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SUMMARY

The use of survival models involving a random effect or ‘frailty’ term is becoming more common.
Usually the random effects are assumed to represent different clusters, and clusters are assumed to
be independent. In this paper, we consider random effects corresponding to clusters that are spatially
arranged, such as clinical sites or geographical regions. That is, we might suspect that random effects
corresponding to strata in closer proximity to each other might also be similar in magnitude. Such
spatial arrangement of the strata can be modeled in several ways, but we group these ways into two
general settings:geostatistical approaches, where we use the exact geographic locations (e.g. latitude and
longitude) of the strata, andlattice approaches, where we use only the positions of the strata relative to
each other (e.g. which counties neighbor which others). We compare our approaches in the context of
a dataset on infant mortality in Minnesota counties between 1992 and 1996. Our main substantive goal
here is to explain the pattern of infant mortality using important covariates (sex, race, birth weight, age of
mother, etc.) while accounting for possible (spatially correlated) differences in hazard among the counties.
We use the GISArcView to map resulting fitted hazard rates, to help search for possible lingering spatial
correlation. The DIC criterion (Spiegelhalteret al., Journal of the Royal Statistical Society, Series B 2002,
to appear) is used to choose among various competing models. We investigate the quality of fit of our
chosen model, and compare its results when used to investigate neonatal versus post-neonatal mortality.
Wealso compare use of our time-to-event outcome survival model with the simpler dichotomous outcome
logistic model. Finally, we summarize our findings and suggest directions for future research.

Keywords: Markov chain Monte Carlo methods; Proportional hazards; Random effects model.

1. INTRODUCTION

Survival models have a long history in the biostatistical and medical literature (see e.g. Cox and Oakes
(1984)). Very often, time-to-event data will be grouped intostrata (or clusters), such as clinical sites,
geographic regions, and so on. In this setting, a hierarchical modeling approach using stratum-specific
frailties is often appropriate. Introduced by Vaupelet al. (1979), this is a mixed model with random
effects (the frailties) that correspond to a stratum’s overall health status.

∗To whom correspondence should be addressed

c© Oxford University Press (2003)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/1/123/246234 by guest on 16 August 2022



124 S. BANERJEE ET AL.

To illustrate, let ti j be the time to death or censoring for subjectj in stratumi , j = 1, . . . , ni ,
i = 1, . . . , I . Let xi j be a vector of individual-specific covariates. The usual assumption of proportional
hazardsh(ti j ; xi j ) enables models of the form

h(ti j ; xi j ) = h0(ti j ) exp(βT xi j ) , (1)

whereh0 is thebaseline hazard, which is affected only multiplicatively by the exponential term involving
the covariates. In the frailty setting, model (1) is extended to

h(ti j ; xi j ) = h0(ti j ) ωi exp(βT xi j )

= h0(ti j ) exp(βT xi j + Wi ) , (2)

whereWi ≡ logωi is the stratum-specific frailty term, designed to capture differences among the strata.
Typically a simple i.i.d. specification for theWi is assumed, e.g.

Wi
i.i.d.∼ N (0, σ 2) . (3)

At σ 2 = 0, model (2) reduces to model (1); in practice,σ 2 (like β and h0) is often estimated from
the data. We remark that nonnormal (e.g. power variance function family) distributions are often used to
model frailties; see e.g. Hougaard (2000, Chapter 7). However, the normal distribution facilitates modeling
correlation structure between them, as we shall describe in Section 2.

With the advent of Markov chain Monte Carlo (MCMC) computational methods, the Bayesian
approach to fitting hierarchical frailty models such as these has become increasingly popular (see e.g.
Carlin and Louis (2000), Section 7.6). The simplest approach perhaps is to assume a parametric form
for the baseline hazardh0. While a variety of choices (gamma, lognormal, etc.) have been explored in the
literature, in this paper we adopt the Weibull, which seems to represent a good tradeoff between simplicity
and flexibility. This then produces

h(ti j ; xi j ) = ρtρ−1
i j exp(βT xi j + Wi ). (4)

Now, placing prior distributions onρ, β, andσ 2 completes the Bayesian model specification. Such models
are by now a standard part of the literature, and easily fitted using theWinBUGS software (Spiegelhalter
et al., 1995a,b). Carlin and Hodges (1999) consider further extending model (4) to allow stratum-specific
baseline hazards, i.e. by replacingρ by ρi . MCMC fitting is again routine given a distribution for these

new random effects – say,ρi
i.i.d.∼ Gamma(α, 1/α), so that theρi have mean 1 (corresponding to a constant

hazard over time) but variance 1/α.
In this paper, we consider hierarchical survival models for datasets which arespatially arranged. That

is, we might suspect that frailtiesWi corresponding to strata in closer proximity to each other might also
be similar in magnitude. This could arise if, say, the strata corresponded to hospitals in a given region,
to counties in a given state, and so on. Such spatial arrangement of the strata can be modeled in several
ways, but we group these ways into two general settings:geostatistical approaches, where we use the
exact geographic locations (e.g. latitude and longitude) of the strata, andlattice approaches, where we use
only the positions of the strata relative to each other (e.g. which counties neighbor which others).

