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ABSTRACT: By a fragment of a natural language we mean a subset of that language equipped with seman-

tics which translate its sentences into some formal system such as first-order logic. The familiar concepts of

satisfiability and entailment can be defined for any such fragment in a natural way. The question therefore

arises, for any given fragment of a natural language, as to the computational complexity of determining

satisfiability and entailment within that fragment. We present a series of fragments of English for which the

satisfiability problem is polynomial, NP-complete, EXPTIME-complete, NEXPTIME-complete and unde-

cidable. Thus, this paper represents a case study in how to approach the problem of determining the logical

complexity of various natural language constructions. In addition, we draw some general conclusions

about the relationship between natural language and formal logic.
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1 Introduction

Let us begin, as logic itself began, with the syllogism. Consider the set of all English
sentences subsumed by the following six schemata, where � and � are any common
(count) nouns and � is any proper noun:

�����	��
 �� ����� ������ ������ ��� � ��� ����� � ��� � �� �����	�����
��� � �!� �"� �#���	����� .

For any sentence in this set, we call the constituents � , � and � the content of that
sentence, and we call the schema it falls under its form. Given such a distinction
between content and form, a set $ of sentences is said to be satisfiable if there is some
way of varying the semantic contributions made by the content of the sentences in $
so as to render every sentence in $ simultaneously true. Similarly, a set of sentences $
is said to entail a sentence % if every way of varying the semantic contributions made
by the content of the sentences in $'&)(*%,+ renders either % true or some sentence in $
false. For a given fragment of English, the problem of determining whether a finite set
of sentences in that fragment is satisfiable is referred to as the satisfiability problem
for that fragment; the problem of determining whether a finite set of sentences in that
fragment entails another such sentence is referred to as the entailment problem. For
fragments closed under negation, the two problems are visibly equivalent.

These are, of course, old problems. Aristotle’s Prior Analytics proposes—in effect—
a solution to the entailment problem for the fragment of English defined above. The
solution takes the form of a list of syllogisms such as, e.g.

���*�-�.
 �� ��������*�-�.
 �/� ����0���*�-�.
 �� ����0

� ��� � �1� �����
�2�3�/� ���!0� ��� � �1� �����	����0

which may be used to construct chains of argument via intermediate conclusions in
the familiar way. It is tempting, though probably historically inaccurate, to interpret
Chapter A 25 of the Prior Analytics as a (not desperately convincing) argument for
the completeness of this procedure: if $ really does entail % , then it should be possible
to derive % from $ by a sequence of two-premise inference steps.

Despite the antiquity of the issue, modern developments in mathematical logic, nat-
ural language semantics and computational complexity theory afford us a perspective
unavailable to the ancients. Three features characterize this new perspective. The first
is generality: we view the language of the syllogism as just one of many fragments
for which the satisfiability and entailment problems can be posed. The second is the
requirement of validation: we demand that any method of determining satisfiability
in some fragment of a natural language be accompanied by a formal assurance of its
correctness. The third is an interest in computation: one of the key issues regarding
any fragment of natural language is the complexity class of the satisfiability and en-
tailment problems for that fragment. The purpose of this paper is to describe some
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of the technical results that these modern developments have made available, setting
them in the broader context of the relationship between natural and formal languages.

2 The syllogistic fragment

Before proceeding, we provide an alternative specification of the language of the syl-
logism, on lines more amenable to the generalizations we envisage. Consider the
following grammar rules.

Syntax

IP � NP, I
�

I
�
� � � � N

�

I
�
� � �#���	� � N

�

NP � PropN
NP � Det, N

�

N
�
� N.

Formal lexicon

Det � � ��� �
Det � � �*�-�.

Det � ���

Content lexicon

N � � ���
N � � � � � � �
. . .
PropN � � ��� � �*� � �
. . .

The node labels IP, NP, etc. gesture in the direction of familiar phrasal categories,
though of course linguistic orthodoxy has to some extent been sacrificed for simplicity
of exposition, particularly in the handling of negation. These rules generate a set
of English sentences (phrases of category IP), complete with phrase-structures, via
successive expansion of nodes in the usual way. The sentences thus generated are
simply those having the forms described by the schemata of Section 1, together with
the two additional schemata

�����	��
 �� �#�*�-� �!� �2�3�� �#���	����� .

Since these are equivalent to ��� � � � �3� and
�����	��
 � � � �3� , respectively, they do

not affect the expressive power of the fragment.
The above grammar rules have been divided into three groups: a syntax, consisting

of the rules for non-terminal categories, a formal lexicon, consisting of the rules for
the syncategoremata � ��� , � ��� � , ��� , and a content lexicon, consisting of an indefinite
number of rules for common and proper nouns. Thus, the syntax and formal lexi-
con contribute exclusively to form, while the content lexicon contributes exclusively
to content, as defined for this fragment in Section 1. It helps to think of the syntax
and formal lexicon as together defining a family of fragments of English, each mem-
ber of which is determined by its content lexicon. We denote this family of English
fragments by ��� . To avoid cumbersome formulations and notation, however, we oc-
casionally speak of “the fragment � � ” to refer to the union of all these fragments. In
practice, no confusion need arise from this abuse of terminology.

