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Abstract: Frailty has been introduced as a group-wise random effect to describe the

within-group dependence for correlated survival data. In this article, we propose

a penalized joint likelihood method for nonparametric estimation of hazard func-

tion. With the proposed method, the frailty variance component and the smoothing

parameters become the tuning parameters that are selected to minimize a loss func-

tion derived from the Kullback-Leibler distance through delete-one cross-validation.

Confidence intervals for the hazard function are constructed using the Bayes model

of the penalized likelihood. Combining the functional ANOVA decomposition and

the Kullback-Leibler geometry, we also derive a model selection tool to assess the

covariate effects. We establish that our estimate is consistent and its nonpara-

metric part achieves the optimal convergence rate. We investigate finite sample

performance of the proposed method with simulations and data analysis.
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1. Introduction

With grouped survival data, the correlation between subjects within the
same group cannot be ignored. To model this dependence, a common approach
is to introduce a group-wise random effect called frailty. The frailty models have
been widely used in analyzing different types of grouped survival data. Examples
include Sastry (1997), Fine, Glidden, and Lee (2003), and Therneau, Grambsch,
and Pankratz (2003). In this article, we consider the shared frailty model, where
all subjects within the same group share a common frailty and the frailties of
different groups are independent.

The proportional hazards model has been commonly adopted in the study
of frailty. As a semiparametric approach, the proportional structure essentially
assumes a linear covariate effect on the log hazard function. When this assump-
tion is violated, the corresponding inferences become questionable. Moreover,
estimation with such frailty models relies on EM algorithms, whose convergence
is often slow, and further computation is needed for variance estimates; see Th-
erneau et al. (2003). These difficulties motivate development of the penalized
likelihood method in this article.
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In the absence of frailty, hazard estimation using penalized likelihood has
been studied. Some recent examples are Gu (1996), Joly, Commenges, and Leten-
neur (1998), Joly and Commenges (1999), and Du and Gu (2006). In those stud-
ies, the hazard estimate was obtained as the optimizer of a penalized likelihood
function, which consists of a likelihood part representing the goodness-of-fit, a
roughness penalty specifying the smoothness, and the smoothing parameters bal-
ancing the tradeoff. Compared with their parametric and semiparametric peers,
nonparametric hazard estimates possess certain advantages. First, they are more
robust against violations of parametric assumptions commonly made in paramet-
ric and semiparametric models. Second, they are usually smooth functions, which
are appealing for practitioners. Last, they can be more reliable exploratory tools
for selecting appropriate models.

Random effects have been introduced to penalized likelihood methods in
regression problems; see, e.g., Wang (1998), Ke and Wang (2001), and Gu and
Ma (2005). However, much less attention has been paid to penalized likelihood
hazard estimation with frailties. One exception was Rondeau, Commenges, and
Joly (2003), where a penalized marginal likelihood with frailty integration was
optimized to obtain the hazard estimate. This is in the line of Wang (1998) and
Ke and Wang (2001). A link between the penalized partial likelihood and the
proportional hazards frailty model was noted in Therneau et al. (2003).

In this paper, we propose a penalized joint likelihood hazard estimation
method. The joint likelihood consists of the conditional likelihood given frailties
and the likelihood of frailties, with the latter acting as a penalty on frailties.
The penalized joint likelihood penalizes both the frailties and the hazard func-
tion, earning the name “doubly penalized” estimation (Lin and Zhang (1999)).
The hazard function and the frailties are then estimated through the minimiza-
tion of the penalized joint likelihood. The variance component of the frailties is
treated as an additional tuning parameter, and jointly selected with the smooth-
ing parameters by minimizing a loss function derived through delete-one cross-
validation. To assess variability of the hazard estimate, point-wise confidence in-
tervals are constructed using the Bayes model for penalized likelihood. To assess
the covariate effects, a model selection tool is developed based on the functional
ANOVA decomposition and Kullback-Leibler geometry. We also establish the
asymptotic properties of the estimates.

The rest of the article is organized as follows. Section 2 gives details of
the proposed penalized likelihood method, including the model (Sec. 2.1), the
estimation procedure (Sec. 2.2), smoothing parameter selection (Sec. 2.3), confi-
dence intervals (Sec. 2.4), model selection (Sec. 2.5), and asymptotic properties
(Sec. 2.6). Section 3 is devoted to simulation studies, where the cross-validation
score, Bayesian confidence intervals, and model selection tool are examined. In
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Section 4, we apply the proposed methods to studies on lung and prostate cancer.
Remarks in the last section conclude the article.

