, t) =
1 − 〈n〉s + 〈n2〉s2/2 + O(s3), term by term identification in Eqs. (9.9) and (9.11) yields
at order s

r′

r
= ν
〈np〉
〈n〉 (9.13)

and at order s2, using the previous result,

〈np〉
〈n〉

( 〈n2〉
〈n〉2 +

1− ν
ν

)
=
〈n2p〉
〈n〉2 (9.14)

so that, in the scaled units of f(x), we have

〈x2〉+
1

ν
− 1 =

〈x2p〉
〈xp〉

, (9.15)
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with

〈xp〉 =

∫ x?

0

xf(x)dx, 〈x2p〉 =

∫ x?

0

x2f(x)dx (9.16)

Since for f(x) given by the Gamma distribution in (9.10) we have 〈x〉 = 1 by construction
and 〈x2〉 = 1 + 1/ν, we obtain finally

ν = 2

∫ x?
0
xf(x)dx∫ x?

0
x2f(x)dx

≈ 2

x?
(9.17)

which is the second important result of this partial convolution theory since it relates
the width of the distribution (the Gamma order ν) with a dynamical parameter of the
physical system, namely the cut-off size for aggregation relative to the mean cluster size
x? = n?/〈n〉 (the approximate value ν ≈ 2/x? is all the more valid that x? is large).

The last step consists in linking the critical size n? to the microscopic dynamics of the
interacting beads. Vledouts et al. (2015) have shown that the aggregation time between
two clusters of size p and q (see Section 2.3) is

tp,q ≈
a

up,q
(εp,q − 1)−5/6 (9.18)

A fragment of size n will aggregate with another of size 2〈n〉 − n to form a fragment
of size 2〈n〉 if the typical aggregation time for these two fragments is less than the
aggregation time between two typical fragments of the distribution, say of sizes 〈n〉 ±
〈n〉/√ν, with 〈n〉/√ν standing for the standard deviation of the cluster size population.
This criterion reads

tn,2〈n〉−n
t〈n〉+〈n〉/√ν,〈n〉−〈n〉/√ν

. O(1) (9.19)

which provides from (9.18) with x? = n?/〈n〉
x? = 1/4 and ν = 8, (9.20)

fitting well the observed Gamma distribution in the n/〈n〉 units. The rate of increase of
the mean itself is given by

d〈n〉
dt

=
〈n〉

t〈n〉,〈n〉
(9.21)

which saturates when ε〈n〉,〈n〉 → 1 as the inverse cascade interrupts because t〈n〉,〈n〉 →∞,
thus marking the end of the fragmentation process of the necklace.

The lessons to be drawn from this necklace exercise are the following:
(i) In a process where cohesion and disgregation forces compete at the initial advan-

tage of the later, aggregation of the fragments proceeds at an ever slowing down pace up
to equilibrium.
(ii) The corresponding inverse cascade is well represented by a partial convolution

scenario where only fragments which aggregate sufficiently fast are allowed to recombine
within the evolution time of the mean. This convolution route selects Gamma distribu-
tions.
(iii) The threshold size in units of the mean x? resulting from the above timescale ratio

sets the width of the distribution (i.e. the Gamma order ν ∼ 1/x?).

9.3. Rough ligaments: rearrangements versus instability timescales
We consider a ligament with volume Ω = πh20L and average radius

〈h〉 = h0(1− ε2) (9.22)
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Figure 15. Ligament aggregation dynamics: (i) Capillary driven coarsening, and instability of
an isolated water ligament; successives images are separated by about 10−3 s, the initial ligament
diameter is about a millimeter. Sub-portions of a ligament with uniform cross-section (marked)
destabilize in uniform droplets sizes, while the other portions undergo coalescence and form
bigger droplets. The net volume Ω of the volume is conserved while its length L(t) and surface
area S(t) decay in time, as well as the number of blobs B(t) needed to cover it (see Section 9.4).
(ii) Same phenomenon as above, from a viscous thread, and its spatio-temporal trace showing the
inverse cascade of aggregations between the blobs constitutive of the ligament. (iii) Illustration
of the inverse cascade in the magnet necklace experiment, for two initial divergence velocities
(Vledouts et al. 2015).

where ε2 = 〈(h− 〈h〉)2〉/〈h〉2 denotes the mean squared relative corrugations amplitude
along the ligament. We have seen in Section 8 that such a jet destabilizes within the
capillary time

tc =

√
ρh30
σ

(9.23)

We want to describe the dynamics of the corrugations of the ligament, and notably
the one of their amplitude. These involve longitudinal, and radial rearrangements of fluid
particles from which concentrated blobs progressively built by growing or decaying in size,
each separated from its neighbors by bridges conducting the longitudinal rearrangements,
and whose breakup freezes the blobs size repartition, thus setting the final drops.

The rearrangements are made at constant volume, and the arrow of time of the
evolution of the blobs assembly points towards the decay of its surface area, in compliance
with the Plateau argument. The length of the ligament, and the number of blobs are not
a-priori constrained by any principle, but empirical evidence indicates that both decay
in time.

Corrugations develop on an unstable substrate, whose growth rate is maximum for
longitudinal sizes of the order of the local ligament radius. Blobs have thus the size of
the local radius, which itself fluctuates along the ligaments. This is confirmed by the
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observation that the correlation length of the radius fluctuations is of the order of the
ligament average radius.

We thus portray the ligament as an assembly of spherical adjacent blobs, somewhat like
beads on a string with the notable difference that these beads are not isolated but interact,
may feed, or be fed by their environing beads. The driving force of the mass transfers
between the beads is obviously the Laplace capillary pressure. With this in mind, a simple
(inviscid) dynamical model for the longitudinal velocity v(z, t) and ligament radius radius
h(z, t) is

ρ ∂tv = −∂zp (9.24)

∂th
2 + ∂z(h

2v) = 0 (9.25)

giving v ≈ ḣ and

ḧ = −1

ρ

∆p

h
(9.26)

once derivatives along z have been coarse-grained at the correlation length h (i.e.
∂z ≡ 1/h), the local radius. In this blob description, the pressure is simply inversely
proportional to the local radius (namely σ/h) and if a blob is connected with much
bigger blobs with weak internal pressure, then ∆p ≈ σ/h. The blob empties in that case
according to the familiar (see Section 8 and Eggers & Villermaux (2008) for references
and many more details) finite-time singularity

h ∼ 〈h〉(1− t/tc)2/3 (9.27)

for a blob with initial radius of order, say, 〈h〉.
This is not, however, the typical situation occurring along a ligament. A given blob is

more likely connected to alike blobs, whose radii h±δ are affected by a random fluctuation
of order δ such that 〈δ〉 = 0 and 〈δ2〉 = 〈h〉2ε2. The value of δ is random, but is assigned
positively, and negatively to the radius of each adjacent blobs, thus describing a local
radius gradient along the ligament, of intensity δ/h. We thus account for the adverse
presence of adjacent blobs through a mean field correction involving a pressure term
averaged over the positive, and negative excursions of the typical corrugations noting
that 1

2 [(h+ δ)−1 + (h− δ)−1] = h/(h2 − δ2)−1. The driving pressure writes

∆p = σ

(
1

h
− 1

h(1− δ2/h2)

)
(9.28)

= − σ

h3
δ2 (9.29)

Obviously, ∆p = 0 for a stationary array of all identical blobs when δ = 0 and for δ 6= 0,
a longitudinal flow sets-in (Sierou & Lister 2004; Brasz et al. 2018) which interferes with
the capillary instability (Decent & King 2008). The dynamics of a blob radius h(t) in the
assembly, now incorporating the influence of the adjacent blobs is thus given by

ḧ =
σ

ρ

δ2

h4
> 0. (9.30)

Its acceleration is positive reflecting the coarsening process through which blobs feed on
their smaller adjacent neighbors. The environment of a blob with radius h averaged over
the blobs assembly (σ/ρ)〈δ2/h4〉 ≈ (σ/ρ)ε2/〈h〉2 is thus such that its average time of
growth t−2h = 〈ḧ/h〉 is given by

1

t2h
=

1

t2c

〈h〉
h
ε2 (9.31)



60 E. Villermaux

at leading order in ε2.
Along a ligament, longitudinal rearrangements compete with the capillary instability

which, as seen from (9.27) for instance, occurs within tc. However, all blobs sizes smaller
than h? = ε2〈h〉 have, according to (9.31), a growth time th smaller than the capillary
time tc. These blobs have thus time to coarsen, to participate to the inverse cascade,
while larger sizes grow at a slower pace, and suffer the capillary instability.

In view of the partial convolution theory recalled in Section 9.2 above, the critical size
h? sets the extent of the convolution range: blobs sizes will grow by the addition of, at
most, an increment h? within the time interval tc. If δ is distributed randomly along
the ligament, the additions are made at random between adjacent blobs and their size
distribution is a Gamma distribution as in (9.10) of order given by (9.17)

ν ∼ 〈h〉
h?

= ε−2 (9.32)

=
〈h〉2

〈h2〉 − 〈h〉2 (9.33)

We comment further on this blobs representation, and on the meaning of the limit values
of ν in the next Section.

9.4. Blobs on a ligament: fractional convolutions, Gamma distributions
The longitudinal rearrangements period in a ligament lasts for a time of the order of

tc, a time which serves as the reference timescale in what follows

t =
t

tc
(9.34)

Let b(d, t) be the distribution of the number of blobs of size d constitutive of a ligament
at time t (i.e. b(d, t)dd is the number of blobs with size between d and d+ dd), and its
Laplace transform

b(s, t) =

∫ ∞

0

b(d, t)e−sddd (9.35)

The total number of blobs, irrespective of their size B(t), the length of the ligament (the
sum L(t) of the blobs diameters d), its surface area (the sum S(t) of the blobs projected
area d2) and its volume (the sum Ω(t) of the blobs volumes d3) are obtained from the
generating function b(s, t) as (we denote b′(0, t) = ∂sb(s, t)|s=0)

B(t) =

∫ ∞

0

b(d, t)dd = b(0, t) (9.36)

L(t) =

∫ ∞

0

db(d, t)dd = −b′(0, t) (9.37)

S(t) =

∫ ∞

0

d2 b(d, t)dd = b′′(0, t) (9.38)

Ω(t) =

∫ ∞

0

d3 b(d, t)dd = −b′′′(0, t) (9.39)

Corrugations, whose dynamics is driven by surface tension obey, for the reasons explained
in Section 9.1, a self-convolution rule analogous to (9.9), described by (Villermaux et al.
2004)

∂tb = −Bγ−1b+
1

3γ − 2
bγ (9.40)
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Model of Droplet Dynamics in the Argentine Ant 1083

(b)(a)

Figure 2. (a) A droplet is about to fall, while the next droplet is already forming at the end
of the rod. (b) The droplet is falling down.