The meanings of sentences of � � can be provided using the techniques of Montague
semantics. The idea is to augment the grammar rules with information specifying the
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semantic value of each node in the phrase-structure of a sentence. The semantic values
of terminal nodes are given directly by the formal lexicon and the content lexicon; the
semantic values of nonterminal nodes are computed from the semantic values of their
daughters as specified by the syntax. The augmented grammar rules for the syntax
and formal lexicon are as follows.

Syntax

IP/ ������� � NP/ � , I
�
/ �

I
�
/ � � � � � N

�
/ �

I
�
/ �	�
���� �������
�������
� � � ���*�-� � N

�
/ �

NP/ � � PropN/ �
NP/ ������� � Det/ � , N

�
/ �

N
�
/ � � N/ � .

Formal lexicon

Det/ �������� ��������������������������� � � � � �
Det/ ��������  
���������
� �!�����
�"��� � � �*�-�.

Det/ ��������  
���������
� �#�$�����
�"��� � ���

Here, �����%� denotes the result of applying the function � to the argument � . Thus, the
augmented grammar rule for IP states that the meaning of an IP consisting of an NP
and an I

�
is computed by applying the meaning of the NP (as a function) to the meaning

of the I
�
. The augmented grammar rules for the content lexicon assign meanings to

common and proper nouns according to the following pattern.

Content lexicon

N/ �&�� ')(	*�������� � � ���
N/ �&�� ',+�-�./(	0����
��� � � � � � � �
. . .

PropN/ ���� ����1"+�23-/(	.�4516��� � � � � � �*� � �
. . .

Every such content lexicon defines a first-order signature, where each common noun
corresponds to a unary predicate and each proper noun to an individual constant.

It is straightforward to verify that the semantically augmented grammar rules for
� � map the six schemata of the previous section into formula schemata of first-order
logic as follows.

�����	��
 �� � ���  �����7
����� �98:���
�"� �2���� � ���  �����7
���
� �#�;8:�������� � � � �� ���!� ������7���������8	������� � � � � �� ���*�-� ��� ������7
���
�<�=�;8:���
�"�
�"� ����� 8:��>?� �"� ���*�-� ��� �;8:�@>A� ,

where 7 , 8 and > are the elements of the signature corresponding to the content lexicon
entries � , � and � . In contrast to the methods of traditional logic, we have adopted
the now standard non-presuppositional account of universal quantifiers, according to
which a sentence

���*�-�.
 � � � �)� is true if no � exist. (Traditional accounts of the
syllogism assign the reverse truth-value in this case.) Modulo the issue of presupposi-
tionality, we take it that the above translations faithfully capture the meanings of sen-
tences in � � as understood by English speakers. It is not possible formally to validate
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this assumption, since it relies on a pre-theoretic notion of meaning for � � -sentences.
In practice, however, it does not appear open to serious doubt.

The above semantics reduce the satisfiability and entailment problems for � � , as
defined in Section 1, to their counterparts in first-order logic. In particular, if $�� � � ,
and � is the corresponding set of first-order formulas, then $ is satisfiable in the
sense of Section 1 if and only if � is satisfiable in the usual sense of first-order logic.
This reduction rests on the correspondence between content lexicon and first-order
signature. More generally, the notions of satisfiability and entailment in fragments of
English defined in Section 1 rely crucially on a given—and indeed perhaps arbitrary—
separation of content and form. For � � , this separation was provided by the notion of
a distinguished content lexicon. We will maintain this separation in all the fragments
of English considered below.

In the sequel, if � is any expression or set of expressions (either in a natural or
a formal language), we take the size of � , denoted � ��� , to be the number of atomic
symbol (tokens) occurring in � . For natural languages, the atomic symbols are the
lexemes (and perhaps morphemes); for formal languages, the atomic symbols are the
logical connectives, the variables and the members of the signature. Using this notion
of size, we can formulate questions about computational complexity in the usual way.
Thus, the complexity of the satisfiability problem for some English fragment � is the
number of steps of computation required to determine algorithmically whether a given
finite set of sentences $�� � is satisfiable, expressed as a function of � $�� .

Our first result states that satisfiability in the fragment � � is computationally tractable.

THEOREM 2.1
The problem of determining the satisfiability of a set of sentences in � � is in PTIME.

PROOF. Let $ be a finite set of sentences of ��� , and let � be their translations into
first-order logic. It is obvious that � can be computed in linear time. Since we have
argued that � is satisfiable if and only if $ is satisfiable, it suffices to show that the
satisfiability of � can be determined in polynomial time.

Replace all formulas of the form ���������
� in � by the corresponding formulas ����>?� ,
where the > are new individual constants. The resulting set of formulas � �

is then
satisfiable if and only if � is satisfiable, and will involve a signature whose size is
bounded by � $�� . Now re-write � �

as a set of clauses (disjunctions of literals). After
factoring and eliminating tautologies, all these clauses will be of the forms �$7
���
�
	
8:����� , �$7
������	)�;8:����� , �$7������ , 7
��>?� or �$7
��>?� . It is easy to see that resolution applied to
such clauses will produce only more clauses of this form. The number of such clauses
is quadratic in the size of the signature of � �

. Hence the resolution procedure will
either produce a contradiction or will reach saturation after �,�� $�� �?� steps.