2. Penalized Likelihood Frailty Model

2.1. Model

In a survival study, one usually observes X = min(T,C) and δ = I[T≤C]

for a subject, where T is the failure time and C is the right-censoring time.
Sometimes a left truncation time Z is also present, representing the time when
the subject entered the study. Let U be the covariate. In studies where subjects
are divided into p groups, a vector b = (b1, . . . , bp)T of unknown group frailties
is used to represent the heterogeneity across groups and capture the correlation
between subjects within the same group. Assume that T , C, and Z are mutually
independent conditional on U and b. Suppose T |(U,b) follows a survival function
S(t, u;b). One is interested in estimation of the hazard function h(t, u;b) =
−∂ log S(t, u;b)/∂t. Here the frailties b ∼ N(0, B) are unknown additive random
effects on the log hazard function, i.e.,

log h(t, u;b) = η(t, u) + zTb,

where z is the group indicator vector.
The observations are (Zi, Xi, δi, Ui, zi), i = 1, . . . , n. Let Σ = B−1. A

common choice of Σ is σ−2I, which corresponds to independent normal frailties
with unknown variance σ2. We propose to estimate η and b jointly through
minimization of

− 1
n

n∑
i=1

{
δi(η(Xi, Ui) + zT

i b) −
∫ Xi

Zi

eη(t,Ui)+zT
i bdt

}
+

1
2n

bT Σb +
λ

2
J(η). (2.1)

Here the first two terms form the negative log joint likelihood of η and b. J(η)
is a roughness penalty, and the smoothing parameter λ controls the trade-off
between the goodness-of-fit and the smoothness of η.

In survival analysis, η is often a function of time and covariate. With a
generic covariate u, a functional ANOVA decomposition of η is

η(t, u) = η0 + ηt(t) + ηu(u) + ηt,u(t, u), (2.2)

where η0 is a constant, ηt is the main effect of time t, ηu is the main effect of
covariate u, and ηt,u(t, u) is the interaction between time and covariate. When
ηt,u = 0, (2.2) reduces to an additive model for η, or the well-known proportional
hazards model. Various side conditions through averaging operators are needed
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to ensure the identifiability of the terms in (2.2); see Wahba (1990) and Gu
(2002).

2.2. Estimation

Consider the Hilbert space H = {η : J(η) < ∞} on the product domain T ×U
of time and covariate, in which J is a square semi-norm. Assume that the evalua-
tion functional [(t, u)]f = f(t, u) is continuous in H. Then H becomes a reproduc-
ing kernel Hilbert space. It possesses a reproducing kernel R(·, ·), a nonnegative
definite function with the reproducing property that 〈R((t, u), ·), f(·)〉 = f(t, u)
for any f ∈ H, where 〈·, ·〉 is the inner product in H. Let NJ be the null space
of J in H. Then H can be decomposed into a tensor sum NJ ⊕ HJ , with HJ

possessing a reproducing kernel RJ(·, ·).
Although H is infinite dimensional, in practice, minimization of (2.1) is per-

formed in a data-adaptive finite dimensional space. This can be done because
asymptotically the minimizer of (2.1) belongs to the same Sobolev space as the
true unknown parameter. Gu (1996) considered Hn = NJ⊕span{RJ((Xj , Uj), ·) :
δj = 1, j = 1, . . . , n}. Du and Gu (2006) considered a much smaller space
Hq = NJ ⊕ span{RJ(vj , ·) : j = 1, . . . , q}, where {vj}q

j=1 is a random subset
of {(Xi, Ui) : δi = 1, i = 1, . . . , n} and q → ∞ at a much slower rate of n

(e.g., q ³ n2/9 suffices for cubic splines). Without loss of generality, we use the
expression

η(t, u) =
m∑

ν=1

dνφν(t, u) +
q∑

j=1

cjRJ(vj , (t, u)) = φTd + ξT c, (2.3)

where φ and ξ are vectors of basis functions in, respectively, NJ and HqªNJ , and
d and c are vectors of coefficients. Substituting (2.3) into (2.1), one calculates
the minimizer of (2.1) in Hq by minimizing

Aλ(b, c, d)

= − 1
n

n∑
i=1

{
δi

(
φT

i d + ξT
i c + zT

i b
)
−

∫ Xi

Zi

exp
(
φ(t, Ui)T d+ξ(t, Ui)T c+zT

i b
)
dt

}
+

1
2n

bT Σb +
λ

2
cT Qc (2.4)

with respect to d, c and b, where φi is m × 1 with the νth entry φν(Xi, Ui),
ξi is q × 1 with the kth entry ξk(Xi, Ui), and Q is q × q with the (j, k)th entry
RJ(vj , vk).

