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Abstract

We propose a novel frailty model with change points applying random effects to a Cox proportional hazard model
to adjust the heterogeneity between clusters. Because the frailty model includes random effects, the parameters are
estimated using the expectation-maximization (EM) algorithm. Additionally, our model needs to estimate change
points; we thus propose a new algorithm extending the conventional estimation algorithm to the frailty model with
change points to solve the problem. We show a practical example to demonstrate how to estimate the change
point and random effect. Our proposed model can be easily analyzed using the existing R package. We conducted
simulation studies with three scenarios to confirm the performance of our proposed model. We re-analyzed data
of two clinical trials to show the difference in analysis results with and without random effect. In conclusion, we
confirmed that the frailty model with change points has a higher accuracy than the model without the random
effect. Our proposed model is useful when heterogeneity needs to be taken into account. Additionally, the absence
of heterogeneity did not affect the estimation of the regression coefficient parameters.
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1 Introduction

Cox proportional hazard model is one of the primary analysis methods for time-to-event data. However, in recent
years, there has been a case in which the assumption of proportional hazard does not hold in time-to-event data in
some trials of immune checkpoint inhibitors such as nivolumab [1]. Immune checkpoint inhibitor (test drug group)
shows a survival curve similar to the control group because events occur in a population less likely to respond to
the test drug up to a point. On the other hand, after the point, the decrease in the survival probability of the
test drug group became slower; the survival curve of the test drug group then moves away from that of the control
group. Therefore, the assumption of proportional hazard may hold about each survival curve before and after the
point. We call the point “change point” in this paper.

To analyze these events accurately, the Cox proportional hazard model with change points is a valuable method.
Various types of research have been conducted on the Cox proportional hazard model with change points [2–8].
Liang et al. (1990) [2] proposed the proportional hazard model with one change point. Pons (2002) [3] extended
Liang’s model to time-dependent covariates and proved the consistency of the estimators of coefficient parameters
and the estimated change point. Liu et al. (2008) [4] and He et al. (2013) [5] proposed the maximal score tests
for detecting change points using a simple Monte Carlo approach. Ozaki and Ninomiya (2022) [8] proposed a novel
information criterion to determine the number of the best change points.

Cluster effects are commonly assumed in various research fields (McNeish and Kelley, 2019 [9]). For instance, in
clinical research, there are clusters of primary diseases, clinical facilities, and severity of interest disease. Commonly,
the cluster effects are included in assumed statistical models as random effects. The random effects capture cluster
specific variation, and fixed effects (e.g. interested treatment effects) which are not affected by the clusters can
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be estimated more precisely. A frailty model is a Cox proportional hazard model that accounts for heterogeneity
between clusters. The frailty model has various previous works (c.f. Klein (1992) [10]; Vaida and Xu, 2000 [11]),
however, change points has not yet to be considered.

In this study, we propose a novel frailty model with change points applying random effects to a Cox proportional
hazard model to adjust the heterogeneity between clusters. Because the frailty model includes random effects,
the parameters are estimated using the expectation-maximization (EM) algorithm proposed by Klein (1992) [10].
Additionally, our model needs to estimate change points. We propose a new algorithm extending the conventional
estimation algorithm to the frailty model with change points to solve the problem. Our proposed model can be
easily analyzed using the existing R package. We show a practical example that shows how to estimate the change
point and random effect. To confirm the performance of our proposed model, we conduct simulation studies with
three scenarios. In addition, we re-analyzed data from two clinical trials to show the difference in the results with
and without random effect.

This paper is organized as follows. Section 2 describes the proposed frailty model with change point and
introduces the estimation method of the model. Section 3 presents a practical example to demonstrate how to
estimate the change point and random effect of proposed model. Section 4 describes the setting and results of the
computer simulations. Section 5 presents the results of analysis of data from two published clinical trials. Section
6 provides a discussion of the results. The R program files used to analyze the simulation results and clinical trials
are included in the Supplemental Material.