(2) Droplet growth. A forming droplet grows only if individuals remain con-
nected to each other a sufficiently long time. We assume that the probability that
an ant moves within a time unit is inversely proportional to the number of neigh-
bors to which it is connected: these individuals impose constraints on how the
ant can move. Experiments indicate that the speed of an individual in a droplet is
four times slower than the speed of an individual on the rod, because motion within
an aggregate is impeded by other individuals. This speed difference is likely to
favor droplet growth. Also, an ant that is supporting a certain number of individ-
uals located below her can move only if these individuals either move toward the
rod or fall with a droplet.

(3) Fall. We assume that gravity is the most important factor to explain that
droplets fall: a tarsal link that connects a supporting ant to supported ants fails
because the supporting individual has to deal with too much weight. It is assumed
that the probability Pr that a link fails within a time �t is a sigmoid function of the
total weight W (expressed in number of individuals) supported by that link:

Pr = (1+ (W/Wc)
��)�1,

(iv)

<latexit sha1_base64="z+EeP+wBujwDpqD9NmJB7Iil2ys="></latexit>

Figure 16. (i) When lit from behind through a comb grid, a water jet is hardly discerned as
its smooth surface leaves the projected grid unaltered. Increasing the flowrate causes turbulent
hieratic motions to set in, which distort and corrugate the jet. Gridlines caustics are more
distorted for higher flowrates, revealing ever smaller surface corrugations, varying on lengthscales
smaller than the jet diameter. Eventually, turbulent fluctuations are intense enough to overcome
surface tension confinement, and the jet fragments. (ii) The decomposition of a ligament into
blobs, themselves composed of sub-blobs. (iii) Stripping of sub-blob from a ligament, and its
rupture into stable drops illustrating how liquid fragmentation results from a trade-off between
disaggregation, and cohesion forces. The pictures are also a tribute to Harold E. Edgerton, whose
first Moment of Vision, in 1932, was a turbulent jet from a faucet (Edgerton 1979). (iv) The
dripping of a cohesive ‘liquid’ made of active particles (ants grabbing each other) hanging on a
rod; the falling droplets are distributed in size (Thereulaz et al. 2001).

where the parameter γ & 1 is very sensibly related to the corrugation state of the
ligament. The factor 3γ−2 reflects the conservation of the ligament volume. If its surface
were conserved (as for rearrangements in two-dimensions), this factor would be 2γ − 1.
The blobs population is left unchanged through (9.40) when γ = 1.

The convolution operates on the blob size distribution b(d, t), expressing an addition
in sizes space, while to total volume Ω = −b′′′(0, t) is conserved through the evolution of
the size assembly (∂tΩ = 0); it writes

Ω =
γ

2

(
(γ − 2)L3B−2 + 3LSB−1

)
(9.41)

so that, since Ω is independent of time, so are L3B−2 and LSB−1, giving

L =

(
Ω

γ(2γ − 1)

)1/3

B2/3 (9.42)

S = γ

(
Ω

γ(2γ − 1)

)2/3

B1/3 (9.43)
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with the total number of blobs given by

B(t) = B(0)

(
1− 3

(γ − 1)2

3γ − 2

t
B(0)1−γ

) 1
1−γ

(9.44)

Random additions between adjacent blobs coarsen the population of blobs (when γ > 1)
whose average size increases in time, at the expense of the number of blobs B which
decreases in time as well as the length L and surface area S of their support.

The decrease of the ligament surface area S is compatible with the thermo-
dynamic Plateau principle stating that an isolated system evolves so as to lower
its surface energy. However, this decrease is not, in the present theory, a direct
consequence of that precise principle, but rather a consequence of a principle of
aggregation between sub-parts of a volume otherwise globally conserved.

The average blob size 〈d〉 = L/B and variance, with 〈d2〉 = S/B are such that

〈d2〉 − 〈d〉2
〈d〉2 = γ − 1 (9.45)

= ε2 from (9.33) (9.46)

at all times during the coarsening process provided γ is itself constant in time, which
happens to be an experimental fact (see Fig. 18 in Marmottant & Villermaux (2004a)).
In other words, the relative corrugation state of the ligament is preserved during the
coarsening process and will therefore set the relative width of the drop size distribution
b(d, t = 1) obtained at the breakup time t = 1.

The distribution of blobs sizes b(d, t) is itself a solution of the evolution (9.40). A
change of variables (see e.g. Friedlander (2000))

b(d, t) =
B4/3

Ω1/3
f(η, τ) (9.47)

with η = d

(
B

Ω

)1/3

, and τ =

(
B(t)
B(0)

)2

(9.48)

which consists in counting blobs sizes d in units of their current average 〈d〉 ∼ (Ω/B)1/3

and measuring time through the evolution of the number of blobs, links the Laplace
transform f(s′, τ) =

∫∞
0

f(η, τ)e−s
′ηdη of the scaled distribution f(η, τ) to the one of the

original distribution as b(s, t) = Bf(s′, τ) with s′ = (Ω/B)1/3s. Though (9.40), f(s′, τ)
converges towards

f(s′) = (1 + (γ − 1)s′)
− 1
γ−1 (9.49)

independent of τ . Its inverse in sizes space defines b(d) as a Gamma distribution

b(d/〈d〉) = B(1)
νν

Γ (ν)

(
d

〈d〉

)ν−1
e−ν

d
〈d〉 (9.50)

of order (Villermaux et al. 2004; Villermaux 2007)

ν =
1

γ − 1
(9.51)

The surface tension driven coarsening process of the ligament, accompanying its desta-
bilization into disjointed droplets gives rise to a self-preservating blobs size distribution
identical, for the same reason, to the cluster size distribution of the exploding magnets
necklace. The capillary time marks the end of the inverse coalescence process between
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adjacent blobs which are, at t = 1 de-facto too distant to exchange fluid particles anymore
since they are separated. The capillary time tc is the equivalent of the escape time in the
necklace problem.

The blobs size distribution at t = 1 provides the drops size distribution p(d) at the
end of the aggregation process, and is given by

p(d) = f(d/〈d〉)/〈d〉 (9.52)
= b(d/〈d〉)/B(1) (9.53)

identically to (9.10). The width of this distribution relative to its mean is given by 1/
√
ν,

a property of the Central Limit theorem (see also (9.45)). To conclude:
(i) Rough ligament: An initially corrugated ligament with γ & 1 will give rise to the

positively skewed distribution of sizes customary found in sprays described by (9.50) with
a finite ν, larger than unity. Given the link between the values of ν = 1/(γ−1) = ε−2 and
the geometry of the ligament made in Section 9.3, a corrugation amplitude is unlikely
to be larger than half a ligament mean radius so that ν is typically equal to 4 in a very
rough, but still cohesive ligament, and otherwise larger.
(ii) Smooth ligament: An initially uniform thread with γ → 1 will give rise to a uniform

collection of drops f(d/〈d〉)→ δ(d/〈d〉−1), the Dirac Delta distribution being indeed the
limit of a Gamma distribution with order ν → ∞. In that special limit, the number of
drops B(1) is identical to the initial number of blobs B(0) covering the thread, since this
number is left invariant through (9.40); in the language of Section 9.3, this results from
the absence of a net longitudinal flow, and thus of any ligament coarsening in that case.

9.4.1. Integer convolution and physical blobs ‘à la Hauksbee’
The fractional convolution dynamics in (9.40) has a clear meaning when γ is interpreted

as a ratio of lengthscales (9.45) which itself reflects a ratio of timescales (9.31). However,
its meaning in terms of addition of blobs sizes is not immediately apparent, precisely
because γ is typically not an integer and that the relationship between partial convolution
and the addition of random variables is not immediately apprehensible. In fact, it is, if
one views the exchanges between the adjacent blobs defining the ligament cross-section
thickness as mediated by smaller, physically identified blobs, somewhat ‘à la Hauksbee’
like in the drawing of in Fig. 2. In this vision, the ligament section is composed of ν
parallel independent layers inside which the physical sub-blobs truly add their sizes at
random during the coarsening process. Two adjacent sub-blobs sizes d′1 and d′2 in one of
the ν layers add-up as

d′1 + d′2 = d′ (9.54)
thus thickening the layer. The sub-blobs are independent so that 〈d1d2〉 = 〈d′〉2. Obvi-
ously, 〈d〉 = ν〈d′〉, and since the layers are independent, the blob size distribution b(d, t)
results from the sub-blobs size distribution q(d′, t) by a simple convolution process

b(d, t) = q(d′, t)⊗ν (9.55)

The analogue of the dynamics in (9.40) for the Laplace transform of q(d′, t) now reads
(Villermaux et al. 2004)

q(s, t) = b(s, t)γ−1 (9.56)

∂tq = −(γ − 1)Bγ−1q +
γ − 1

3γ − 2
q2 (9.57)

which defines a complete, integer convolution equation of order 2 consistent with the
complete sum in (9.54) leading, as is well known since Smoluchowski (1917), to a pure
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exponential distribution

q(d) =
ν

〈d〉e
−ν d
〈d〉 (9.58)

for the sub-blobs distribution q(d) and therefore, by ν = 1/(γ − 1) convolutions, to the
Gamma distribution in (9.50) for the ligaments blobs distribution.

The mean layers thickness h0/ν = (γ − 1)h0 is the mean free path of the internal
motions across the ligament, those producing the random additions. This mean free path
is necessarily smaller than h0 itself as long as cohesion preserves the ligament integrity
in the rearrangement period, thus suggesting the following bounds: γ < 2, and ν > 1.

9.5. Dissection of a jet
The model we have described consists in visualizing a liquid ligament as a collection of

interacting blobs, themselves made of sub-blobs aggregated at random. In this view, the
number ν of virtual sub-blobs per ligament average radius is a function of the ligament
roughness ε2 ∼ ν−1. Since, according to this vision, the whole is the sum of its parts, it is
tempting to extract from a ligament a fraction of its volume and see how this dissected
part has contributed to the construction of the whole.