Let Θ = (η, b), and write µΘ(g) = (1/n)
∑n

i=1

∫ Xi

Zi
g(t, Ui)eη(t,Ui)+zT

i bdt,
VΘ(g, h) = µΘ(gh), VΘ(g) = VΘ(g, g), and e(g) = (1/n)

∑n
i=1 δig(Xi, Ui). For a
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function z with z(t, Ui) = zi, we define µΘ(z), VΘ(z, z), VΘ(z, h), VΘ(g, z), and
e(z) similarly except that the terms g(t, Ui), h(t, Ui), and g(Xi, Ui) are replaced
by the constant zi. With the smoothing parameters determined using the pro-
cedure in Sec. 2.3, (2.4) is then minimized through Newton iterations with the
current estimate Θ̃ = (η̃, b̃) updated by Vz,z+ Σ

n Vz,ξ Vz,φ

Vξ,z Vξ,ξ+λQ Vξ,φ

Vφ,z Vφ,ξ Vφ,φ

b

c

d

 =

ez − µz + Vz,Θ

eξ − µξ + Vξ,Θ

eφ − µφ + Vφ,Θ

 , (2.5)

where, with g and h running through (z, ξ, φ), Vg,h = VΘ̃(g,hT ), µg = µΘ̃(g),
eg = e(g), and Vg,Θ = VΘ̃(g, η̃ + zT b̃).

2.3. Smoothing parameter selection

With varying smoothing parameters Λ = (λ, Σ), the minimizers of (2.1) de-
fine an array of possible estimates. Define the Kullback-Leibler distance between
the true Θ = (η,b) and the estimate ΘΛ = (ηΛ,bΛ) as

KL((η,b), (ηΛ,bΛ)) = E

[ ∫
T

Y (t)
{

(η(t, U)+ zTb− ηΛ(t, U)− zTbΛ

)
eη(t,U)+zT b

−(eη(t,U)+zT b − eηΛ(t,U)+zT bΛ)
}

dt

]
, (2.6)

where the expectation is with respect to Z, X, U , and b. Estimating (2.6)
through delete-one cross-validation and the counting process theory for frailty
model, one ends up with the score

Vα(Λ) = − 1
n

n∑
i=1

{
δi

(
ηΛ(Xi, Ui) + zT

i bΛ

)
−

∫ Xi

Zi

eηΛ(t,Ui)+zT
i bΛdt

}

+α
1

n(n − 1)

n∑
i=1

{
δiψ(Xi, Ui)T H−1

(
ψ(Xi, Ui) −

K1
n

)}
, (2.7)

which is minimized to select Λ = (λ, Σ). Here H is the Hessian matrix on the
left side of (2.5), K is a (p + q + m) × n matrix with columns ψ(Xi, Ui) =
(zT

i , ξ(Xi, Ui)T , φ(Xi, Ui)T )T , and 1 is a (p + q + m)-vector of all 1’s. See Ap-
pendix A (online) for detailed derivation. In (2.7), the constant α > 1 is added
to prevent occasional under-smoothing. Too big an α may introduce too much
bias into Vα, thus an α between 1 and 2 is often used in practice. When frailty
is absent, an α around 1.4 was suggested by Gu (2002) to ensure little loss of ef-
fectiveness. A similar range is indicated by our empirical studies in the presence
of frailty.
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2.4. Bayesian confidence intervals

In this section, we give confidence intervals for the hazard estimate of (2.1)
using the Bayes model of smoothing splines (Wahba (1983)). To connect (2.1)
with Bayes models, consider η = η0 + η1, where η0 has a diffuse prior in NJ

and η1 has a Gaussian process prior with mean zero and covariance function
E[η1(x1)η1(x2)] = (1/(nλ))RJ(x1, v

T )Q+RJ(v, x2), x1 = (t1, u1), x2 = (t2, u2) ∈
T ×U , Q = RJ(v, vT ) is as defined in (2.4), and Q+ is the Moore-Penrose inverse
of Q. Under these priors, the posterior mean and variance of η(x) + zT b can be
approximated, respectively, by ηΛ(x) + zT bΛ and ψT (x)H−1ψ(x)/n, where ψ

and H are defined in Section 2.3; see Appendix B (online) for a detailed proof.
Hence, for any given (x,z), the 100(1−α)% confidence interval for η(x)+zT b is(

ηΛ(x) + zT bΛ

)
± zα/2

√
ψT (x)H−1ψ(x)n−1,

where zα/2 is the (1−α/2)-quantile of the standard normal distribution. Setting
z = 0 yields the confidence interval for η(x).