2 Methods

We assume that there are M(≥ 2) clusters, the sample size is N , Ymi is a time-to-event of subject i for m-th cluster,
and xmi is a vector of q-dimensional covariates for m-th cluster. Ymi can be right censored; the observation data
Tmi is min(Ymi, Cmi), where Cmi is a censoring time. We assume that Cmi is independent of the other random
variables that is the special case of the type I censoring (see Kalbfleisch and Prentice, 2002 [12]). We assume
that there are K change points. The frailty model with change points considered in this paper is defined by giving
coefficient parameters between each change point,

λ(tmi;xmi,βk, vkm, τk) = λ0(tmi)vkm exp
[
βTk xmi

]
I(τk−1 < tmi ≤ τk), (1)

where λ0(·) is a nonparametric hazard function, vkm is a random effect on m-th cluster for interval (τk−1, τk], βk
is a vector of q-dimensional parameters for interval (τk−1, τk], and τk is an unknown change point for time point k.
The K change points hold 0 = τ0 < τ1 < · · · < τK < τK+1 = T , in which T is the follow-up period. We assume
that the distribution of vkm is the gamma distribution with the shape 1

θk
and the rate 1

θk
. Under this setting,

the mean and variance of vkm are 1 and θk, respectively. To simplify the notation, let β = (βT1 , . . . ,β
T
K ,β

T
K+1)T ,

τ = (τ1, . . . , τK)T , and θ = (θ1, . . . , θK , θK+1)T .
From here, we consider a proposed estimating procedure. Under the settings, the likelihood function becomes

l(λ0,β, τ , θ) = l1(λ0,β, τ ) +

K∑
k=1

l2(θk). (2)

where

l1(λ0,β, τ ) =

K∑
k=1

M∑
m=1

Nm∑
i=1

[
δmi

{
log(λ0(tmi)) + βTk xmi

}
− vkm exp(βTk xmi) (Λ0(tmi)− Λ0(τk−1))

]
I(τk−1 < tmi ≤ τk),

(3)

and

l2(θk) = −M
(

1

θk
log(θk) + log

(
Γ

(
1

θk

)))
+

M∑
m=1

{(
1

θk
+Dkm − 1

)
log(vmk)− vmk

θk

}
. (4)

where Nm is the sample size on the m-th cluster, δmi = I(Tmi = Ymi) and Dkm =
∑
i∈Ek

δmi, Ek is the set
of subject number to which the time-to-event in interval (τj−1, τj ]. l1(λ0,β, τ ) is the likelihood function for the
Cox proportional hazard model and change points. l2(θk) is the likelihood function for the frailty. Since the
parameters cannot be estimated analytically because of the random effects, we consider the extension of Klein
(1992)[9]. Moreover, because Klein’s algorithm is intuitively straightforward, the extension is simple to apply to
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our proposed frailty model with change points. The EM algorithm is as follows. First, to deal with the unobserved
random effect, the E-step calculates the expected values of the random effect.

The E-step
The conditional distribution on the observed data is the gamma with shape parameter Akm = 1

θk
+ Dkm and

rate parameter Bkm = 1
θk

+
∑
i∈Ek

Λ0(tmi) exp(βkxmi)I(τk−1 < tmi ≤ τk). The conditional likelihood function is

obtained by replacing vkm in the likelihood function with Akm
Bkm

. The initial value of θk is 1. The initial value of βk
is the estimator of the standard Cox proportional hazard model with change points.

The M-step
In the M-step, the estimator of the parameters that maximizes the conditional likelihood function in the E-step is
computed. For the conditional likelihood function of β and τ , the following profile likelihood function can be given
through the estimation of nonparametric hazards Λ̂.