This simple result suggests a programme of work: take a fragment of English delin-
eated in terms which respect the syntax of the language; then determine the computa-
tional complexity of deciding satisfiability in that fragment, if, indeed, the fragment is
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decidable. From this standpoint, the syllogistic can be regarded as just one such frag-
ment, with very restricted syntax, and a correspondingly efficient decision procedure.
In the sequel, we shall investigate what happens as we expand our syntactic horizons.

3 Relative Clauses

One way to generalize the fragment � � is to add relative clauses, thus accommodating
arguments such as:

�����	��
���� � � �-� � ���*�-����� � � �#���	����� � � � � � ��� � 
 �-� ������	��
 � � � � � � � � � ��������	��
 � 
 �	� � � ��� � ��������	��
���� � � �-� � ���*�-� � ��� � ��� .
In this section we investigate the computational consequences of this generalization.

Our approach to the semantics of relative clauses loosely follows that of Heim and
Kratzer [9]. Let �	� be the fragment defined by the grammar rules for � � together with
the following additional grammar rules and formal lexicon rules.

Syntax

N
�
/ ������� � N/ � , CP/ �

CP/ �����%� � CSpec 
 / � , C
�

 / �

C
�

 / �	�  �&� � C, IP/ �

NP/ � � RelPro/ �
CSpec 
 �

Formal lexicon

RelPro/ �&�	�����&�� �������<����������� � ��� �� ��� � � �
C �

In addition, we assume that, following generation of an IP by these rules, relative pro-
nouns are subject to wh-movement to produce the observed word-order. For our pur-
poses, we may take the wh-movement rule to require: (i) the empty position CSpec 

must be filled by movement of a RelPro from within the IP which forms its right-
sister (i.e. which it C-commands); (ii) every RelPro must move to some such CSpec 

position; (iii) every RelPro moving to CSpec 
 leaves behind a trace � , which con-
tributes the semantic value �	�� �����"��� . The semantic information with which these rules
are augmented can then be understood as for � � , with meanings computed after wh-
movement. Figure 1 illustrates the structure of the first sentence in the above argu-
ment, with the arrow representing wh-movement in the obvious way.

For the sake of clarity, we have ignored the issue of agreement of relative pronouns
with their antecedents—animate or inanimate. This detail aside, we claim that the
above rules result in intuitively correct meanings for ��� -sentences. This claim may be
verified by hand-checking or (better) by direct implementation as a Prolog program.
Thus, for example, the above argument translates to:
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IP�����
philosopher

�������
	
stoic

�������
cynic

������

NP����� �����
philosopher

�������
	
stoic

�������������������

Det��������� ����� ���������������������

Every

N ������
philosopher

�������
	
stoic

�������

N�����
philosopher

�������

philosopher

CP��������� ����������	
stoic

�������

CSpec  ���!��������� ���������
���������

RelPro

who

C  ���"#� 	
stoic

��"����

C IP	
stoic

��"��

NP����� ����"����

t

I ������ 	
stoic

�������

is not a stoic

I ������
cynic

�������

is a cynic

$

FIG. 1. Typical phrase-structure in the fragment ���

 
����%'&'( 0 + 1"+)%'&�43-A���
�<���$16./+�( 2����
� �!2+* *,( 2 �������
 
����16./+�( 2����
� � ')(	*��������
 
����2�*�*'( 2����
� � ')(	*��������
 
����%'&'( 0 + 1"+)%'&�43-A���
� � ')(	*<������� .

As with � � , so too with �	� , it is not possible formally to validate the proposed se-
mantics; again, however, the fragment in question is so simple that they are not open
to reasonable doubt. It follows that a set of ��� -sentences is satisfiable in the sense
of Section 1 if and only if its translation is satisfiable in the usual sense of first-order
logic.

We have the following result:

THEOREM 3.1
The problem of determining the satisfiability of a set of sentences in ��� is NP-complete.

PROOF. To show membership in NP, let $ be a finite set of sentences of ��� , let �
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be their translations into first-order logic, and let � �
be the result of replacing all

existential quantifiers in � with new constants. Clearly, � �
can be computed in linear

time, and is satisfiable if and only if $ is satisfiable. Thus, it suffices to show that,
if � �

is satisfiable, then it has a model of size bounded by � � � � . But this is obvious
since � is only universally quantified, and hence its models are closed under taking
substructures.