2.5. Model selection

In this section, we develop a model selection tool based on the Kullback-
Leibler geometry and use it to assess the covariate effect. Suppose the estimation
of η has been done in space H1, but in fact η ∈ H2 ⊂ H1. Let η̂ be the estimate of
η in H1 and b̂ be the corresponding estimate of frailties. Treating b̂ as an offset
in the model, we define the Kullback-Leibler distance between two log hazard
estimates η1 and η2 as

KL(η1, η2) =
1
n

n∑
i=1

∫ Xi

Zi

{
eη1(t,Ui)+zT

i
ˆb
(
η1(t, Ui) + zT

i b̂ − η2(t, Ui) − zT
i b̂

)
−

(
eη1(t,Ui)+zT

i
ˆb − eη2(t,Ui)+zT

i
ˆb
)}

dt. (2.8)

Let η̃ be the Kullback-Leibler projection of η̂ in H2 (i.e., the minimizer of KL(η̂, η)
for η ∈ H2), and ηc be the estimate from the constant model. Set η = η̃+α(η̃−ηc)
for α real. Differentiating KL(η̂, η) with respect to α and evaluating at α = 0,
one has

1
n

n∑
i=1

∫ Xi

Zi

(
eη̃(t,Ui)+zT

i
ˆb − eη̂(t,Ui)+zT

i
ˆb
)(

η̃(t, Ui) − ηc(t, Ui)
)
dt = 0,

which, through straightforward calculation, yields KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃,
ηc). Hence the ratio KL(η̂, η̃)/KL(η̂, ηc) can be used to diagnose the feasibility of
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a reduced model η ∈ H2: the smaller the ratio is, the more feasible the reduced
model is. In the absence of frailty, Gu (2004) suggests a threshold of 0.05 for the
ratio. Our empirical study indicates that this threshold also works for the case
with frailty.

2.6. Asymptotic properties

In the proposed doubly penalized estimation, the variance component b is
folded into, and estimated as part of, the mean component. Thus, b can be
treated as “fixed” group effects satisfying Σb = 0. The constraint Σb = 0 is
necessary here for identifiability. For computation, this extra constraint is not
needed since it comes naturally from minimizing (2.1).

The model parameters are thus b and η. Let l = δ(η + zTb) −
∫ X
Z exp(η +

zTb)dt be the log-likelihood function. Let P and Pn be the expectation and the
empirical measure based on n observations, respectively. Take

d((b, η), (b∗, η∗)) =
{
‖b − b∗‖2 +

∫
(η − η∗)2dµ(t, U)

}1/2

as the distance between (b, η) and (b∗, η∗). We make the following assumptions.

Assumptions A1. Covariate U is bounded.

Assumptions A2. Let (bT , ηT ) be the unknown true value of (b, η).

(A2.1) For any fixed p, bT = (bT,1, . . . , bT,p)T is an internal point of a bounded
set and sup1≤j≤p |bT,j | < B1 < ∞ for a fixed B1 and any p.

(A2.2) ηT belongs to the Sobolev space Fs0 indexed by the order of derivative
s0, commonly s0 = 2. There exists M1 > 0 such that |ηT | ≤ M1 and
J(ηT ) < ∞.

Assumptions A3. There exist constants M3 > 0 and M4 > 0 such that, when
d((bT , ηT ), (b, η)) is small enough,

M4d
2((bT , ηT ), (b, η)) ≥ P[l(bT , ηT ) − l(b, η)] ≥ M3d

2((bT , ηT ), (b, η)). (2.9)

Assumptions A4. λ = Op(n−[(2s0)/(2s0+1)]) and all the eigenvalues of Σ are of
the order Op(n[2/(3(2s0+1))]).

Assumptions A5. p = O(n[1/(3(2s0+1))]).

Assumption A1 has been commonly made. Assumption A2.1 has the true
parameter not on the boundary of a set, and bT component-wise bounded.
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In Assumption A2.2, ηT resides in the Sobolev space Fs0 defined by J(η) =∫
[η(s0)(x)]2dx. The property of penalized likelihood also ensures η̂ ∈ Fs0 ; see

Wahba (1990). Assumption A3 can be checked by Taylor expansion of Pl. The
first inequality can be derived from the boundedness Assumptions A1 and A2.
For the second inequality, we note that Pl is maximized at (bT , ηT ). Thus
∂Pl/∂b

∣∣
b=bT

= 0 component-wise. We also have

∂2Pl

∂b∂bT

∣∣∣
b=bT

= −P
(
zzT

∫ X

Z
exp(ηT + zTbT )dt

)
. (2.10)

Under the boundedness assumptions, if Pr(X > Z) is bounded away from 0,
then the right hand side of (2.10) is bounded away from 0. With (2.10) and
a similar equation for η, A3 can be satisfied. Assumption A4 on the tuning
parameter λ matches that in standard spline studies. The assumption on Σ
is made so that the two penalties have equal orders. With A5, the proposed
method can accommodate two scenarios. The first has finite p; an example is
the lung cancer study in Section 4.1, where patients are grouped according to
the histological types of their tumors and there are a finite number of tumor
histological types. The second scenario has p increasing at a rate slower than n;
here both the number of groups and the number of subjects per group increase
with n. A representative example is the SEER data presented in Section 4.2,
where the grouping variable is the year of cancer diagnosis. With data being
collected regularly at the registry, the number of groups (years of diagnosis)
increases, while the number of people diagnosed per year (and hence the total
sample size) can grow at a much faster rate.