Λ̂0(tmi) =
∑

r:tmr≤tmi

dmr∑
j:tmi<tmj

v̂km exp(βkxmj)I(τk−1 < tmj ≤ τk)
, (5)

dmr is the number of event at tmr. β and τ are estimated using the following partial likelihood function,

pl1(β, τ ) =

k∑
k=1

M∑
m=1

Nm∑
i=1

[
δmiβ

T
k xmi − dmi log

 ∑
j:ti<tj

v̂km exp(βTk xjm)

]I(τk−1 < tj ≤ τk), (6)

where v̂km = Akm
Bkm

. The estimator of θk is obtained by maximizing the conditional likelihood function on the
observed data,

cl2(θk) = −M
(

1

θk
log(θk) + log

(
Γ

(
1

θk

)))
+

M∑
m=1

{(
1

θk
+Dkm − 1

)
(log(Akm)− log(Bkm))− Akm

θkBkm

}
(7)

The candidate of change point τk is chosen from each time-to-event Ymi because the change point is considered
as the event point that may change the slope of the Cox regression in this model. Hence, for each τk, the actual
time-to-event is input. β and θ are then calculated. We fit all time-to-event combinations to the change point τk
and compute estimators β̂ of β from the equation (6) and θ̂ of θ from the equation (7) for each fixed change point.

The maximum likelihood estimator is the combination of β̂, τ̂ , and θ̂ that maximizes the likelihood function (2),
where τ̂ is input actual times-to-events.

3 Practical example

We demonstrate the analysis of change points. We create the example dataset shown in Table 1.
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Table 1: Example dataset
Placebo Group Treatment Group

ID ST Censor Cluster ID ST Censor Cluster
1 10 Yes 1 16 10 Yes 1
2 25 No 1 17 15 Yes 1
3 30 No 1 18 25 No 1
4 45 No 2 19 40 No 2
5 50 No 2 20 45 No 2
6 55 Yes 2 21 60 Yes 2
7 60 No 3 22 65 Yes 3
8 65 No 3 23 70 No 3
9 70 Yes 3 24 75 No 3
10 75 No 1 25 80 Yes 1
11 80 No 1 26 85 No 1
12 85 No 2 27 90 Yes 2
13 90 Yes 2 28 95 No 2
14 95 No 3 29 100 Yes 3
15 100 Yes 3 30 100 Yes 3

ST: survival time (Week)

First, we introduce the analysis of a single change point and no random effect. The set of candidate change points
consists of actual times-to-event. Data for the 12 candidate points of change point τ1 are (25, 30, 40, 45, 50, 60, 65, 70, 75, 80, 85, 95, 100).
The partial likelihood function with the unknown parameter β = (β1, β2)T for each τj is

pl(β, τ1) =

30∑
i=1

{(I(0 < ti ≤ τ1)β1 + I(τ1 < ti ≤ 100)β2)xi}

− log

( ∑
m∈R1

exp(β1xm)

)
− log

( ∑
m∈R2

exp(β2xm)

)
. (8)

R1 is the risk set for ti ≥ 0. However, when ti ≥ τ1, the data are treated as censored data, R2 is the risk set for
ti ∈ [τ1, 100]. For each change point, we calculate the estimator β̂ maximizing the partial likelihood function. β1
and β2 can be computed independently. The combination of β̂ and τ̂ that maximizes the partial likelihood function
is the maximum estimator. The maximum likelihood estimator was β̂ = (0.07,−0.76) and τ̂ = 50. Data analysis
was performed using coxph function of the survival package in R. For detailed information on the algorithms, please
refer to the supplemental material.

Next, we show the analysis results of the frailty model with one change point. The partial likelihood is

pl1(β, τ1) =
3∑

m=1

Nm∑
i=1

[
δmiβ

T
k xmi − dmi log

 ∑
j:ti<tj

v̂km exp(βTk xjm)

]I(τk−1 < tj ≤ τk), (9)

and

cl2(θ1) = −3

(
1

θ1
log(θ1) + log

(
Γ

(
1

θ1

)))
+

3∑
m=1

{(
1

θ1
+D1m − 1

)
(log(A1m)− log(B1m))− A1m

θ1B1m

}
,

cl2(θ2) = −3

(
1

θ2
log(θ2) + log

(
Γ

(
1

θ2

)))
+

3∑
m=1

{(
1

θ1
+D2m − 1

)
(log(A2m)− log(B2m))− A2m

θ2B2m

}
. (10)

We input 50 to τ1, D11 = 3, D12 = 4, D13 = 0, D21 = 3, D22 = 2, and D23 = 5. From the coxph function in R,
the maximum likelihood estimators were easily calculated β̂ = (−0.35,−1.56), τ̂ = 80, and θ̂ = (0.00, 1.78). Note
that θ̂1 was not 0 but a very small value. When survival time was biased by clusters, adjusting for the random
effect resulted in different change point estimates compared with the no random effect model. The survival curve
for each group and change points are shown in Figure 1.
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Figure 1: Survival curves and change points of example data
+ means censored. The red line and red letters are the change points of the frailty model with one change point. The dark blue dotted

line and dark blue letters are the change points of the Cox proportional hazard with one change point.