To show NP-hardness, we reduce 3SAT to the problem of determining satisfiability in
� � . Let 0 be a set of propositional clauses, each of which has at most three literals.
Without loss of generality, we may assume all the clauses in 0 to be of the forms � 	 � ,
��� 	 �$� or ��� 	 �$� 	�� . We then map each clause in 0 to a sentence of � � as follows:

Clause � � -sentence
� 	 � ���*�-�.
!� � � � � �*� ��� � � � � �����	����� � � � �
��� 	 �$� �2� � � �����
��� 	 �$� 	�� ���*�-�.
 � ��� � � � � � ��� � ����� � ,

and finally add the � � -sentence
� ��� � � � � � � �*�!� ����� � � � � � �*� . Let the resulting set

of �	� -sentences be $ . These sentences translate to first-order logic according to the
following table:

�	� -sentence Formula�����	��
�� � � � � �*� ��� � � � � �#�*�-� ��� � ��� �  �����430 43',43* .5���������$������� � �����
�"�
�2� � � � ���  ���� ������� �#�$�������"������	��
�� ��� � � � � � ��� � � ��� �  ���� ������� � �����
� �������
�"�� � � ��� � � � � �*� � � ��� � � � � � � � ������430 43',43* .A������� 450 45',43* .A�����"� .

Let � be the set of formulas thus obtained. Thus $ is satisfiable if and only if � is
satisfiable. But it is routine to transform any satisfying assignment for 0 into a model
of � and vice versa. This completes the reduction of 3-SAT to ��� -satisfiability.

One question that sometimes arises in discussions of traditional logic, and indeed,
in exegesis of logical works from earlier epochs, is whether certain arguments can, by
careful massaging, be accommodated within the syllogistic framework. For example,
one might wonder whether arguments expressed in ��� have this property. Theorems
2.1 and 3.1 provide strong evidence that they do not. Unless �
	��� , satisfiability in
the fragment �	� cannot tractably be reduced to satisfiability in the fragment � � .

4 Non-copula verbs

Despite its greater computational complexity, ��� is still representationally impover-
ished: it is in no better position than � � to satisfy Augustus de Morgan’s famous
demand to account for the evident validity of the argument

�����	��
�� � � � � � � �������-� � � ������	��
�� � � � ��� � ��� ��� � � �������-� � � ��� � ��� ��� .
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Let us see what happens when we add relations to our fragment.
Let � � be the fragment defined by the grammar rules for ��� together with the fol-

lowing additional grammar rules.

Syntax

I
�
/ � � VP/ �

VP/ �����%� � V/ � , NP/ �

Content Lexicon

V/ ��>A�&�� > �����  (���' ( -/4 ����������� ��� � ��� ��� � � �
. . .

The wh-movement rule is carried over from � � . Note that this rule allows any NP in a
relative clause—in either subject or object position—to fill the appropriate CSpec.

The fragment � � includes the sentences in the following (lightly transcribed) version
of the de Morgan argument.

�����	��
 � � � � � � ���������	� � � ������	��
 ��� ��� ��� � � � � � � � � � � � � � ��� � � � �*� ��� ��� � � � � ��� � ���-� � � �	� ��� .
The reader may verify that the above rules translate this argument as follows.

 
��� horse ���
� � animal �����"�
 
��� head ����� �=��� � horse ����� � has ���	�"����� � head �����<����� � animal ����� � has �
�	�"�
�"�"� .

We claim that our semantics correctly capture the meanings of � � -sentences. Again,
therefore, a set of � � -sentences is satisfiable in the sense of Section 1 if and only if its
translation into first-order logic is satisfiable in the usual sense of first-order logic.

The reader may be wondering why our fragment � � does not allow VPs to be di-
rectly negated (though their NP complements may contain the negative determiner
��� ). The reason for this restriction is simply to avoid complications of a purely lin-
guistic nature concerning quantifier scoping and negative polarity determiners, for
example in sentences such as

�����	��
�� �*�� � � � �-� �,� � �#�*�-� � � � � ��� ��� ��� 
�� � ��� �*�-�.
 � � � � � .
In fact, adding full negation for non-copula verbs would not affect the computational
complexity of the satisfiability problem for � � , which is established in the follow-
ing theorem. To shorten the proof, we have also ignored proper nouns altogether;
the reader may easily verify that this feature of � � does not affect its computational
complexity either.

THEOREM 4.1
The problem of determining the satisfiability of a set of sentences in � � is EXPTIME-
complete.

PROOF. To show membership in EXPTIME, let $ be a finite set of sentences of � �
and let � be the set of their translations into first-order logic. Define an � � -formula
recursively as follows.
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1. If 7 is a unary predicate and � a variable, then 7
���
� is an � � -formula.

2. If 7 is a unary predicate, � a binary predicate, � , � variables and � ���
� an � � -
formula, then

7
����� ��� ���
� ��� ���
�
� �
��� �
��� ���,���������"� ��� ��� ���������,��� �������
 	� ��� �
��� ���,��� � ���"�  � ��� ����� ���,�
�	�"�
�"�

are � � -formulas.