We note that some studies assume the number of groups p = O(n). An exam-
ple is recurrent event data, where each subject is considered as a group. A major
difference of such data from those satisfying Assumption A5 is that they have
bounded group sizes. As evident from our proof in Appendix C (online), estab-
lishing the asymptotic properties under the assumption p = O(n) would require
significantly different techniques. Thus we focus on data satisfying Assumption
A5.

Theorem 1. Under A1 and A2, the proposed model is identifiable. If A3−A5
also hold, d((b̂, η̂), (bT , ηT )) = Op(n−[(s0)/(2s0+1)]) and J(η̂) = Op(1) for the
minimizer (b̂, η̂) of (2.1).

Besides identifiability, Theorem 1 shows that η is estimable at the optimal
rate for a spline function. In addition, J(η̂) = Op(1), i.e., η̂ has the “proper”
amount of smoothness. We refer to Appendix C (online) for the proof.



FRAILTY MODEL WITH NONPARAMETRIC HAZARD 569

3. Simulation Studies

We conducted simulations to evaluate the proposed methods. Let W(a, b)
denote the Weibull distribution with density function f(t) = (a/ba)ta−1e−(t/b)a

.
The corresponding hazard function and the log hazard function are respectively
h(t) = ata−1/ba and η(t) = log a + (a − 1) log t − a log b.

3.1. Performance of cross validation

To gauge performance of the cross validation score developed in Sec. 2.3,
we carried out two sets of simulations. In the first simulation, covariate Ui was
the scale parameter, Ui = 1 for i = 1, . . . , n/2 and 1.5 for i = n/2 + 1, . . . , n,
and Ti|Ui = u ∼ W(3, u). In the second simulation, covariate Ui was the shape
parameter, Ui = 1.5 for i = 1, . . . , n/2 and 4.5 for i = n/2+1, . . . , n, Ti|Ui = u ∼
W(u, 1). In both simulations, the censoring time Ci ∼ W(3, 2) and truncation
time Zi ∼ W(5, 0.3). In each simulation, one hundred replicates were generated.
Each data set was of size n = 100 and divided into p = 25 groups, with group
frailty bk ∼ N(0, 1). So Σ = σ2I with σ2 = 1.

The full model in (2.2) was used for data with the shape covariate and the
additive model with ηt,u(t, u) = 0 in (2.2) was used for data with the scale covari-
ate. Let KLe((η, b), (ηΛ, bΛ)) be the empirical Kullback-Leibler loss in (2.6). For
each replicate, the minimum Kullback-Leibler loss KLe((η, b), (ηΛ, bΛ)) achiev-
able by (2.1) was computed, along with the losses of the estimates when Λ was
selected by Vα(Λ) with α = 1, 1.2, 1.4, 1.6, 1.8, 2.0. The estimate σ̂2 for each α

was also recorded.
The performance of Vα(λ) is summarized in Figure 1. The box plots in the

top panels are σ̂2 from six CV scores in both simulations, with the true value
superimposed as the faded line. The box plots in the bottom panels are the
relative efficacy of all six CV scores in both simulations, defined as the ratios of
the minimum loss KLe to the loss KLe corresponding to the CV scores. These
plots suggest the best performance of Vα(λ) around α = 1.4, which agrees with
Gu (2002).

3.2. Bayesian confidence intervals

To assess coverage property of the Bayesian confidence intervals developed
in Sec. 2.4, we carried out four simulations with sample sizes n = 100, 400 and
two levels of censoring. In all the simulations, the failure time Ti ∼ W(3, 1)
and truncation time Zi ∼ W(5, 0.3), which led to a 5% truncation rate. In two
simulations, censoring time Ci ∼ W(3, 2), which gave an average censoring rate of
15%; in the other two simulations, Ci ∼ W(2, 1.5) and the average censoring rate
was 35%. Each simulation had 500 replicates with p = 10 and group frailties
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Figure 1. Performance of Cross-Validation Scores Vα(λ). Top: Esti-
mates of σ2 from Vα(λ) with α = 1, 1.2, 1.4, 1.6, 1.8, 2.0. Faded lines de-
note the true value σ2 = 1. Bottom: Relative efficacy of Vα(λ) with
α = 1, 1.2, 1.4, 1.6, 1.8, 2.0. Left: Data with scale covariate. Right: Data
with shape covariate.

bk ∼ N(0, 1). The smoothing parameters were selected using cross-validation
scores with α = 1.4. For each replicate and each point on the grid t = 0.5 to 1.5
by 0.01, a 95% confidence interval of η was calculated and compared with the true
value. The left panels in Figure 2 plot the point-wise coverage against the time
for the four simulations. The right panels in Figure 2 plot the estimates against
the true log hazard function (faded solid line). The plotted estimates include
the connected point-wise averages of the log hazard estimates (solid line), the
connected medians of the point-wise 95% confidence interval limits (dashed lines),
and the point-wise 0.975 and 0.025 quantiles of the log hazard estimates (faded
dashed lines). We can see that the quantiles of the log hazard estimates matched
well with the medians of confidence interval limits, indicating a proper magnitude
of standard errors. Also increasing the sample size appears to stabilize the point-
wise coverage, while increasing the level of censoring seems to pull down the
coverage a little bit. And it is reassuring to see the decrease of coverage towards
the upper end of the time axis where information from the data is vanishing.