4 Simulation Study

We evaluated the performance of the frailty model with change points. We assume that the sample size is 500, and
the four category cluster is randomly assigned from (1, 2, 3, 4) with a probability of 0.25, xmi is randomly assigned
0 or 1 with a probability of 0.5, the change point is 250, the follow-up period is 600, β = (β0, β1)T = (0, 0.5)T , and
the non-informative censors occur a probability of 0.1. The number of simulations is 10,000. We prepared three
scenarios. Scenario 1 has no frailty. The survival data are generated from exp(β0xim)×Exponential

(
1

300

)
up to

the change point and exp(β1xim)×Exponential
(

1
300

)
after the change point. Scenario 2 has the frailty v1m and

v2m generated from Gamma(0.1, 0.1). The survival data are generated from v1m exp(β1xim) × Exponential
(

1
300

)
up to the change point and v2m exp(β2xim)×Exponential

(
1

300

)
after the change point. Scenario 3 is the case in

which the parameter of Gamma distribution in Scenario 2 changed to 0.2. The evaluation index for the simulation is
bias and mean squared error (MSE). The bias is the average of estimator for each simulation − the true parameter
value. The MSE is the average of the squared error of the difference between the estimators and true parameter
values for each simulation. The simulation program is included in the supplemental material.

4.1 Simulation Results

The simulation results are shown in Table 2. When there was no random effect in Scenario 1, the estimated results
of the random effects are close to zero in the frailty model. The MSEs for β̂ and τ̂1 were smaller in the frailty
model. In Scenarios 2 and 3, the MSE of the change point was improved by adjusting for the variation effect. The
change point bias was larger for the frailty model.

5



Table 2: Simulation results
Parameter CP without random effect Frailty model
Scenario 1 (θ1 = θ2 = 0)

Bias MSE Bias MSE
β1 -0.067 0.045 -0.042 0.036
β2 0.071 0.057 0.022 0.052
τ1 14.7 7958.8 25.7 7921.4
θ1 - - -0.010 0.001
θ2 - - -0.012 0.001

Scenario 2 (θ1 = θ2 = 0.1)
Bias MSE Bias MSE

β1 -0.067 0.047 -0.023 0.032
β2 0.049 0.055 0.007 0.049
τ1 18.5 8278.1 19.0 6840.9
θ1 - - 0.086 0.009
θ2 - - -0.016 0.020

Scenario 3 (θ1 = θ2 = 0.2)
Bias MSE Bias MSE

β1 -0.067 0.047 -0.020 0.030
β2 0.026 0.054 -0.008 0.046
τ1 22.6 8722.9 26.6 6346.9
θ1 - - 0.179 0.036
θ2 - - -0.039 0.057

CP: Cox proportional hazard model with change point, Frailty model: Frailty model with change point. Red letter: MSE result is
superior when the frailty is taken into account.

5 Clinical Trials

We show how the frailty model behaves when applied to data from two clinical trials.

5.1 Re-analysis of data of a clinical trial on primary biliary cholangitis

We included data from a clinical trial on primary biliary cholangitis (PBC); this was a placebo-controlled randomized
trial that included 72 patients in the D-penicillamine group and 62 patients in the placebo group [13]. There is
stage (S1: no progression, S2: mild progression, S3: moderate progression, and S4: advanced progression) as the
cluster. In the D-penicillamine group, the number of S1 is 9, the number of S2 is 26, the number of S3 is 29, and
the number of S4 is 8. In the placebo group, the number of S1 is 3, the number of S2 is 18, the number of S3 is 32,
and the number of S4 is 9. The survival curves are shown in Figure 2. The survival curves crossed near the 10-year
time point.
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Figure 2: Survival curves of cases in the PBC study
+ means censored. The red line and red letters are the change points of the frailty model with one change point. The dark blue dotted

line and dark blue letters are the change points of the Cox proportional hazard with one change point.