A simple induction on the phrase-structures of � � -sentences shows that every N
�
con-

tributes a meaning of the form �&�� � ������� , where � is (modulo trivial logical manipu-
lations) an � � -formula. It follows that, by moving negations inwards and introducing
new unary predicate letters for subformulas, we can transform � into an equisatisfiable
set � �

of formulas of the forms

����� �����
�<�������
�"� �����������
�<�=�$�����
�"�
 ���� ������� �!�������"�  
��� �����
� �#�$�������"�
 ����@��������� �!���������  
��� �����
� � ��������� 	 �������"���
 ���� ������� �#��� �����
��� ���,���������"�"�  
��� �����
� �#��� �����
��� ��� ���	�"�����"�
 ���� ������� �#��� �����
��� �=�	�,���������"�"�  
��� �����
� �#��� �����
��� �=�	� ���	�"�����"�
 ���� ������� �  	�
�����
��� ���,��� � ���"���  
��� �����
� �  	�
�����
��� ���,�
�	�"�
�"���
 ���� ������� �  	�
�����
��� �#�	�,��� � ���"���  
��� �����
� �  	�
�����
��� �#�	�,�
�	�"�
�"��� ,

where � , � and � are unary predicates and � is a binary predicate. Since � �
can be

computed in polynomial time, it suffices to show that the satisfiability of � �
can be

decided in EXPTIME.

Suppose � �
is converted into a set of clauses 
 in the usual way. The key observation

is that every clause in 
 contains at most one occurrence of a binary predicate. Con-
sider the partial order on the set of atomic formulas defined by declaring every atom
involving a binary predicate to be greater than every atom involving a unary predi-
cate. Since this ordering is liftable, resolution under the restriction that only maximal
literals in clauses may be resolved upon is complete.

Suppose we now saturate 
 under resolution on atoms involving binary predicates.
Since each clause in 
 contains at most one binary predicate, this step can be com-
puted in quadratic time. Clauses containing any binary predicates cannot now take
any further part in ordered resolution, and so may be discarded. The result will be a
set of clauses 


�
, such that: (i) 
 has a model if and only if 


�
has; (ii) 


�
features

only unary (not binary) predicates and only unary function-symbols; and (iii) � 
 � � is
bounded by a polynomial function of � 
 � .
By (i), � �

is satisfiable if and only if 

�
has a model. By (ii) we can apply the splitting

rule to every clause in 

�

to obtain clauses involving only one variable. (The splitting
rule allows us to replace a clause � 	�� nondeterministically by � or � provided that
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� and � have no variables in common.) By (iii) the number of backtracking choices
generated by the splitting rule is at most exponential in � � � � . For each choice of how to
split clauses, the subsequent resolution procedure is confined to clauses in one variable
with bounded functional depth, and can easily be seen to reach saturation after at most
exponentially many steps.

To show EXPTIME-hardness, recall that the logic ��� is the modal logic � together
with an additional universal modality, whose semantics are given by

� 	���� � if and only if � 	��	�
� for all worlds 
 �
.

The satisfiability problem for ��� is EXPTIME-hard. (The proof is an easy adaptation
of the corresponding result for propositional dynamic logic: see, e.g. Harel et al. [8],
pp. 216 ff.) It suffices, therefore, to reduce this problem to satisfiability in � � . Let � be
a formula of ��� . For convenience, we take � to be the dual modality to � . For every
proper or improper subformula � of � , let �� be a noun. Let

� � and � � be verbs. Now
define, for each such � a set of formulas ��� � � � inductively as follows:

��� 	�� if � is atomic
� ����� 	�� � &�� � & ( �����	��
  � ��� � � � � ������ � � ������ ����� ����*�-�.
  ����� � � ���� � � ���*�-�.
  ����� � ������ � +
��� � 	 � � & ( ���*�-�.
�� � � � � � � ��� � � � � �����	� ���� � � � ����!� � �

�2�" � � � ����!� � +
�$# � 	�� � & ( �����	��
�� � � � � � � ��� � � � � ��� ��� �  � � � ����%# � ������	��
 %# � � � � ��� �  � +
�'&)(�	 � � & ( �����	��
 � � � � � �*� ��� � � � � � � ��� �  � � �������& � ������	��
  & � � � � ��� � *� + .

Now let �'( be the collection of � � -sentences

( �����	��
 *� � � ��� � � � � � � � �3� a subformula of � + &
( � � � �  ( � � ���� ( � �����	��
�� � � � � � � � � � �*�-�.
�� � � � � �*� +,+

It is routine to show that � is satisfiable if and only if �)( & ��( is satisfiable.

5 Anaphora

There are still many simple arguments that cannot be captured by the fragment � � .
Here is one:

���*�-�.
 � � � � � � � � � � � � � ��� � � �.-0/�� � � / � � �*����*�-�.
1-,/���� � / � � �*� ����� � ��� � � �*�-�.
 � � � � � � ��� ��� � � � � � � � � � ����*�-�.
 � � � � � � � � � � � � � ��� � � �.-0/�� � � / � � �*� ��� ������� � ��� � � � � .
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(We assume that the pronouns above are resolved intrasententially.) So the next ques-
tion is what happens to the computational complexity of the satisfiability problem
when pronouns (

�*�  � � � ) and reflexives (
� � � � � �  ) are admitted.

Let the fragment ��� be defined by adding the following grammar rules to those
defining � �

Syntax

NP � Reflexive
NP � Pronoun
I
�
� NegP, VP

Formal lexicon

Reflexive � � � � � �  � � � � �����	� � � � ��
Pronoun � � � � ��� � � ��� � � � � � �*�-� �
NegP � �,� � �#�*�-� .