Imagine a process by which smaller ligaments are stripped from a main ligament. After
complete breakup, a fraction α of the drops will come from the stripped ligament, and
the other fraction 1 − α from the main ligament. If the sub-ligament has been stripped
at random from the main ligament core, the size distribution of its droplets is a Gamma
distribution; let 〈d′〉 be its average, ν its order and denote

Γ (ν, x = d/〈d〉) =
νν

〈d〉Γ (ν)
xν−1e−νx, (9.59)

we thus have for the stripped ligament droplets size distribution

q(d′) = Γ (ν, d′/〈d′〉) (9.60)

Then, the construction of Section 9.4.1 predicts, if the stripping operation has been made
at random, that the size distribution of the main drops should be

p(d) = q(d′)⊗k with k =
〈d〉
〈d′〉 (9.61)

so that p(d) = Γ (kν, d/(k〈d′〉)) (9.62)

where 〈d〉 = k〈d′〉 is the average drop size of the main drops from the original liga-
ment. The stripped droplets distribution q(d′) is the ‘quantum’ from which, by linear
superposition, the distribution of the main ligament is produced. In other words, the
stripped ligament is a specimen of those constitutive of the main ligament, across which
they are randomly stacked. Similarly, although in a different context, the concentration
distribution of random mixtures is the convolution of quanta, or ‘solitary strips’ formed
by the stirring motions in the flow, which overlap at random by molecular diffusion in
an additive fashion (Villermaux 2019).

The resulting overall drops size distribution r(d) is thus the average of the two
distributions q(d) and p(d) weighted by the fraction α

r(d) = αΓ (ν, d/〈d′〉) + (1− α)Γ (kν, d/(k〈d′〉)) (9.63)

describing a bimodal distribution when 〈d′〉 and 〈d〉 are sufficiently distant from each
other, that is when k is appreciably larger than unity. One distribution being generated
by the other through the convolution operation in (9.61), it is shifted to larger sizes by a
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Figure 17. Fragmentation of a water jet (shot at an angle to the direction of gravity) as the
level of turbulent fluctuations in the incoming stream is varied while the flowrate carried by the
jet is kept constant. Top: A potential jet with very few internal turbulence fragmenting into the
classical main drop/satellite drop size distribution. Curves are fit by (9.63). Middle: Stripping
of transitional ligaments with We = O(3− 4) defined in (9.64) and fit by (9.63). Bottom: Fully
stripped jet, all converted into a random set of sub-ligaments and fragments distribution given
by (9.82).
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factor k, and is also broader than the source distribution from which it originates. There
is thus a rigid link between the two modes of the global distribution r(d): the orders of
the stripped and of the main distributions are in the same proportion as their respective
averages, namely k as expressed by (9.61).

This dissection operation was realized experimentally making use of a turbulent jet.
Indeed, if turbulent motions are superimposed on a mean jet flow, and if these are intense
enough, they may overcome capillary cohesion to force the ejection of parts of the liquid
from the jet core, a fact known for a long time (Schweitzer 1937; Wu & Faeth 1995).
The intensity of the (root mean squared) velocity fluctuation u relative to the average
jet velocity U is measured by the opening angle β of the fragmenting jet as u = U tanβ
when

We =
ρu2d0
σ

> 1 (9.64)

with d0 the jet diameter at the injector exit. When We < 1, the jet, although its surface
is rough because of the liquid agitation, remains cohesive so that β = 0 and no stripping
occurs. ForWe & 1, ligaments are actually stripped from the main jet core, with a typical
size, of order 〈d′〉 ∼ σ/ρu2, which equilibrates cohesion and disgregation forces.

Observations of a moderately stripping jet with We = O(3− 4) indeed reveal bimodal
overall drops size distributions r(d) well fitted by (9.63) with orders ν about 4 character-
istic of strong corrugation, with an inter-modes convolution order k ≈We, bridging the
stripped ligaments size with the main droplets average size 〈d〉, itself of the order of the
jet diameter d0. Because the random aggregation scenario is constrained in distribution
shape, Gamma orders and mean sizes ratios which should be all consistent with each
other, a successful fit satisfying all the constrains constitutes a strong support to the
theory.

For larger We (and larger jet Reynolds number), as the spectrum of the background
turbulence in the jet broadens, the stripped ligaments are more broadly distributed
in size, and possibly eject ligaments themselves so that the bimodality of the overall
distribution disappears, leaving place instead to an essentially monotonically decreasing,
exponential-like distribution. The distribution is now a compound, whose status we
discuss in the next Section.

9.6. Compound distributions
Sprays are built from the breakup of ligaments, but all ligaments may not be identical

in a given fragmentation operation. The poly-dispersity of the drops in a given spray
may thus result both from the distribution of the drops coming from the breakup of a
given ligament, and also from the distribution of the volumes carried in the population
of the ligaments. A few particular cases exhibit a close-to-homogeneous population of
ligaments so that the poly-dispersity of the drops sizes in the spray is all contained by
that arising from the breakup of a single ligament (see e.g. Marmottant & Villermaux
(2004a); Bremond & Villermaux (2005); Zhao et al. (2011); Vu & Dumouchel (2018)).
There is, however, no reason that this should be a general rule.

Let q(d/dl) be the drop size distribution arising from the breakup of a ligament
with size dl (this distribution belongs to the Gamma family with an order ν given the
corrugation state of the ligament), and let L(dl/〈d〉) be the distribution of the ligaments
diameters dl in a particular fragmentation protocol. Small ligaments will produce smaller
droplets than larger ligaments. The overall distribution of sizes d has thus two sources
of variability, the one coming from the distribution of dl, and the one coming from the
distribution of d for a given dl. When these two factors are independent of each other,
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we expect the final droplets size distribution p(d) to be given by a linear superposition
of the two effects as

p(d) =

∫
q(d/dl)L(dl/〈d〉)ddl (9.65)

making it clear that p is a mixture of both q and L.

9.6.1. Exactly computable ligament size distribution
An important result was derived by Lhuissier & Villermaux (2013) in the two-

dimensional version of the ‘effervescent’ atomization protocol (see Section 4.4). In this
configuration, a liquid sheet is pierced at random locations in a nearly synchronous
fashion. In this purely random, Poisson hole nucleation process, the sheet evolves, once
the rims have all coalesced, towards a web of ligaments drawing exactly the edges of
the Voronoï polygons from the nucleation sites. A series of geometrical constructions
provides the distribution of distances λ of the ligaments from the closest nucleation
site and, more importantly regarding the present discussion, the distribution L(dl) of
ligaments diameters dl, given by

L
(
x ≡ dl

〈dl〉
)

= 4Γ
(
5
4

)4
x3 e

−
[
Γ
(
5
4

)
x
]4

(9.66)

〈dl〉 =
2
√

2

π3/4
Γ
(
5
4

)√
〈λ〉h (9.67)

where 〈λ〉 is given by the density of holes. This is a distribution highly peaked around its
mean 〈dl〉, the reasons for this being first the nonlinear transformation involving a square
root in (9.67), and second that ligaments are built by an additive interaction of adjacent
hole rims, thus averaging-out the disorder induced by the Poisson hole nucleation process.
The consequences of this narrowness is that the poly-dispersity in the resulting spray is
practically entirely due to the one coming from the ligament breakup per-se. Indeed, with
nearly mono-sized ligaments

L(dl/〈d〉) ≈ δ(dl − 〈dl〉), (9.68)

the drop size distribution p is, as seen from (9.65), well approximated by a q itself, and
is thus a Gamma distribution characteristic of ligament breakup (see (9.59))

p(d) ≈ Γ (ν, d/〈dl〉) (9.69)

of order ν found to be, for effervescent atomization, close to 3− 4. This holds as long as
the collision of the rims forming the ligaments is not too violent. When this is no longer
the case, breakup proceeds from a different scenario, examined in Section 10.3.

9.6.2. Ligaments produced from corrugated ligaments: Bessel functions
Often the ultimate ligaments, those forming the drops, are themselves stripped from

other corrugated ligaments. This situation occurs when a source ligament is suddenly
accelerated, or decelerated for instance, and therefore elongates into secondary ligaments
from its initial protrusions. Relevant examples are found with drops impact (Villermaux
& Bossa 2011) where the fragments are ejected from the expanding rim of the flattened
impacting drop, with rims collisions when the collision triggers the expulsion of ligaments
transverse to the collision direction (Néel et al. 2020), a situation occurring generically
in turbulent sheets randomly pierced by holes as in flat fan atomizers (Kooij et al. 2018).

In that case, the source ligament sizes dl are themselves distributed according to the
distribution characteristic of corrugated ligaments, namely a Gamma distribution. Thus,



68 E. Villermaux

with Γ (ν, x) given in (9.59) and with

q(d/dl) = Γ (ν, d/dl), for the elementary drop size distribution (9.70)
L(dl/〈d〉) = Γ (µ, dl/〈d〉), for the ligament size distribution (9.71)

we obtain from (9.65) a compound distribution of drops sizes with average 〈d〉 given by
that of L(dl/〈d〉) as (Villermaux & Bossa 2011)

p

(
ζ =

d

〈d〉

)
=

2(µν)
µ+ν
2

Γ (µ)Γ (ν)
ζ
µ+ν
2 −1Kµ−ν

(
2
√
µνζ

)
, (9.72)

where Kµ−ν is the modified Bessel function of order µ − ν, and where µ reflects the
roughness of the distribution in ligament sizes dl, while ν reflects that of the drops
producing ligaments corrugations, in this construction. In the final expression (9.72),
the roles of µ and ν are however interchangeable (the distribution is unchanged by the
permutation µ ↔ ν), both variabilities composing in an additive fashion, by principle:
indeed, the square of the standard deviation 〈ζ2〉/〈ζ〉2 − 1 of p(ζ) in (9.72) is

1 + µ+ ν

µ ν
, (9.73)

meaning, for instance, that the width of the final drop size distribution relative to its
mean is given by that of the ultimate ligament breakup (1/

√
ν) when the ligaments are

all alike (µ → ∞), as in the effervescent atomization protocol (see Section 9.6.1 above,
and Lhuissier & Villermaux (2013)).

In the other limit where µ is moderate, the overall drop size distribution p(d) is a
compound of stable drops coming from the breakup of ligaments essentially exponentially
distributed in size, a phenomenon encountered for instance with the ‘soft’ impact of drops
bursting due to a relative motion in air (Villermaux & Bossa (2009)). The large excursion
tail of p(d) is broader than an exponential, but narrower than a pure power law. Good
fits using (9.72) were obtained by Néel et al. (2020) in strong rims collisions, and from
well converged distributions in fragmenting turbulent sheets by Kooij et al. (2018, 2019).

9.6.3. Random stripping
Drops forming ligaments may be stripped from an agitated liquid bulk: hieratic motions

pointing perpendicular to the liquid surface may, if they are strong enough to overcome
capillary restoration at the interface, force the ejection of a ligament; we have given such
an example in Section 9.5, where essentially only one class of ligaments is ejected from
a weakly turbulent jet, the class for which the critical condition for ejection in (9.64) is
met, corresponding to ligaments a couple of times smaller than the main jet from which
they originate.