For the Cox proportional hazard model with one change point, β̂ = (0.61,−0.54)T and τ1 = 7.58. For the

frailty model with one change point, β̂ = (0.73,−0.19)T , τ1 = 7.66, and θ̂ = (0.66, 1.70)T . The data before the
change point had a small random effect, but after the change point, the random effect was large and the value of
β̂2 changed depending on the change point. The change point did not change markedly, but it shifted back a bit to
a point in time by taking into account the random effect.

5.2 Re-analysis of data of a clinical trial on malignant glioma

We included data from a clinical trial on malignant glioma (MG); the placebo-controlled randomized trial contained
110 patients in the group of patients treated with chemotherapeutic agents incorporated into biodegradable polymers
(polymer) and 112 patients in the placebo group [14]. There is tumor histopathology at implementation (path)
(P1: glioblastoma, P2: anaplastic astrocytoma, P3: oligodendroglioma, P4: other) as the cluster. For the polymer
group, the number of P1 is 76, the number of P2 is 14, the number of P3 is 15, and the number of P4 is 5. For the
placebo group, the number of P1 is 73, the number of P2 is 16, the number of P3 is 20, and the number of P4 is 3.
The survival curves are shown in Figure 3.
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Figure 3: Survival curves of cases in the MG study
+ means censored. The red line and red letters are the change points of the frailty model with one change point. The dark blue dotted

line and dark blue letters are the change points of the Cox proportional hazard with one change point.

For the Cox proportional hazard model with one change point, β̂ = (−0.44, 0.18)T and τ1 = 30.14. For the

frailty model with one change point, β̂ = (−0.45, 0.18)T , τ1 = 32.57, and θ̂ = (0.40, 0.08)T . Because the random
effects are small, the estimators remained almost unchanged.

6 Discussion

We propose the novel frailty model with change points to adjust the heterogeneity between clusters. There are
clusters of primary diseases, clinical facilities, severity of interest disease, and so on. Our proposed model can be
easily analyzed using the coxph function and frailty option. We confirmed that the accuracy of the estimation is
increased by considering heterogeneity. Our simulation studies showed that the accuracy of change point estimation
deteriorated because of heterogeneity, and the accuracy of estimation was improved using the frailty model. We
included the R program code of analyses for the practical example, simulation, and two clinical trials in the
Supplementary Materials. From the simulation study, we confirmed that adding frailty in all estimators for all
scenarios resulted in smaller MSEs. Increasing the size of the random effect confirmed that the estimated change
point of the Cox proportional hazard model with the change point model has a larger MSE. This suggests that the
random effect affects the estimation accuracy of the change point. In the frailty model with the change point, the
MSE of the change point estimator became smaller as the random effect increased. The accuracy of data estimation
increased as the random effects were adjusted. The bias of the average estimated change points is larger for the
frailty model, but the MSE is very large that we considered the difference in bias between the models to be within
the margin of error. In the re-analysis of data from the PBC trial, the random effect size was more significant in the
interval where the survival function is crossed. We confirmed that the estimates of the parameters of the regression
coefficients change when the random effect is taken into account. In the re-analysis of data from the MG trial, the
estimation results did not differ regardless of the presence or absence of frailty because of the small variate effects.
Thus, this analysis confirmed that our model does not deviate from the estimation results of the Cox proportional
hazard model with a change point when the variate effects are small. In conclusion, we confirmed that the frailty
model with change points has higher accuracy than the model without the random effect. Our proposed model
can be easily analyzed using the existing R package. Our proposed model is useful when heterogeneity needs to
be taken into account. Additionally, the absence of heterogeneity did not affect the estimation of the regression
coefficient parameters.
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wrote the manuscript. OS proposed the research theme, reviewed and corrected the manuscript.
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