For technical reasons, we have added negation for non-copula verbs as well. (The
issue of verb-inflections in such sentences has been ignored, however.) To avoid prob-
lems of a purely linguistic nature concerning quantifier scoping and negative polarity
determiners, we insist that the VP in the rule I

�
� NegP, VP contain no determiner at

all after wh-movement. (Hence it contains a proper noun, pronoun, reflexive or wh-
trace.) This limited form of negation is all that is required to obtain the complexity
results below.

The content lexicon (for nouns and verbs) and the wh-movement rule are carried
over from � � . Furthermore, we take pronouns and reflexives, which are assumed al-
ways to have antecedents in the sentences in which they occur, to be subject to the
usual rules of binding theory, and in addition to obey a further restriction explained
below. We shall not rehearse binding theory here, referring the reader instead to a
standard text, such as Cowper [3], p. 171. For present purposes, we can use our
linguistic intuitions to determine which NPs a given reflexive or pronoun can take as
antecedent. We also forego a formal account of the semantics for � � , in order not to be
detained by the technicalities of handling bound-variable anaphora within the frame-
work of Montague semantics. A full semantic analysis of � � (with some inessential
variations) is given in Pratt-Hartmann [14]; for an approachable general account of
bound-variable anaphora and Montague semantics, see Heim and Kratzer [9], Chh. 9,
11. Accordingly, we shall simply assume in the present paper some mechanism for
producing faithful first-order translations of sentences of ��� along the lines outlined
for the other fragments considered above. For example, we expect the above argument
to be translated as follows:

 �����(�-". ( 1".5���
� �#��� ���	��-/45(
��2 - (:.5�����<� ��451 %'( 1�4515��� � ���"���
 ������	�&-�4A(
�&23-/(	.3����� �  � ��(	-�. ( 16.3�����<� ��451 %'( 1�4515�
�	�"�
� �!(���' ( -/4515���������"�"�
 �����(�-". ( 1".5���
� �#��� ���	��-/45(
��2 - (:.5�����<� (���' ( -/4515�
�	�"�
� � ��451 %'( 1"4A15����� �����"� .

We now come to the additional restriction on pronoun resolution mentioned above.
By way of introduction, consider the sentence�����	��
 � � � � � � ��� � � � � � � 
 � � � � ��� � �� �	� � � � � � � � � � �*�-�.
�-0/���� � / � � �*� ��� ������� � ��� �� � � � � �  .
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The phrase-structure of this sentence is shown in Figure 2; its translation into first-
order logic is

 �� �?� artist �����5� �=��� � � caretaker ��� � � � employ ��� � ��� � �"� �
 
��� � bureaucrat ��� �A� � admire ��� ���"���A� � despise ��� �������?�"��� .

That the arguments of the predicate admire in this formula are identical is due to the
use of the reflexive

� � � � � �  , which, according to binding theory, must coindex with the
NP headed by

-,/,� � � / � � �*� . As we see from Figure 2, this NP is the closest NP to the
reflexive

� � � � � �  in the phrase-structure of the sentence.
By contrast, the sentence
�����	��
 � � � � � � ��� � � � � � � 
 � � � � � � � �� �	� � � � � � � � � � ���	��
1-,/,� � � / � � �*� ��� ����� ��� � � � � � �

exhibits an anaphoric ambiguity, according to whether the antecedent of the pronoun� � � is the NP headed by � � � � � � or the NP headed by � � ��� � �� �-� . (The NP headed by-,/,� � � / � � �*� is not available as a pronoun antecedent here.) The translations of these
two readings into first-order logic, are, respectively,

 �� �:� artist �����5� �=��� � � caretaker ��� � � � employ ��� ���"� � �"� �
 
��� � bureaucrat ��� �A� � admire ��� ���"���5� � despise ��� �������?�"���

and

 ����/ �� � � artist �����5� � caretaker ��� � � � employ �������"� � � �
 
��� � bureaucrat ��� �A� � admire ��� ���"� � � � despise ��� �������?�"��� .

We see from Figure 2 that the NP headed by � � � � � � is closer to the pronoun, as mea-
sured along the edges of the phrase-structure, than is the NP headed by � � ��� � �� �-� .
Given that the NP headed by

-0/���� � / � � �*� is disallowed as an antecedent to the pronoun
in this sentence, the first reading is thus the one in which the pronoun takes its closest
allowed antecedent.

We notice something else about this first reading. Consider again its translation into
first-order logic. Although there are three variables in the formula, corresponding to
the three nouns in the sentence, the variables � � and � � never occur free in the same
subformula. Hence, we can replace � � by � � , to get the equivalent formula:

 �� �?� artist �����5� �=��� � � caretaker ��� � � � employ ��� � ��� � �"� �
 
� � � bureaucrat ��� � � � admire ��� � �"���3� � despise ��� ����� � �"��� .