We envisage now the extreme limit where a broad spectrum of lengthscales is suffi-
ciently excited in the liquid bulk to seed a broad spectrum of ejected ligaments sizes.
This is not a sequential cascade of breakups scenario, but on the contrary a process of
concomitant, parallel ejections, with different sizes. Let 〈d〉 be the mean drop size in the
final spray. We know from Section 9.5 that a drop whose size d is of the order of 〈d〉
comes from a ligament with diameter of the order of 〈d〉, and that this ligament is a
random stack of k quanta (see Section 9.5 for this terminology) of diameter 〈d〉/k. These
ligaments may well be stripped from the liquid bulk on their own (provided, if they are
driven by a velocity fluctuation uk such that 〈d〉/k > σ/ρu2k), and breakup to contribute
to the overall spray.



69

We thus consider an a-priori very broad spectrum of ligaments sizes

〈d〉 k〈k〉 , for k = 0, 1, 2...∞ (9.74)

with 〈k〉 some average number, larger than unity and assume that an elementary ligament
drop size distribution q(d, k) is associated to each value of k, whose occurence in the
collection of drops forming ligaments is given by a probability p(k). Given the range we
authorize for k, the original liquid volume is no more dissected as in Section 9.5, but
pulverized into quanta which are left free to recombine according to a number frequency
given by p(k).

In order to reach sensible results easily, we further assume that the distribution q(d, k)
is very narrow (it is, strictly speaking, a Gamma distribution and we make its order
ν →∞, an assumption all the more justified that 〈k〉 is large)

q(d, k) = δ

(
d− 〈d〉 k〈k〉

)
(9.75)

and that the number of quanta k is distributed at random in each ligament, meaning
that p(k) is a Poisson distribution

p(k) =
〈k〉ke−〈k〉

k!
(9.76)

Obviously, the overall drop size distribution p(d) writes, analogously to (9.63)

p(d) =

∞∑

k=0

p(k)q(d, k) (9.77)

and one checks that since
∑
k p(k) = 〈k〉, we have

∫
dp(d)dd = 〈d〉. The Laplace

transform of q(d, k) in units of d/〈d〉 reads

q(s, k) = e−s
k
〈k〉 (9.78)

and the Laplace transform of p(d/〈d〉) is thus

p(s) =

∞∑

k=0

p(k)q(s, k) (9.79)

= e
−〈k〉

(
1−e−s

k
〈k〉
)

(9.80)

s→0−−−−→
〈k〉>1

(
1 +

s

〈k〉

)−〈k〉
(9.81)

which defines p(d/〈d〉) as a Gamma distribution of order 〈k〉

p(x = d/〈d〉) =
〈k〉〈k〉
Γ (〈k〉)x

〈k〉−1e−〈k〉x. (9.82)

The accumulation of independent contributions from random ligaments produce Gamma
distributions, through a construction mechanism similar to the one we have described to
understand the emergence of Gamma distributions from the breakup of a single ligament
in Section 9.4.1. The drop size distribution is universal in the d/〈d〉 units, a fact recognized
long ago; for instance, Simmons (1977a,b) notes that, for a large collection of industrial
sprays, the distribution of sizes is, in shape, solely determined by its mean, and that its
tail is well fitted by an exponential fall-off, as in (9.82).
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Such a scenario suits well to the fragments issuing from a turbulent jet at large Reynolds
number Ud0/ν ∼ 2× 104 with initial large internal velocity fluctuations u/U ≈ 0.1, and
therefore with a Weber number defined in (9.64) appreciably larger than unity, of the
order of We = 13. The corresponding range of excited scales, measured by the range of
k values is of course narrower than the infinite range in (9.74), but spans nevertheless
a decade. These scales extend from d0/We (the threshold for We > 1) defining kmin =
(d0/〈d〉)〈k〉/We, to the limit of the capillary unstable range for a jet, namely πd0, defining
kmax = (d0/〈d〉)〈k〉π. By definition of the quantum, kmin = 1 so that kmax = We and
therefore

〈k〉 =
〈d〉
d0

We

π
(9.83)

Since the measured mean drop size is 〈d〉 ≈ 0.53 d0, the expected value of the mean
number of quanta per ligament is 〈k〉 = 2.1, indeed slightly larger than unity. The
observed overall drop size distribution p(d/〈d〉) is very well represented by the Gamma
distribution in (9.82), of best fitted order 〈k〉 ≈ 1.9.

9.6.4. A note concerning the mean

The aggregation theory and its variants we have developed in this chapter predict the
shape of the drops size distribution in units of their mean (i.e. d/〈d〉). The only thing this
theory does not predict from its intrinsic ingredients is the mean diameter 〈d〉. This may
look odd since in fragmentation studies, one is used to see first a discussion about the
mean size, then some considerations on the fluctuations about the mean, and possibly
general statements on the shape the fragments distribution should have. We have in fact
taken the problem in reverse, in addressing the microscopic process at play for building
the fragments distribution in the first place. We have discovered that it is an aggregation
process from an elementary quantum, to macroscopic fragments; from that observation,
we have inferred what the distribution shape should be. It is therefore clear why the
average fragment size cannot be predicted from the only ingredient that fragments are
constructed by an inverse cascade of aggregation; for this, one has to decide when the
inverse cascade stops, and this decision requires an additional physical ingredient.

Understanding the distribution shape and the mean size are, in fact, two separate
discussions: Think, for instance, of the velocity distribution in a gas: the Maxwell shape
relies on general arguments of symmetry and homogeneity of space (Maxwell 1867) while
the mean speed is independently fixed by temperature; Similarly, the shape of Planck’s
spectral radiance of the black body (Planck 1901) solely relies on the fact that light
emission is quantized, while the wavelength of maximal emission (Wien’s displacement
law λmT ∼ ~c/kB) expresses thermal equilibrium. The magnets necklace fragmentation
problem in Section 9.2 is also exemplary in this respect; there, the cascade interrupts when
the aggregation time of the mean fragment becomes infinite, thus setting its value. This
divergence reflects the radial expansion geometry particular to the necklace problem.
Different expansion rates lead to different mean fragments sizes, but the distribution
shape is universal when fragments sizes are measured in units of their mean.

Similarly, for the fragmenting turbulent jet whose distribution has been computed
in (9.82), the new ingredient one has to put in to determine 〈d〉 is, as in Eqs. (9.19)
and (9.31), a ratio of timescales indicating the end of the cascade. Above the stripping
transition (We & 1), blobs recombine on a capillary timescale as they separate in the
diverging base flow. A mean size is attained when the recombination time

√
ρ〈d〉3/σ
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balances the substrate divergence time d0/u, so that we expect

〈d〉
d0
∼We−1/3 (9.84)

where the Weber number is the one from (9.64) constructed on the divergence velocity
u. The structure of (9.84) is, not surprisingly, identical to the one in (2.13).

Recombination equilibrates substrate divergence for a jet expanding freely but, inline
with the discussion we made about the viscous dissipation scale in the Taylor-Culick
rim recession problem in Section 3.2.1, the above reasoning leading to (9.84) can be
adapted to a confined, turbulent flow where now the reference time is the divergence
time 〈d〉/u(〈d〉) at the scale 〈d〉 itself when the divergence velocity is scale-dependent,
like within the inertial range of scales at large Reynolds number where u(d) ∼ u(d/d0)1/3.
In that case one anticipates that (Kolmogorov 1949)

〈d〉
d0
∼We−3/5, (9.85)

a relationship which was actually found by Hinze (1955) to fit well the maximal droplets
sizes in emulsions recorded originally by Clay (1940) using various apparatus, including
a turbulent pipe, and a Taylor-Couette flow (see Lemenand et al. (2003) for a reedition
of this type of experiments).

10. Formation of ‘fines’, direct cascades
Conventionally viewed as a process where the arrow of time points towards ever smaller

sizes by the repeated action of various stresses, the fragmentation of a cohesive material
results, on the contrary, from an inverse cascade of aggregations at the microscopic level,
starting with the smaller atoms, up to stable bigger fragments (Section 9, in particular).
The cascade is interrupted when separation forces overcome cohesive forces, leaving the
broken material in a dispersed state whose statistics is interpretable from first principles
in simple situations like for the magnets necklace in Section 2.3.

The reason for this regrettable confusion is to a large part attribuable to an authori-
tative argument personified, without his knowledge, by A. N. Kolmogorov. He produced
in 1941 a short note (not to be confused with the three celebrated notes on turbulence
that same year), written in german, in the USSR academy of sciences Doklady motivated
by discussions he had had with a colleague (N. K. Razumovsky) about the size statistics
of fragments during ore processing (Kolmogorov 1941b). This colleague had found that
the logarithm of the particles sizes during crushing and grinding was well represented by
a Gaussian. In these kinds of processes, a cohesive material breaks sequentially because
it is exposed to a successive series of solicitations or stresses involving repeated impacts
with an object (using jaw crushers, hammer mills, ball mills etc... see Coulson et al.
(2002)), or between the fragments themselves; the size distribution builds-up step by
step as the number of uncorrelated, repeated solicitations increases. Kolmogorov came
up with an elegant and simple idea where the size of any daughter particle derives from
that of the mother particle through a product series of random multipliers (smaller
than unity), yielding the celebrated ‘lognormal distribution’ along with the mental image
of the ‘direct cascade towards smaller scales’ (fortunately not accompanied, unlike for
turbulence, by a poem paraphrasing Swift...). This argument, probably because it is clever
and straightforward, partly also because it emanated from Kolmogorov, has been since
then blindly transported by many (in solid fragmentation, and liquid atomization, see
the critical review in Villermaux (2007)) to situations where the lognormal distribution
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FIGURE 1. Time evolution leading to multiple pinch-offs of a segment of a highly extended fluid 
filament. The left-hand column shows the experimental results; the right-hand column the 
computational simulation. The viscosity ratio and wavenumber are 0.067 and 0.50 respectively. 
The dimensionless times shown correspond to experiment (top) and computation (bottom). 