3.3. Model selection

To assess the model selection tool developed in Sec. 2.5, we also carried out
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Figure 2. Bayesian Confidence Intervals. Left: Point-wise coverage against
time, faded line is the nominal confidence level 0.95. Right: Connected point-
wise averages of the log hazard estimates (solid line), connected medians of
the point-wise 95% confidence interval limits (dashed lines), connected point-
wise 0.975 and 0.025 quantiles of the log hazard estimates (faded dashed
lines), and the true log hazard (faded solid line).
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four simulations with sample sizes n = 100, 400 and two levels of censoring. In
each simulation, two sets of 500 data replicates were generated with p = 10
and group frailties bk ∼ N(0, 1). One set was a scale-covariate model with
Ti ∼ W(3, Ui) and Ui ∈ {1, 1.5}, and the other set was a shape-covariate model
with Ti ∼ W(Ui, 1) and Ui ∈ {1.5, 4.5}. In two simulations, the censoring time
Ci ∼ W(3, 2) and truncation time Zi ∼ W(5, 0.3), leading to an average censor-
ing rate around 25% and an average truncation rate around 8%; in the other two
simulations, no truncation was imposed and the censoring time Ci ∼ W(3, 3.5),
which led to an average censoring rate around 8%. For all the data replicates, we
first fitted the full model (2.2), and then used the model selection tool to check
whether it could be reduced to the additive model. The ratio KL(η̂, η̃)/KL(η̂, ηc)
was recorded for each data replicate. For replicates with a scale covariate the
real model is additive, so we should expect the reduction detected by the model
selection tool with small KL(η̂, η̃)/KL(η̂, ηc). For replicates with a shape covari-
ate, the real model is non-additive, so we should expect the reduction rejected
with large KL(η̂, η̃)/KL(η̂, ηc). A box plot of the ratios is presented in Figure 3
with the line KL(η̂, η̃)/KL(η̂, ηc) = 0.05 superimposed. For replicates with a scale
covariate, the number of ratios above 0.05 (out of the total 500 ratios in each
simulation) were respectively 82, 40, 2, 0 for simulations (n = 100, heavier censor-
ing), (n = 100, lighter censoring), (n = 400, heavier censoring), (n = 400, lighter
censoring). The success rate of detecting the hazard proportionality increased
with the sample size and decreased with the level of censoring. For replicates
with a shape covariate, all the ratios of the four simulations were above 0.05,
which led to successful detection of the non-proportionality. Hence the model
selection tool with a threshold of 0.05 was satisfactory for identifying the correct
model.

3.4. Comparison with stratified proportional hazards model

When the number of groups is fixed at p, a popular alternative method is
the stratified proportional hazards (SPH) model

hk(t, u) = h0k(t)eβT u, k = 1, . . . , p, (3.1)

where h0k(t) is the baseline hazard function for the kth stratum and β is the
common coefficient vector. The coefficient β in (3.1) is estimated by maximizing
the partial likelihood. Smooth estimates of h0i(t) can be obtained with a kernel
estimator ĥ0k(t) =

∫
Kτ (t − u)dĤ0k(t), where Kτ (t − u) = (1/τ)K((t − u)/τ) is

a kernel function with bandwidth τ , and Ĥ0k(t) is the Breslow estimator of the
cumulative baseline hazard function. The relationship between our model and
the SPH model is discussed in Section 5. In this section, we present simulations
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Figure 3. Model Selection. Left: Box plots of the ratios KL(η̂, η̃)/KL(η̂,
ηc) for replicates with scale covariate (additive model) and replicates with
shape covariate (full model). Right: Zoom-in of the ratios KL(η̂, η̃)/
KL(η̂, ηc) for replicates with scale covariate. The faded lines represent
KL(η̂, η̃)/KL(η̂, ηc) = 0.05.

comparing these two models under their common playground: the case of strat-
ified proportional hazards with h0k(t) = ebkh0(t) for some constants bk and an
unknown function h0(t).
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Table 1. Summary statistics of empirical Kullback-Leibler losses KLe

Mean Std. Dev. 1st Quartile Median 3rd Quartile
Proposed Model 0.045 0.014 0.035 0.043 0.053
Stratified PH 1.543 0.409 1.258 1.464 1.749