The reader is invited to verify that no such move is available for the second reading.
This observation generalizes: it is shown in Pratt-Hartmann [14], Theorem 1, that
every sentence in �	� translates to a formula which may be written with exactly two
variables. (The details of the proof are somewhat tedious.)

Despite this limitation, it should come as no surprise that � � is more expressive
than � � . Table 1 lists some �	� -sentences and the formulas they translate to. In giving
these translations, we have supressed reference to the unary predicate corresponding



Fragments of Language 14

IP

NP

Det

Every

N �

N

artist

CP

CSpec

RelPro

who

C �
C IP

NP

t

I �
VP

V

employs

NP

a caretaker

I �
VP

V

despises

NP

Det

every

N �

N

bureaucrat

CP

CSpec

RelPro

who

C �
C IP

NP

t

I �
VP

V

admires

NP

him/himself

FIG. 2. Typical phrase-structure in the fragment � �
���������
	��� ���������������������
	��� �������� ���������� 	 ��� �����������! "� �,�$# ���% ����
���������
	��� �������� ���&�����'�"(*)+�,	��� �����������, 	-�"��. / �����10*�*�����! 2� �,�$# ���! ������
���������
	��� �������� �����"(*)+�,	��� ���3�����4�������, 	-�"��. / �����50��%�����! 2� �,�$# ���% 2� ���
���������
	��� �������� ���6�����7�, 	-�2��. /8�����'���������9	��� ��� �����5# ���! ������ ���*�����! 2� ���
���������
	��� ���3�����'���������:	��� �������� ���&�������+ 	-�2��. / �����5# ���! ������ ���*���;�% �����
<=(�	��� �������7�����2(*)+�,	��� �����>�� ���& 	'����� ��� �����������! "� �,� 	8# ���! "� ���
���������
	��� ���������������������
	��� �������� ���& 	>����� ��� �����������! "� �,�$# ���! "� ��
���������
	��� ���3�����'���������:	��� ��� ��� ���?�����! "� �
���������
	��� ���3�����'�"(*)@�+	��� ��� ����0*�?�����! �� �
���������
	��� ���3�����'���������:	��� �������� ���� 	'A�(����@��(�	,����� ��� ������	8# ���! "� �,�B�����! 2� ���
���������
	��� �������� ���6�����7���"(*)@�,	��� �������� ���& 	'���7���������� 	 ��� �������5# ���! "� ���6C!���! �� ��,�B�����! 2� ���

.

TABLE 1. Expressiveness of � �

to the noun � � � �ED , since all quantification is restricted to its extension anyway. Notice
the use of ‘donkey-anaphora’ in the last row of this table. This type of anaphora is
permitted in � � , subject of course to the restriction that pronouns always take their
closest allowed antecedent. In fact, these exampes suffice to establish the following
theorem:
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THEOREM 5.1
The problem of determining the satisfiability of a set of sentences in � � is NEXPTIME-
complete.

PROOF. It is well-known that satisfiability in the two-variable fragment of first-order
logic is NEXPTIME-complete (see, e.g. Börger, Gurevich and Grädel [2], Ch. 8.1).
Given the result that every � � -sentence translates into this fragment, membership in
NEXPTIME is immediate. For the hardness result, we may use the standard normal
form re-writing techniques to replace any formula � in the two-variable fragment of
first-order logic by an equisatisfiable conjunction of formulas of the forms appearing
in the right-hand column of Table 1. (We may assume without loss of generality that
� involves only binary predicates.) The corresponding set of ��� -sentences will then
be satisfiable if and only if � is satisfiable.

Finally, we consider what happens when we relax the artificial restriction on pro-
noun interpretation in � � , allowing a pronoun to take any allowed antecedent in the
sentence in which it occurs. As we have seen, this relaxation results in ambiguous
sentences, for example�����	��
 � � � � � � ��� � � � � � � 
 � � � � � � � �� �	� � � � � � � � � � ���	��
�-,/,� � � / � � �*� ��� �3��� ��� ��� � � � � .

In order to eliminate this ambiguity, we suppose such sentences to come complete
with (allowable) indexation patterns indicating the antecedents of any pronouns. For
instance, the above sentence would be replaced by the two sentences:�����	��
 � � � � � ��� ��� � � � � � � 
 � � � � � � � �� �	��� � � � � � � � � � ���	��
1-,/,� � � / � � �*��� ��� �

����� � ��� � � � ��������	��
 � � � � � ��� ��� � � � � � � 
 � � � � � � � �� �	��� � � � � � � � � � ���	��
1-,/,� � � / � � �*��� ��� �
����� � ��� � � � � � .

Let �	� be the fragment of ‘English’ thus obtained.
We can now formulate the satisfiability question for �
� as before, and ask what its

complexity is. Given that the three-variable fragment of first-order logic is undecid-
able, it is no surprise that the same fate befalls �
� .
THEOREM 5.2
The problem of determining the satisfiability of a set of sentences in � � is undecidable.

Actually, a slightly stronger result is shown in Pratt-Hartmann [13], Corollary 1: the
entailment problem for the positive fragment of �
� (no negation or negative determin-
ers) is also undecidable. Again, the details are tedious, and we omit them here.