presence of surfactants are neglected. If inertial effects are small relative to viscous 
effects the evolution of the filament is described by Stokes equations in each fluid 
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droplets from its surface. At t = 10 ms, the droplet expands ����

and the sequential fragmentation process starts. As the ����

droplet inflates and bursts, a ligament is clearly seen to ����

extend (at t = 13 ms), following which daughter droplets ����

split from the ligament. Several of the larger daughters ����

(typically two to three) break up again to produce the next ����

generation of daughter droplets. The initial droplet ����

fragments an average of seven times. The smaller daughter ����

products are cooled by heat transfer to the ambient ����

environment and eventually are no longer visible. This ����

successive fragmentation process generally persists over ����

approximately several tens of milliseconds. The majority of ����

the droplets departing from the mother fireball undergo this ����

unique fragmentation cascade, and so it appears that this ����

type of successive event is not at all rare in the fireworks. ����

We investigated the sustaining mechanism of this unique ����

phenomenon. Fig. 3a presents the variations over time in the ����

diameter (dn) of an initial droplet ejected from the mother ����

fireball, together with backlit images. The generation of the ����

initial droplets in the cascade is defined as n = 1. The droplet ����

is seen to maintain its original diameter, and thus does not ����

obey the d-square law. During the combustion of a ����

multi-component fuel droplet or a water fuel emulsion ����

droplet, it is known that nucleation occurs inside the droplet ����

as a result of evaporation, and that this bubble grows to the ����

point that the droplet ruptures at one end in a so-called ����

micro-explosion.26-29 However, the droplets in these ����

fireworks are non-evaporative, and thus display different ����

characteristics from the micro-explosions of evaporative ����

droplets. After t = 18.5 ms, the droplet is seen to suddenly ����

inflate to approximately three times its initial size within ����

only 0.1 ms (equivalent to 1% of its total lifetime) due to ����

internal gas production, and eventually bursts to release this ����

gas. The bursting droplet produces several daughters. Fig. 3b ����

depicts the surface temperatures of initial droplets. The ����

surface temperature of the mother fireball is 1150 K, ����

midway between the melting points of K2S (1108 K-1221 K) ����
30 and K2CO3 (1164 K) 31. As surface combustion proceeds ����

on a droplet, its surface temperature increases from the ����

temperature of the mother fireball (1150 K) to the melting ����

temperature of K2SO4 (1342 K) 31. Thus both the fireball and ����

droplets contain solid particles of various potassium ����

compounds. It is evident that the melting of these potassium ����

compounds determines the temperature of the droplets and ����

also their coloration due to heat radiation. Since dn is ����

approximately 0.1 mm and the thermal diffusivity of the ����

droplet (N) is about 10-6 m2/s, it takes dn
2/N or approximately ����

10 ms for the center of the droplet to reach the same ����

temperature as the surface. Therefore, at t* = 1 (t of about 10 ����

ms), the inner temperature of a droplet will be in the range ����

of 1150 to 1300 K. The approximate molecular diffusion ����

coefficients of oxygen in a droplet and in air are D = 10-8 ����
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Figure 4 | Droplet fragmentation. a. Time series showing 
droplet ejection from the mother fireball at 0.1 ms intervals, 
based on self-luminescent images. The diameter of the initial 
droplet (dn=1) was approximately 0.1 mm. The bright object to 
the left of the fireball is a droplet out of focus. b. Generation of 

daughters by a bursting droplet at 20 Ps intervals, shown by 
backlit images. c. Diameter distribution of daughter droplets. 
Symbols are experimental results of three different N for which 

'dn/<dn> = 0.25. Droplets of N = 200 were from approximately 
30 ligaments. The solid line indicates the gamma distribution 
from Eq. (4) with m = 4.5. 
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Figure 18. Examples of direct cascades and production of ‘fines’. (i) Iterated instabilities on a
viscous thread (Brenner et al. 1994). (ii) Formation of a satellite drop on a viscous stretching
ligament (Villermaux et al. 2013). (iii) Production of ‘fines’ by the impact of two liquid rims
opening on a liquid sheet (Néel et al. 2020). (iv) Breakup of a viscous liquid bridge featuring three
steps of consecutive capillary instabilities (Tjahjadi et al. 1992). (v) Cascade of incandescent
droplets in fireworks where a daughter drops is the mother drop of the next step and, (vi) detail
of the trace of the successive droplets and of their ligament-mediated fragmentation (Inoue et al.
2017).

has no reason to be, simply because there is no repeated sequence of mechanical action
at all, but instead a single action; and in that case there is indeed a cascade, but it is in
reverse as explained in Section 9.

With this caution in mind, we give below a few examples of direct cascades in nature
where there is at least one step of size reduction from a big object, to a smaller one. When
the size reduction process persists over multiple steps, very small particles, sometimes
called ‘fines’, are produced.

10.1. Iterated thread fission, coalescence cascade
Capillary instabilities responsible for the breakup of an initially smooth ligament may

follow each other sequentially: the thin neck linking two neighbor bulges in the process of
separating is locally a liquid thread as well, which may also suffer a capillary instability,
itself producing bulges linked by a thinner ligament etc... The process was already
visible in Plateau’s experiments with olive oil (Plateau 1849) and it has been since then
identified in related contexts involving viscous fluids (Brenner et al. 1994; Wong et al.
2004; Villermaux et al. 2013), not to mention viscoelastic fluids where the phenomenon
is the rule (Oliveira & McKinley 2005; Keshavarz et al. 2020). The consequence of this
scenario is the typically bimodal character of the drop size distribution (the small drops
are called ‘satellites’), which present two broad but well separated peaks (see e.g. Basaran
et al. (2013) in the context of inkjet printing), and even a fractal sequence of iterated
peaks when the cascade has the chance to persist over multiple steps (Tjahjadi et al.
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1992), which is rare. With water however, the capillary breakup is so fast that the
phenomenon is virtually absent, unless altered by ad-hoc perturbations (Lafrance &
Ritter 1977). Surfactants on the other hand foster a counter Marangoni stress in the
pinch-off region which delays breakup, and favors a multiple step cascade (Kamat et al.
2018). Rough ligaments with random pre-existing corrugations follow a different, opposite
route (Section 9).

Similar capillarity driven cascades are found in the hesitant coalescence of a drop on
a liquid pool (Thoroddsen & Takehara 2000) presenting remarkably up to six steps, the
bursting of viscous bubbles (Herman & Mesler 1987; Bird et al. 2010), or the gravitational
settling of heavy drops in a lighter liquid (Thomson & Newall 1885; Arecchi et al. 1996).

10.2. Imploding cavities
We have explained in Section 8.1.2 how the collapse of a cavity at the surface of a

liquid, concentrating the fluid impulse into a narrow region of space at the base of the
cavity produces a fast jet, whose breakup forms droplets which may be very fast, and tiny.
This is an only one-step cascade, but it is emblematic of these configurations bridging
the large (the cavity size) with the small (the final droplets).

There was a rule of thumb dating back to Blanchard (1963) saying that, for a cavity
made from a bubble of size R at the surface of water, the jet speed at bubble burst
is roughly R/tc(R) ∼

√
σ/ρR and the droplets size is about 0.1R. Recent research

on the topic revived by Ghabache et al. (2014a) has shown that things are much more
complicated, and that a crucial partner in the process is the capillary waves train emitted
at bubble collapse, which travels along the cavity surface and which is the main focussing
mechanism triggering jet emission. Surprisingly, liquid viscosity fosters even faster, and
thinner jets (Ghabache & Séon 2016); ejection velocities can be twenty times as large as
the capillary velocity. An intense debate has followed (Gordillo & Rodríguez-Rodríguez
2019) to describe the appropriate scaling laws.

10.3. Collision of rims
The fines are these smaller droplets that are produced from an auxiliary mechanism

besides the formation of the standard drops in a fragmentation process. Néel et al.
(2020) report their formation in a controlled experiment which isolates an individual
fragmentation protocol: the collision of two rims bordering growing adjacent holes on
a liquid sheet. The standard drops come from the capillary breakup of the fused rims.
Occasionally, the rims collision is strong enough to trigger a new, splash-like mechanism,
producing an expanding lamellae perpendicular to the main sheet, which destabilizes
into finer drops, first discovered by Lhuissier & Villermaux (2013) in the context of
sheet breakup, more precisely for sheets which nucleate multiple holes (Section 4.4).
Because surface tension forces are not balanced at their rim, holes grow in diameter and
eventually merge with neighboring growing holes in the sheet plane. The merging event
may simply consist in an inelastic coalescence of the rims or, if the collisional rims are
sufficiently fast and thick, may trigger a splash. This is the cylindrical version of the
binary impact of spherical drops problem (Bradley & Stow 1978; Ashgriz & Poo 1990;
Roisman 2004). The phenomenon is very similar to the one known for drops impacting a
solid (see Worthington (1876); Riboux & Gordillo (2015) and the review in Josserand &
Thoroddsen (2016)), or a layer of the same liquid (Thoroddsen 2002; Agbaglah & Deegan
2014), as well as for the entry of a solid in a water pool (Worthington 1908; Wagner 1932).
It produces, right upon impact, a thin fast lamella ejected from the impact point in the
direction perpendicular to the collision plane, at the edge of which small (compared to
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the impacting rims diameter) droplets are formed; this is the way fines are produced by
this one-step cascade process (see Section 7.1.1).

Note that the adjectives ‘fine’ as opposed to ‘coarse’, or ‘small’ versus ‘big’ have no
concrete reality in the absence of an absolute reference scale. Their use reflects more
a personal appreciation. For instance, the drops emitted from the jet sparking at the
collapse of a cavity (the so-called Worthington jet, that he himself found ‘exquisite’ and
‘graceful’, see Worthington (1908), p. 78 and which is usually qualified as ‘fast’ (Gordillo
& Rodríguez-Rodríguez 2019)) are sometimes considered as ‘tiny’ (Ghabache & Séon
2016) while Woodcock et al. (1953) considered them as ‘giant’ nuclei. It is true that
when the cavity is the one of a bubble at the surface of a liquid pool, the jet drops are
larger than those formed from the disruption of the bubble cap (Spiel 1994). Similarly,
the threshold size of 100 µm defining fine droplets for spray drift in agriculture relates
to normal wind, humidity, temperature conditions and typical fields dimensions. These
may vary, and hence will the threshold. Interestingly, a similar 100 µm threshold has been
identified in human exhalations like sneezing (Wells 1955), a fact which clearly underlines
its anthropomorphic nature.

10.4. Reactive droplets, fireworks
Known since the Edo period (1603-1868) in Japan, one of the most popular hand-

held fireworks has been the Senkou-Hanabi. This traditional firework generates light
streaks similar to branched pine needles, with ever smaller ramifications. These streaks
are the trajectories of incandescent reactive liquid droplets bursting from a melted
powder (so-called ‘black powder’, a mixture of carbon C, sulfur S, and potassium
nitrate KNO3). Inoue et al. (2017) have uncovered the detailed sequence of events,
which involve a chemical reaction with the oxygen of air, thermal decomposition of
metastable compounds in the melt, gas bubble nucleation and bursting, liquid ligaments
and droplets formation, all this occurring in a sequential fashion proceeding over up to
eight generations.