We simulated 500 data replicates, each with n = 200 and p = 8. The failure
times were Ti|Ui = u ∼ W(3, u) with Ui randomly generated from {0.5, 1.0, 1.5},
and the frailties bk ∼ N(0, 1). Thus the real hazard function has the form
hk(t, u) = (3ebkt2) exp(−3 log u). The censoring times Ci ∼ W(3, 2), which led to
an average censoring rate around 25%. There was no truncation. Both models
were applied to each data replicate with the empirical Kullback-Leibler loss KLe

between the truth and the estimate recorded. The proposed model was applied
under the assumption of an additive log hazard ηk(t, u) = η0 + ηt(t) + ηu(u) +
bk. The SPH model was implemented using log u as the only covariate and the
Epanechnikov kernel K(x) = 0.75(1 − x2), −1 ≤ x ≤ 1 with a fixed bandwidth
τ = 0.5 (Wells (1994)), the bandwidth τ = 0.5 being selected empirically such
that the resulting estimate was close to optimal in terms of minimizing KLe.
The summary statistics for the 500 KLe losses of the proposed model and those
of the SPH model are listed in Table 1. Clearly, the proposed model yielded
better estimates than the SPH model with kernel smoothed baseline hazards. A
possible improvement over the kernel estimate is to generalize the local bandwidth
selection criterion in Wells (1994). We do not pursued that here.

4. Applications

4.1. VA lung cancer study

In a clinical trial reported in Prentice (1973), 137 veteran males with ad-
vanced inoperable lung cancer were randomized to either a standard or test
chemotherapy. Eight of the 137 survival times were censored. Besides the sur-
vival time (in days) and the treatment, also recorded are the performance status
(completely hospitalized, partial confinement, or able to care for self), the dura-
tion time of disease up to randomization, age, indicator of having prior therapy
or not, and histological type of tumor (squamous, small cell, adeno, or large
cell). Age and disease duration have been found insignificant in studies such as
Kalbfleisch and Prentice (2002), so they were not included in the analysis here.

Patients with different histological types of tumor are expected to respond
differently to the treatments. However, the actual estimation of such effects is
of less interest. We thus grouped the patients according to the histological type
of tumor. For an intensively studied cancer like lung cancer, the number of
histological types of tumor is generally assumed fixed. This then corresponds to
the fixed p scenario described in Section 2.6.
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Figure 4. Hazard Estimates and Their Confidence Intervals for VA Lung
Cancer Data. Left: no prior therapy history (u〈h〉 = 0). Right: with prior
therapy history (u〈h〉 = 1). Top: completely hospitalized (u〈p〉 = 1). Middle:
partial confinement (u〈p〉 = 2). Bottom: able to care for self (u〈p〉 = 3). Solid
lines are the estimates at the specified covariate levels from model (4.1) with
frailties, dashed lines are the connected point-wise confidence intervals, and
faded lines are the estimates from model (4.1) without frailties.

Let η(t, u) be the log hazard at time t given the covariate u, where u =
(u〈t〉, u〈p〉, u〈h〉) consists of the treatment u〈t〉, performance status u〈p〉, and in-
dicator of prior therapy history u〈h〉. Our initial model consists of all the main
effects and all the two-way interactions (including the time-covariate interaction
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and covariate-covariate interaction). After applying the model selection tool re-
peatedly, we ended up with the model

η(ti, ui, zi) = η∅ + η1(ti) + η2(ui〈p〉) + η3(ui〈h〉)

+η1,2(ti, ui〈p〉) + η1,3(ti, ui〈h〉) + zT
i b. (4.1)

There are a couple of messages in this final model. First, all the terms involv-
ing treatment were dropped out of the model, indicating a negligible treatment
effect. This matches findings in Kalbfleisch and Prentice (2002). The second
message is that the proportional hazards model may not be valid here due to
the presence of the two time-covariate interactions. The non-proportionality is
also demonstrated by Figure 4, the plots of the hazard estimates and their confi-
dence intervals from the final model (4.1). The hazard estimates at the first level
(completely hospitalized, the top panels) of the performance status u〈p〉 show
drastically different trends from the estimates at the other two levels (the middle
and bottom panels). There are also visible differences between the hazard esti-
mates at the two levels of the prior therapy history u〈h〉 (the left panels versus
the right ones).

We also fitted the final model (4.1) without the frailties. The fitted haz-
ard rates were imposed in Figure 4 as faded lines. These two sets of hazard
estimates are slightly different for completely hospitalized patients (top panels),
but indistinguishable for patients who were partially confined (middle panels)
and patients who were able to care for themselves (bottom panels). Also the
estimated frailty variance σ̂2 = 0.21 in model (4.1), confirming a fair degree of
frailty effect.