6 Conclusions

The technical content of this paper is easily summarized. The following table lists
the five English fragments we have introduced, briefly describes their distinguishing
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features, and gives the complexity class of the corresponding satisfiability problem.

Fragment Distinguishing features Computational complexity

� � Syllogism PTIME
� � Relative clauses NP-complete
� � Non-copula verbs EXPTIME-complete
��� Restricted anaphora NEXPTIME-complete
� � Unrestricted anaphora undecidable.

So one could go on. There are many more fragments of English we could have anal-
ysed, of all levels of complexity. The utility of such an analysis from the point of view
of natural language engineering, at least in principle, should be obvious. Moreover,
the techniques required to carry out analyses of other fragments will be, in essence,
those used above: a specification of the fragment in terms of syntax rules, a formal se-
mantics mapping the fragment into first-order logic (or some other formal logic), and
the deployment of standard methods of computational complexity theory on the result-
ing fragment of formal logic. It should perhaps be pointed out that we cannot expect
the determination of all linguistically salient fragments to be quite as straightforward
as those considered here.

More generally, our analysis allows us to view the relationship between traditional
logic and mathematical logic in a more conciliatory light than has sometimes been the
case (Englebretsen [4], Sommers [16]). It would be wrong to think of the logic of the
Principia Mathematica as being so pitilessly superior to that of the Prior Analytics that
we can simply forget about the latter. Yes, first-order logic is more expressive than the
language of the syllogism; but expressiveness is a double-edged sword, because it cor-
relates, loosely at least, with computational complexity. Indeed, the very recent history
of logic, especially within Computer Science, is dominated by the search for logics
of limited expressive power whose satisfiability problems are decidable. The kinds of
fragments which have drawn most attention, for example various prefix classes (see
Börger, Grädel and Gurevich [2] for a survey), the guarded fragment (Andréka, van
Benthem and Németi [1], Grädel [6]) and the two-variable fragment (Mortimer [12],
Grädel and Otto [7]), owe their salience to purely logic-internal considerations. But
there is every reason to consider also those logics arising from fragments of natural
languages. The syllogistic is one such logic. And if that logic is too inexpressive to be
of much practical use, perhaps its natural generalizations are not. We have presented
a selection of such generalizations in this paper.

Finally, the foregoing analysis should help to lay to rest some appealing but ulti-
mately confused ideas concerning the value of natural-language-friendly logic. Ac-
cording to its proponents, we obtain a better (i.e. more efficient) method of assessing
the validity of arguments couched in natural language if we reason within a logical
calculus whose syntax is closer to that of natural language than is—say—first-order
logic. This idea is attractive because it suggests an ecological dictum: treat the syntax
of natural language with the respect it is due, and your inference processes will run
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faster. Writers apparently expressing support for such views include Fitch [5], Hin-
tikka [10], Suppes [17], Purdy [15] and (perhaps) McAllister and Givan [11]. The
observations of this paper lend no support to such views, and indeed cast doubt on
them. There is no reason, having identified a fragment of a natural language, why
satisfiability within that fragment should not be decided by first translating into first-
order logic and then using procedures appropriate to the fragment of first-order logic
so obtained. Indeed, from a complexity-theoretic point of view, there is every reason
to believe that, for all but the most impoverished fragments, reasoning using schemata
based on the syntax of natural language will confer no advantage whatever.
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predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.
[2] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in

Mathematical Logic. Springer-Verlag, Berlin, 1997.
[3] Elizabeth A. Cowper. A Consice Introduction to Syntactic Theory. University of Chicago Press,

Chicago, 1992.
[4] George Englebretsen. Three Logicians. Van Gorcum, Assen, 1981.
[5] Frederic B. Fitch. Natural deduction rules for English. Philosophical Studies, 24:89–104, 1973.
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[7] Erich Grädel and Martin Otto. On logics with two variables. Theoretical Computer Science, 224(1–

2):73–113, 1999.
[8] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA., 2000.
[9] I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell, Oxford, 1998.

[10] Jaakko Hintikka. Quantifiers vs quantification theory. Inquiry, 5:153–77, 1974.
[11] David A. McAllester and Robert Givan. Natural language syntax and first-order inference. Artificial

Intelligence, 56:1–20, 1992.
[12] M. Mortimer. On languages with two variables. Zeitschrift für mathematische Logik und Grundlagen

der Mathematik, 21:135–140, 1975.
[13] Ian Pratt-Hartmann. On the semantic complexity of some fragments of English. Technical Report

UMCS-00-5-1, University of Manchester Department of Computer Science, Manchester, 2000.
[14] Ian Pratt-Hartmann. A two-variable fragment of English. Journal of Logic, Language and Information,

forthcoming.
[15] William C. Purdy. A logic for natural language. Notre Dame Journal of Formal Logic, 32(3):409–425,

1991.
[16] Fred Sommers. The Logic of Natural Language. Clarendon Press, Oxford, 1982.
[17] Patrick Suppes. Logical inference in English: a preliminary analysis. Studia Logica, 38:375–391,

1979.

Received 8th April, 2002