In contrast to situations where energy for breakup is injected in the system from the
start, and decays as it produces an inverse cascade of coalescences between fragments
(Section 9) like, for instance, the elements of the Universe synthesized in stars do (Alpher
et al. 1948; Burbidge et al. 1957), this direct cascade is self-sustained by a constant
injection of heat from the reaction of carbon with the oxygen of air. It is this exothermic
reaction which, at every step of the cascade, initiates the nucleation of gas cavities in the
metastable liquid droplets. Like in atom fission (Born 1937; Bohr 1939), droplets divide
sequentially and self-similarly, down to an elementary brick where heat release and losses
equilibrate, marking the end of the cascade.

A similar phenomenology is encountered in the combustion of multi-component fuel
droplets with high volatility differential (Avedisian & Andres 1978; Rao et al. 2017), or
with emulsions (Rao & Basu 2020). In both cases, the volatile phase nucleates a vapor
bubble within the continuous liquid phase of the droplet, a bubble which burst and ejects
a ligament when reaching the droplet surface.

10.5. Minimal fragment size
A direct cascade is always ultimately interrupted by a dissipative physical ingredient

(viscosity, heat conduction etc...) whose relative importance grows as sizes decay, and
which finally becomes dominant. In that case, the corresponding limit fragment size
pertains to the range of the continuum scales (see e.g. Kendall (1978)). However, if
the cohesive material is initially dismantled into its elementary atoms (this condition
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requires that the microscopic particle Weber number in (2.12) is larger than unity),
as in the magnets necklace problem, then fragments as small as the elementary brick
can be formed (provided they escape, by chance, the aggregation dynamics forming the
macroscopic final fragments), precisely because they are formed from the start, and not
at the end of an interrupted direct cascade. Such a scenario is besides compatible with
the experiment of Kroto et al. (1985) who synthesized a complex molecular architecture
(Backminsterfullrene) from elementary bricks laser-ablated from a piece of graphite (see
also Section 7.3).

The heuristically exciting question of the minimal fragment size in comminution, the
science of size reduction by crushing and grinding, certainly requires more attention.

11. Energetics of fragmentation
It is tempting, in front of a complicated problem where many intermingled effects

are at play, to resort to general principles, an attitude sometimes adopted in despair
in fragmentation mechanics. Because one must be extremely cautious in retaining the
relevant ingredients when working these principles out, their use is most of the time
hazardous. This is particularly the case with energy whose interest in science –because
it is globally conserved– was first advocated by von Helmholtz (1847) in a celebrated
pamphlet.

11.1. Misconceptions
We have already seen in Section 3.2.1, about the Taylor-Culick recession speed of a

liquid film edge, how a naive because incomplete application of a principle of conservation
between kinetic and surface energy, disregarding dissipation (which represents exactly
half the total surface energy swept by the film edge) leads to a flawed prediction (in
absolute value, not in scaling dependencies). The error is even worse if one considers the
recession of an end-bulge attached to a cylindrical liquid ligament: the surface tension
force not only feeds kinetic energy and dissipation, but also needs to work against the
Laplace pressure σ/h inside the ligament (with radius h). The equivalent of (3.13) now
writes Ṗ = 2πhσ − πh2(σ/h) and ṁ = ρπh2v, leading to v =

√
σ/ρh while a balance

surface/kinetic energy would give 2
√
σ/ρh, involving an error by a factor 2 due to the

neglect of both dissipation and internal pressure work.
Fluid particles arrested at a rim dissipate their kinetic energy. The energy dissipated

by a mass m experiencing a velocity drop ∆u is equal to the kinetic energy of the
velocity difference 1

2m(∆u)2, a result know since Borda (1763) (see also Appendix B
in Villermaux & Bossa (2011)). Consider for instance the dynamics of the expanding-
retracting sheet formed by the impact of a liquid drop with kinetic energy E = 1

2mu
2
0

such that τ =
√
m/σ � r0/u0, that is We � 1 (Section 7.1). The sheet radial velocity

is u(r, t) = r/t and the velocity decrement at the rim in r = R(t) is ∆u(t) = u(R, t)− Ṙ
where R(t) is given by (7.9). Since the fate of every mass particle in the drop is to pass
through the rim, estimating the dissipated energy ∆E at the rim amounts to estimate
the value of (∆u)2 over the sheet oscillation cycle (lasting for about τ) to form ∆E =
1
2m(∆u)2. Since τ is independent of We, so is ∆E/E. The maximal velocity difference is
∆u(t/τ = 1/2) = u0/2 (ocuring between the sheet maximal extension in t/τ = 1/3 and
the cancellation of the rim deceleration in t/τ = 2/3) and we have

∆E

E
≈ 1

4
. (11.1)

The net amount of kinetic energy dissipated in the rim represents a fixed fraction of the
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initial kinetic energy of the drop of the order of 25%, independent of We. The rest splits
into the kinetic energy of the fragments, and their surface energy.

In fact, the difficulty with this concept is that we know that energy is globally conserved
among its various forms (heat, kinetic, radiations, surface, elastic...), but we have no
principle to decide how the system will favor each in a particular situation. Sometimes,
by luck, the problem can be completely solved from the principles of conservation of
mass and momentum alone, like for the Taylor-Culick problem, and the energy budget is
then computed a-posteriori. An a-priori energy approach is useful when only two kinds of
energies are essentially at play, in quasi-steady situations like for the viscous version of the
Taylor-Culick problem (which involves a tradeoff between viscous dissipation and surface
destruction, see Section 3.2.2), or to estimate the limit stress for crack opening in a brittle
elastic material (a tradeoff between stored elastic energy and surface creation, the reality
of a surface energy being, in that context, questionable (Griffith 1921; Bourdin et al.
2008)), but when inertia is an ingredient of the problem, things are less straightforward.
The opening of cracks is accompanied by branchings, acoustic, light emissions etc... which
are all sinks of energy (Lawn 1993; Fineberg & Marder 1999), yet unpredictable for the
time being. It is however well known that in typical solid size reduction processes, only
10% of the input power is usefully employed at creating new interface area, the rest being
dissipated as heat (see Ch. 2 in Coulson et al. (2002)).

This proportion is even larger than the one measured in the fragmentation of a
stationary Savart sheet into droplets (Section 4.1). From the measured speed of the rim
ejecta, Taylor (1959c) estimated that 98% of the incident kinetic energy ‘disappeared
in the region where the drops were formed’ while Clanet & Villermaux (2002) find that
only 10% of the initial energy remains in the fragments, most of it in a kinetic form. The
dissipated energy is very sensibly related to the fragments velocity decrement ∆u from
the incident velocity u0 since

∆E

E
=

(
∆u

u0

)2

(11.2)

giving, according to the ejection velocity at the cusps tips bordering the indented sheet
found in (4.7), ∆E/E = (4/5)2 = 64%.

If from these examples, one sees that there is not a sharp consensus on the exact figure
representing the amount of energy actually employed at creating new surface area, a
certitude is that it systematically represents a small fraction of the available mechanical
energy. It is also useful to note that its relative amount, at least its order of magnitude,
is close to the ratio of the separation energy of the molecules, to the latent heat in the
evaporation of water, which is of the order of 20% (see Agrawal & Menon (1992); the
comparison of these two forms of energy has been historically made to infer the size of
molecules, as recalled in Rowlinson (2002)).

The ‘sentimental’ vision which consists in attributing arbitrarily the entire available
input energy to the surface energy of the desired products (the fragments), first formalized
by von Rittinger (1867) usually fails dramatically not only in order of magnitude, but
also in law. We have seen an example above concerning the impact of a drop and inherent
dissipation by rims, another is provided by the liquid shell explosion studied in Section
5.1.1: the total available energy is the one released by the chemical reaction. For a given
number of moles m of a (stoichiometric, say) mixture enclosed in the bubble with radius
R0, one knows that the energy released will be E = −∆H× 2

3 m (the formation enthalpy
of water vapor by H2 + 1

2 O2 −−→ H2O is ∆H = −241 kJ/mol). An ‘à la von Rittinger’
temptation is to equate this energy with the one necessary to breakup the liquid shell,
and further assume that this fracture energy is itself reflected by the final surface energy
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of the fragments. If Ω = 4πR2
0h is the volume of the liquid shell, N the number of

fragments and 〈d〉 their average size, we thus have Ω ∼ N〈d〉3, and from the application
of the (flawed) conservation principle stated above, E ∼ N〈d〉2σ, from which one would
predict

〈d〉 6= Ωσ

E
, N 6= (E/σ)3

Ω2
(11.3)

The symbol 6= signifies clearly the absurdity of this prediction since, with R0 = 2 cm, one
has 2

3 m ' 10−3 moles at atmospheric pressure, and thus E ' 221 Joules giving according
to (11.3) a fragment size 〈d〉 of the order of 10−12 m, smaller than the interatomic
distance...! The reason for this major failure is that this caricature, which is even wrong
in scaling dependencies, disregards several other sinks of energy, like the work done by
the burnt gases to push the unburnt, the shell, and the outside air, thus communicating
to them a substantial kinetic energy, but also disregards the highly dissipative dynamics
of the rims and ligaments breakup on the liquid shell, in particular.

11.2. Efficiency
The inaugural example of the expanded necklace of magnets (Section 2.3) provides

again a way to address the question of the partition of energy in its various forms in an
unambiguous way. The input energy 1

2NmV
2, entirely in a kinetic form, is the kinetic

energy of each bead, all expanding at velocity V times the number of beads N . The
surface energy is the energy spent at opening a link, of order aφ(a), times the number of
opened links N/〈n〉, itself given by the final mean number of beads per fragment 〈n〉 in
(2.13). We thus define, as is customary in the context of comminution, an efficiency E as
the ratio of the surface energy to the input kinetic energy (see Vledouts et al. (2015) for
references and a slightly different description)

E =

N
〈n〉 aφ(a)

1
2NmV

2
, (11.4)

this expression holding when at least one bond has opened, otherwise E = 0 since no
surface creation has occurred. This is what happens when the impact velocity is smaller
than the critical velocity Vc in (2.5) below which the necklace simply coalesces back to
its initial state, remaining un-fragmented.