4.2. SEER prostate cancer study

Hamilton and Ries (2007) and references therein show that survival of
prostate cancer patients may be affected by (a) clinical variables, such as stage
of disease and tumor grade; (b) demographic variables, such as age, race, and
geographic location; and (c) “environmental” variables, such as time of diagnosis.
Specifically, time of diagnosis may carry information such as the advancement
of medical treatments. In our study, we are more interested in the effects of
the clinical and the demographic variables, and less interested in estimating the
effect of time of diagnosis. Thus we treat the latter as a random effect and group
the patients by their time of diagnosis. Since more patient records are regularly
added to the registry database, the number of groups here (i.e., number of di-
agnosis time periods) increases over time, as well as the number of patients per
group. This corresponds to the second scenario described in Section 2.6.

The working dataset contains 800 patients diagnosed with prostate cancer
between 1975 and 2004 and reported to the Metropolitan Atlanta Registry of the
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Surveillance Epidemiology and End Results (SEER) Program. The survival time
was recorded as the number of months between the date of diagnosis and one
of the following: date of death, date last known to be alive, or follow-up cutoff
date. Covariates collected included year of diagnosis, age at diagnosis u〈a〉, marital
status u〈m〉 (married or not), race u〈r〉 (white or non-white), tumor grade u〈g〉
(3 levels), and county u〈c〉 (5 levels). Following common practice for analysis of
SEER data, we divided the year of diagnosis into six groups (1975−1979, . . .,
2000−2004) and assumed that patients in the same year group shared a common
frailty.

Our first model for the log hazard function η was an additive model with
the main effects of the five covariates. Application of the model selection tool in
Section 2.5 suggested that the effects of u〈r〉 and u〈c〉 were negligible. Thus, our
final model was

η(ti, ui, zi) = η∅ + η1(ti) + η2(ui〈a〉) + η3(ui〈m〉) + η4(ui〈g〉) + zT
i b. (4.2)

We plotted in Figure 5 the hazard components eηk , k = 1, 2, 3, 4, together with
their 95% confidence intervals. Clearly, higher hazard was associated with longer
survival time, older age at diagnosis, unmarried status and higher grade of tumor.
Such findings are consistent with the published results.

To see whether the inclusion of frailty was worthwhile, we fitted model (4.2)
without the frailties. The corresponding hazard components were superimposed
in Figure 5 as faded lines/stars. There is clear difference between the two sets of
estimates. The estimated frailty variance σ̂2 = 0.32 in model (4.2), confirming a
non-negligible level of frailty effect.

5. Discussion

We have proposed a frailty model to analyze correlated survival data with
penalized joint likelihood. By including the frailties b into the estimation, the
proposed penalized joint likelihood method turns the “variance component” into
“mean component”. This simplifies the model structure and reduces computa-
tional burden otherwise required, e.g., for the extra integrations over the frailties
when a marginal likelihood is penalized. Our treatment of b as “fixed” group
effects in Sec. 2.6 also fits this ”mean component” motivation of doubly penalized
methods.

Although we have only considered Σ = σ−2I in the simulations and appli-
cations, our main results are applicable to the other settings with more complex
Σ. One example has group frailties independent but with different variances,
resulting in a diagonal Σ with p distinct diagonal elements. Another example
has frailties time dependent as in Yau and McGilchrist (1998), say, following a
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Figure 5. Hazard Components and Confidence Intervals for SEER Data.
Solid lines/stars are the estimated hazard components from model (4.2) with
frailties, dashed lines in the top frames and error bars in the bottom frames
are the corresponding 95% confidence intervals, and faded lines/stars are the
estimates from model (4.2) without frailties.

first-order autoregressive process; then a Σ incorporating both the variance and
the autocorrelation parameter would be used in (2.1).

Besides normal random effects, there are other common choices of frailty
distributions in the literature. In principle, for any other type of random effects,
one can replace the term (1/2)bT Σb in (2.1) by the corresponding negative log
density to obtain the new penalized likelihood. However, normal random effects
are preferred here due to an unrestricted covariance matrix and more tractable
computation in the penalized likelihood setting.

When the number of groups p is considered fixed, as in the lung cancer ex-
ample, a popular alternative method is the stratified proportional hazards (SPH)
model (3.1) with kernel smoothed baseline hazards. By having stratum-specific
baseline hazards h0i(t), the SPH model allows more flexibility in modeling the
time effect difference between the group (or stratum) hazards, but the propor-
tionality assumption limits its flexibility in modeling the covariate effect that
can be nonlinear and interact with time in practice. On the other hand, the
group hazard in the proposed model is the product of a group-wise frailty and a
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nonparametric hazard function. The nonparametric part allows more general co-
variate effects including non-proportional and nonlinear effects. Our simulation
in Section 3.4, comparing the two approaches under their common applicable
setting, demonstrates a favorable performance of the proposed model.
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