Above that critical impact velocity, the fragments velocity is given by
√
V 2 − V 2

c in
(2.6). It is smaller than V , but non-zero. We thus have here a fragmentation process
where the initial energy splits into surface energy, and kinetic energy; moreover, the
ratio of these two forms of energy depends on the strength of the initial expansion. In
terms of the particle Weber number We in (2.12) based on the divergence velocity at
the scale of the elementary beads u1,1 = 2πV/N , one sees, recalling that ρ ∼ m/a3 and
σ ∼ φ(a)/a, that the efficiency

E ∼ (N3We)−2/3 (11.5)
is a decaying function of We. For strong impacts when We approaches 1, the efficiency E
which scales as 1/N2 goes to zero as more isolated beads expand (for largerN), essentially
keeping their initial kinetic energy, the energy cost for opening the bonds linking them
being in comparison negligibly small.

Starting from E = 0 when V = Vc (that isWe ∼ 1/N), the efficiency thus first increases
as We increases, and then decreases according to (11.5). Vledouts et al. (2015) give the
complete dependence of E on We and N , showing that it is

(i) non-monotonic,
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(ii) always way below unity in absolute value,
exhibiting a maximum (about E ≈ 0.3), thus contradicting von Rittinger’s sentimental
principle according to which it should be constant, and of order unity. The energy budget
computed a-posteriori in this particular case demonstrates the vacuity of ‘energy based
approaches’ in fragmentation in general.

Other lumped descriptions (Grady 1982, 2006; Sultanov & Yarin 1990; Bazant & Caner
2013) have heuristically invoked the expansion rate of a breaking material to put it in
relation with some measure of its cohesion in order to derive fragments sizes, and others
have noticed that there are distinct regimes of fragmentation of a stressed material where
the ejection velocity of the fragments depends on the initial conditions (Wildeman et al.
2017). The academic exercise of the expanded necklace of magnets offers a precise picture
for which error does not escape from proof.

Appendix A. Catalogue of relevant instabilities
A list of the instabilities relevant to the phenomena discussed in this review is provided

below in a digest form, including a presentation of the physical mechanism at play, the
scalings for the length and timescales involved, and the full dispersion equation whose
derivation can be found in the appropriate references mentioned in each case.

In most situations discussed below, instability occurs between two phases separated
by an interface spreading along the x axis with position in the y direction ξ(x, t) made
of a superposition of Fourier modes

ξ(x, t) ∼
∑

k

ξk e
ikx−iωt (A 1)

whose dynamics is studied mode by mode (in short, ξ(x, t) ∼ ξ eikx−iωt) through
the dispersion relation ω(k). The range of unstable k−modes is the one for which
Re[−iω(k)] > 0, defining a growth rate, whose square is given by

ξ̈

ξ
= −ω2 (A 2)

Reasonings in the physical space involve the wavelength λ = 2π/k. In regions where the
fluids are initially at rest, or move at a uniform translation velocity u0 along the interface,
the perturbed displacement field u obeys at lowest order ∂tu+u0∂xu = −∇p/ρ and since
for incompressible fluids ∇ ·u = 0, the pressure is harmonic ∇2p = 0. This property sets
the spatial structure of the perturbations

u , p ∼ e±kyeikx−iωt (A 3)

When the interface is distorted over λ in an unbounded domain, the fluids move over λ
away from it so that the mass in motion in the plane is proportional to ρλ2.

A.1. Rayleigh Taylor
A layer of heavy fluid (density ρ1) is superimposed on a layer on lighter fluid (density

ρ2) perpendicular to the direction of a body force g (the acceleration of a non-galilean
frame, or gravity), pointing downwards. We denote ∆ρ = ρ1 − ρ2 > 0. The instability
mechanism is that of free fall. The Archimedes force ∆ρgξλ feeds the fluids inertia (ρ1 +
ρ2)λ2ξ̈ so that, in the absence of restoring forces at the interface, the square of the growth
rate growth rate is

ξ̈

ξ
∼ ∆ρ

ρ2 + ρ1

g

λ
(A 4)
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When the heavy fluid is confined in a layer of thickness h suspended on a horizontal rigid
wall, mass conservation uh ∼ λξ̇ in the heavy layer with horizontal velocity (ρ1+ρ2) ∂tu ∼
−∂xp leads, with ∂xp ∼ −∆ρgξ/λ, to

ξ̈

ξ
∼ ∆ρ

ρ2 + ρ1

gh

λ2
(A 5)

If the fluids are very viscous, the Archimedes force now equilibrates viscous stresses, of
order ηξ̇/λ so that we have now a first order relaxation dynamics

ξ̇

ξ
∼ ∆ρg

η
λ (A 6)

There is, in the cases envisaged above, no mode selection. In particular, small length
scales grow infinitely fast in the inertial limit of (A 4). Since these induce large interface
curvature ξ/λ2, we expect that the corresponding Laplace force σ(ξ/λ2)λ subtracted to
the Archimedes force will limit their growth. The force balance then leads to

(ρ1 + ρ2)
ξ̈

ξ
∼ ∆ρg

λ
− σ

λ3
(A 7)

The range of unstable length scales is now limited by the capillary lengthscale 1/a2 =
∆ρg/σ ≡ k2c , defining the capillary wavenumber kc. The complete dispersion equation of
this instability (between infinite, inviscid phases) is

(ρ2 + ρ1)ω2 = −∆ρgk + σk3 (A 8)

The most amplified wavenumber is km = kc/
√

3, with growth rate∼ ∆ρ/(ρ2+ρ1)×√gkm.
In the opposite stable configuration (ρ1 = 0, ρ2 = ρ for example), we recover the

dynamics of dispersive gravity waves ω ∼ √gk for k � kc, and the one of capillary waves
ω =

√
σk3/ρ for k � kc whose group velocity ∂kω is decreasing as

√
g/k, or increasing

as
√
σk/ρ as a function of k, respectively.

This instability was first described in the form of (A 8) by Lord Rayleigh (1883),
who also envisaged the case where the density jump between the phases is smooth and
occurs over a non-zero thickness layer. It was first investigated experimentally by Lewis
(1950). It is described in Lamb (1932) and Landau & Lifshitz (1987) including the viscous
corrections, in Limat (1993) for a finite heavy layer thickness suspended by a wall, and
very thoroughly in Chandrasekhar (1961). When the acceleration is time-dependent, for
instance when it is impulsional as when the interface is hit by a shock, one refers to the
Richtmyer (1960); Meshkov (1969) instability. Modern developments include the study of
the instability on time-varying (Duplat & Villermaux 2015), and curved (Balestra et al.
2018) substrates.

The name of Taylor (1950b) is associated to this instability. He indeed considered the
limit with no surface tension, leading to (A 4); However his interest was more concerned
with a layer of gas of a given density and finite thickness sandwiched between two gaseous
phases of a different density, then accelerated perpendicular to its plane. The important
case of a finite thickness layer with surface tension is envisaged below.

A.2. Keller Kolodner
Soon after the contribution of Taylor (1950b) to the subject, Keller & Kolodner (1954)

studied the case of a layer of fluid of a given density and finite thickness sandwiched
between two phases of a different density, accelerated perpendicular to its plane but now
incorporating an ingredient Taylor had missed in his analysis, namely surface tension.
That inclusion changes the picture appreciably.
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Another way, equivalent to (A 7), to understand the selection of mode for the instability
between two infinite phases is to compute an energy balance, justified in the inviscid,
conservative limit. The loss of potential energy corresponds to a gain of surface energy

∆ρgλ

∫ ξ

0

zdz = σ
(√

1 + ξ′2 − 1
)
λ, (A 9)

or ∆ρg ξ2 ≈ σξ′2 (A 10)

with ξ′ ≈ ξ/λ , an equilibrium which is satisfied for λ−1 ∼ kc.
When the heavy liquid is concentrated in a thin layer of thickness h, the above

equilibrium now writes (for λ > h)

∆ρgh

∫ ξ

0

zdz = σ
(√

1 + ξ′2 − 1
)
λ, (A 11)

or
h

λ
∆ρg ξ2 ≈ σξ′2 (A 12)

leading to λ−1 ∼ k2ch. The wavelength of the selected mode now depends on the layer
thickness h and is larger for a thinner layer, unlike in the case of a film suspended on a
rigid wall for which the selected mode is still given by kc. In fact both mode selection
and growth rate are affected by the layer thickness in this instability. The growth rate,
obtained from (A4) since λ−1 � kc is given by

ξ̈

ξ
∼ ∆ρ

ρ2 + ρ1
gk2ch (A 13)

and goes to zero for an infinitely thin layer. This is because, when the two interfaces
bordering the film are free to move as they are separated by a distance h � k−1c ,
their respective Laplace pressure jumps, of opposite signs, compensate, thus canceling
the driving force for the longitudinal flow within the film which is thereby protected
from thickness modulations. This fact, which makes the problem with surface tension
very different from without, explains why, although violently accelerated when inflated,
thin soap films remain stable while comparable accelerations would disrupt the interface
between two infinite phases.

In the practical important case where ρ2/ρ1 � 1 corresponding, for instance, to a
liquid film (of density ρ1 ≡ ρ) surrounded by air, Keller & Kolodner (1954) showed that
the interfaces bordering the film can only amplify in-phase, or out-of-phase perturbations
through a dispersion relation compatible with

ω2 =
σk3

ρ
coth(kh)


1±

√√√√1−
(

1−
(
kc
k

)4
)

tanh2(kh)


 (A 14)

first derived in this form by Bremond & Villermaux (2005), who also first tested its
predictions experimentally for a soap film impacted by a shock wave. The dispersion
relation in (A 14) transits continuously from (A8) when kch� 1 to a shallow curve with
a plateau at the level given by (A 13) when kch� 1.

The importance of this result in the dynamics of free films has been underlined by
Bremond et al. (2007) and Lhuissier & Villermaux (2009b) to understand the transverse
indentations of flapping liquid sheets, by Villermaux & Bossa (2009) for bag breakup,
by Lhuissier & Villermaux (2012b) for the stability of crumpled water bells, by Vledouts
et al. (2016a) for the fragmentation of exploding liquid shells and by Klein et al. (2020)
for drops hit by a laser pulse.
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A.3. Helmholtz Kelvin Rayleigh
A disturbance at the sharp interface between to parallel streams with velocities and

densities u1, ρ1 and u2, ρ2 is advected at the Doppler drift velocity

uc =
ρ1u1 + ρ2u2
ρ1 + ρ2

, (A 15)

intermediate between the velocities of each phases (u1 < uc < u2). When a fast wind
is blowing parallel to a slow liquid stream (u1 � u2, ρ2/ρ1 � 1), the drift velocity is
essentially given by that of the slow dense stream, uc ≈ u1, and the intensity of the
shearing velocity by that of the fast stream u2. The instability mechanism is Bernoulli
suction at the crests, and compression in the droughts

ρ1λ
2ξ̈ ∼ ρ2u22

ξ

λ
λ (A 16)

where ξ/λ stands for the compression/dilatation factor of the distorted streamlines close
to the interface. Thus

ξ̈

ξ
∼ ρ2
ρ1

u22
λ2

(A 17)

exhibiting an ‘ultraviolet divergence’ (Re(−iω) ∼ ku2), meaning a divergence at large
k which is regularized by adding the capillary restoration term σ(ξ/λ2)λ in the force
balance above, ensuring the selection of mode

λ ∼ σ

ρ2u22
(A 18)

The full dispersion equation incorporating also the influence of gravity is

ω = k uc ±
√
ω2
RT −

ρ1ρ2
(ρ1 + ρ2)2

k2(u2 − u1)2 (A 19)

where ωRT is the Rayleigh-Taylor contribution given by (A 8) above. The shear ∆u =
|u2−u1| is always destabilizing. For g = 0, the most amplified wavelength and its growth
rate are (ρ2/ρ1 � 1)

λ ∼ σ

ρ2(∆u)2
, and Re(−iω) ∼ ρ2(∆u)3

σ

√
ρ2
ρ1

(A 20)

The instability mechanism was first understood by von Helmholtz (1868), it was
described quantitatively with the dispersion relation above by Kelvin (1871) while Lord
Rayleigh (1880) complemented the analysis by considering an important ingredient in
practice, namely the existence of a smooth crossover in the velocity profile between the
phases: an abrupt discontinuity of velocity does not exist in nature since it is regularized
by viscosity, as small as it might be. Boundary layers smoothing the velocity profiles are
inevitable. When the velocity jump occurs through a transition layer of thickness 2δ, we
have (for ρ1 = ρ2 and u1 = −u2 ≡ u so that the total velocity jump is ∆u = 2u)

κΩ = ±i
√
e−2κ − (1− κ)2 (A 21)

with Ω = ω/(k∆u) and κ = kδ (Lord Rayleigh 1880). The maximal growth rate is
0.2u/δ for κ ≈ 0.8. The thickness of the crossover selects the most amplified wavelength.
Starting from a true velocity discontinuity, both diffusive broadening and instability
compete, altering the growth rate, and mode selection (Betchov & Szewczyk 1963; Hinch
1984; Villermaux 1998b). The instability mechanism of this inflectional instability is
however of a completely different nature than the instability of a boundary layer along a
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plate, which is driven by viscosity (Schlichting 1987). The above result was generalized
to any velocities and densities between the phases by Villermaux (1998a) and applied
to the stability of two-phase shear layers by Marmottant & Villermaux (2004b). With
disturbances drifting downstream as they amplify, the Kelvin-Helmholtz instability is the
paradigm of ‘convective instabilities’ (Huerre & Rossi 1998).

A.4. Squire
A fast liquid sheet (velocity u1, density ρ1), with thickness h issuing into a lighter

environment at rest (u2 = 0, density ρ2 � ρ1) soon destabilizes, sustaining a flapping
motion, like a flag does in the wind. The instability mechanism is of the Kelvin-Helmholtz
type described above, with the additional ingredient, since the sheet has a finite thickness,
that two modes of destabilization are now possible (these are actually the only two allowed
modes): either the interfaces bordering the sheet grow in-phase (sinuous mode), or out-
of-phase (varicose mode).

(i) Sinuous mode: The Bernoulli suction mechanism operates identically to (A 16),
the inertia of the liquid being now limited to a layer of thickness h so that

ρ1hλξ̈ ∼ ρ2u21
ξ

λ
λ (A 22)

giving

ξ̈

ξ
∼ ρ2
ρ1

u21
λh

(A 23)

(ii) Varicose mode: The dilatational, or varicose mode implies a flow within the film,
driven by the pressure difference ∆p ∼ ρ2u

2
1ξ/λ between the droughts (where it is

maximal), and the crests (where it is minimal). The acceleration of the film flow is
such that ρ1∂tu ∼ ∆p/λ while mass conservation writes hu ∼ λξ̇. We have

ξ̈

ξ
∼ ρ2
ρ1

u21
λh

(
h

λ

)2

(A 24)

The growth rate of this destabilization mode is thus smaller by a factor h/λ than the
one of the sinuous mode above, which is indeed preferred.

Capillary restoration σ(ξ/λ2)λ in the force balances above selects the most amplified
wavelength

λ ∼ σ

ρ2u21
(A 25)

The principle of this instability was already contained in Lord Rayleigh (1880) (see
also the discussion in Lamb (1932)), but Squire (1953) first conducted a lucid discussion
incorporating the effect of surface tension, and the competition between the destabiliza-
tion modes. With κ = kh, Ω = ωh/u1 and α = ρ2/ρ1, the dispersion relations of this
instability writes

(Ω − κ)2Φ
(κ

2

)
+ αΩ2 =

κ3

We
, (A 26)

with Φ(x) = tanh(x) for the sinuous mode, (A 27)

and Φ(x) = tanh(x)−1 for the varicose mode. (A 28)

The Weber number We = ρ1u
2
1h/σ should be larger than 2 for the instability to set-

in, meaning that the liquid sheet velocity should be larger than the group velocity of
the (stable, see Taylor (1959b) and below) sinuous waves on the sheet (Villermaux &
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Clanet 2002). This result has been readily applied to a series of situations (York et al.
1953; Hagerty & Shea 1955; Dombrowski & Johns 1963), including the discussion of the
instability on a spatially evolving substrate (like for a Savart sheet for which h(r) ∼ r−1)
by Bremond et al. (2007).

In the limits α→ 0 andWe→ 0, (A 26) also describes the dynamics of stable capillary
waves on an immobile film in an evanescent environment (Lucassen-Reynders & Lucassen
1969). We have ω2 ∼ σk3/ρ1 when kh� 1 as for waves over an infinitely deep medium,
and, for the sinuous mode, ω = ±kv with v =

√
2σ/ρ1h the Taylor-Culick velocity in

(3.14) for kh� 1; the celerity of long sinuous waves on a film coincides with the recession
velocity of its edge. In the same long-wave limit kh� 1, we have ω2 ∼ σk4h/ρ1 for the
varicose mode, characteristic of dispersive waves on a medium with finite depth. When
kh > 1, the group velocity ∂kω ∼

√
σk/ρ1 is larger than the Taylor-Culick velocity,

explaining why these dilatational waves are systematically found to propagate ahead
from the receding front as long as they are not damped by viscosity (see Fig. 5 and
Buguin et al. (1999) in dewetting films).

A.5. Plateau Rayleigh Weber
Cohesion forces, because they oppose to the formation of large interface curvatures,

are usually stabilizing, a stabilization which operates at large wavenumber (i.e. ∼ k3

as in (A 8)); There is one instance however where capillary forces are destabilizing.
The argument, due to Plateau (1849), is geometrical. When distorted by thickness
modulations with respect to its planar geometry, a liquid slab, or sheet has its surface
area increased (this is the reason why the spontaneous piercing of liquid films is such
a puzzling problem, see Section 4.2). A cylinder however, when distorted by long-
wavelengths varicose modulations of its cross-section, lowers it surface area at constant
volume. The system will naturally explore more this energetically favorable corrugated
state, prelude to its fragmentation in drops.

Undulations of the jet centerline in a sinusoidal fashion will not affect its net surface
area if its radius remains constant. On the other hand, modulations of the jet radius
may change its surface energy. Consider a liquid cylinder of volume Ω = πh20L. The
perturbation

h(z, ϕ) = 〈h〉+ ε cos(kz) cos(mϕ), (A 29)
where k is the longitudinal wavenumber and ϕ the azimuthal angle, can be viewed as
a Fourier mode of a given initial condition h(z, ϕ). The azimuthal modulations simply
correspond to a corrugation of the jet’s mantle, so they always increase the surface area.
All azimuthal modes m > 0 are thus stable (Chandrasekhar 1961) and, when excited
by the non-circular orifice of a jet, lead to oscillations which have been used to measure
surface tension (Lord Rayleigh 1879). We thus proceed with m = 0, for which the surface
energy is given by

E = 2πσ

∫

L

h
√

1 + h′2 dz (A 30)

The mean radius 〈h〉 has to adjust itself to ensure volume conservation

Ω =

∫

L

πh2dz = πh20

∫

L

dz (A 31)

so that

〈h〉 = h0 −
ε2

4h0
, (A 32)

which is thus smaller (at order ε2) than the unperturbed radius h0. The corresponding
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difference ∆E = E−E0 in surface energy relative to the initial state E0 = 2πh0σ
∫
dz is

∆E

E0
=

ε2

4h20
[(kh0)2 − 1], (A 33)

showing that all modes with wavelength λ = 2π/k larger than the perimeter of the jet
have a negative relative energy ∆E < 0, and are thus potentially unstable, as concluded
by Plateau (1849). To find the fastest growing wavelength, on has to wonder about the
dynamics of each mode in the unstable range 0 < x < 1 where x = kh0.

The dispersion equation of this instability was first established in the inviscid limit by
Lord Rayleigh (1878), followed by a study of the very viscous limit (Lord Rayleigh 1892).
Chandrasekhar (1961) considered the problem comprehensively. The equations feature
the necessary Bessel functions of the cylindrical geometry and in the inviscid limit, we
have, with tc =

√
ρh30/σ

ω2t2c = −x(1− x2)
I1(x)

I0(x)
. (A 34)

The most amplified wavelength is λ ≈ 9h0, corresponding to x ≈ 0.67. This wavelength
is large compared to the cylinder radius, suggesting that a long wave one-dimensional
description of the problem will be a satisfactory caricature. Weber (1931) took very wisely
advantage of this remark, providing a straightforward derivation which incorporates easily
viscous stresses. His result reads

(−iω)tc =

√
1

2
(x2 − x4) +

9

4
Oh2x4 − 3

2
Ohx2 (A 35)

where Oh =
tv
tc
, with tv =

ηh0
σ
, (A 36)

whose limiting forms are

(−iω)tv =
1

6
(1− x2), for Oh� 1 (A 37)

(−iω)tc =
1√
2
x
√

1− x2, for Oh→ 0 (A 38)

Equation (A 38) provides an excellent fit to the exact relation in (A 34).
All modes in the unstable range (0 < x < 1) grow without propagation (Im(−iω) = 0)

whereas all stable modes (x > 1, wavelengths smaller than 2πh0) have a zero growth
rate, but travel along the cylinder, with a non-zero group velocity

√
σk/ρ1 tangent to

the one of capillary waves on an infinitely deep medium (Appendix A.4). This instability
along with many of its applications are reviewed in Eggers & Villermaux (2008). Its
generalization to the case of soft solids has been made by Mora et al. (2010).
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