The remainder of our paper is organized as follows. In Section 2 we lay out our various approaches
for spatial frailty modeling, discussing possible advantages and disadvantages of each. Implementational
details for Bayesian computing and model selection are also discussed. Section 3 then applies these
models to a challenging dataset on infant mortality in Minnesota counties between 1992 and 1996. Our
main substantive goal is to explain the pattern of infant mortality using important covariates (sex, race,
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Frailty modeling for spatially correlated survival data 125

birth weight, mother’s age, etc.) while accounting for possible (spatially correlated) differences in hazard
among the counties. The GISArcView is used to create maps of the resulting fitted hazard rates, which
in turn are useful for detecting any lingering spatial correlation. After using the DIC criterion to compare
models, we investigate the quality of fit of our chosen model, and compare results from separate analyses
of neonatal and post-neonatal mortality. In Section 4 we investigate the relationship between our spatial
frailty approach and a simpler spatial logistic regression model. Finally, Section 5 summarizes our findings
and offers directions for future research in this area.

2. SPATIAL FRAILTY MODELING

2.1 Geostatistical models

In this section we adopt the traditional approach to modeling spatial association among observations at a
fixed set of spatial locations, referred to by Cressie (1993) asgeostatistical modeling. Such models assume
that the random process of interestY (s) is indexed continuously bys throughout a spaceD representing
the geographic region being studied. Such models are often used to predict the unobserved valueY (t) at
sometarget locationt, given observationsY ≡ {Y (si )} at knownsource locationssi , i = 1, . . . , I . A
common model is the Gaussian (normal) one, wherein we might assume

Y | µ, θ ∼ NI (µ, H(θ)) , (5)

whereNI denotes theI -dimensional normal distribution,µ is the (stationary) mean level, and(H(θ))i i ′
gives the covariance betweenY (si ) andY (si ′). The simplest form forH is an isotropic one, where we
assume spatial correlation to be a function solely of the Euclidean distancedii ′ betweensi andsi ′ . For
example, we might setθ = (σ 2, φ)′ and take the exponential form

(H(θ))i i ′ = σ 2 exp(−φdii ′), σ 2 > 0, φ > 0 . (6)

We hasten to add that while this is a simple and intuitive for other choices, such as the powered
exponential,

(H(θ))i i ′ = σ 2 exp(−φdκ
i i ′), σ 2 > 0, φ > 0, κ ∈ (0, 2] ,

the spherical, the Gaussian, and the Matérn (see e.g. Cressie (1993), or Stein (1999)) are also possible.
In particular, while the latter requires calculation of a Bessel function, Stein (1999, p. 51) illustrates its
ability to capture a broader range of local correlation behavior despite having no more parameters than
the powered exponential.

In our spatial survival context, we apply the geostatistical model (5) and (6) to our random frailties
Wi . Thus, writingW = {Wi } we replace the i.i.d. assumption forW in model (4) with the spatial structure

W | θ ∼ NI (0, H(θ)) . (7)

Adding prior distributions forρ, β, andθ completes a Bayesian specification using (4) and (7).
The isotropic model (6) works well for a broad class of datasets, but may need to be extended

for those exhibitinganisotropy (i.e. when the strength of spatial association in the frailties is higher
along one direction than another—say, due to disease spread that followed a prevailing wind direction).
Ecker and Gelfand (1999) describe Bayesian approaches for handling geometric anisotropy in traditional
geostatistical models.

2.2 Lattice models

In this section we replace the geostatistical frailty distribution that assumes the random processW is
indexed continuously throughout the spaceD, with a model which assumes thatW is defined only on
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126 S. BANERJEE ET AL.

discretely indexed regions such that the regions form a partition of the spaceD. This type of model is
often referred to as alattice model, where the partition of the spaceD is the ‘lattice.’ Models of this type
usually incorporate information about the adjacency of regions rather than any type of continuous distance
metric. We will consider

W | λ ∼ CAR(λ) , (8)

where CAR stands for aconditionally autoregressive structure (Besaget al., 1991). The most common
form of this prior (Bernardinelli and Montomoli, 1992) has joint distribution proportional to

λI/2 exp

−λ

2

∑
i adj i ′

(Wi − Wi ′)
2

 ∝ λI/2 exp

[
−λ

2

I∑
i=1

mi Wi (Wi − W i )

]
,

wherei adj i ′ denotes that regionsi andi ′ are adjacent,W i is the average of theWi ′ �=i that are adjacent
to Wi , andmi is the number of these adjacencies. This CAR prior is a member of the class ofpairwise
difference priors (Besaget al., 1995), which are identified only up to an additive constant. To permit the
data to identify an intercept termβ0 in the hazard function (2), we also add the constraint

∑I
i=1 Wi = 0.

A consequence of our prior specification is that

Wi | Wi ′ �=i ∼ N (W i , 1/(λmi )) . (9)

A vague (but proper) gamma hyperprior distribution forλ completes this portion of the model
specification.

Weremark that it would certainly be possible to include both spatial and non-spatial frailties, as is now
common practice in spatial lattice modeling (see e.g. Besaget al. (1991)). In our case, this would mean

supplementing our spatial frailtiesWi with a collection of non-spatial frailties, sayVi
i.i.d.∼ N (0, 1/τ).

One problem with this approach is that the frailties now become identified only by the prior, and so
the proper choice of priors forτ andλ (or θ) becomes problematic (see e.g. Eberly and Carlin (2000)).
Another problem is the resultant decrease in algorithm performance wrought by the addition of so many
additional, weakly identified parameters. While this latter problem actually thwarted us in our Section 3
data analysis, we mention the possibility here since it may well pay dividends in other spatial frailty
settings.

2.3 Bayesian implementation

As already mentioned, the models outlined above are straightforwardly implemented in a Bayesian
framework using MCMC methods. Suppose we adopt the geostatistical frailty model (7) (the expressions
for the CAR frailty model (8) follow similarly). Lettingγi j be a death indicator (0 if alive, 1 if dead), the
joint posterior distribution of interest is given by

p (β, W, ρ, θ | t, x, γ) ∝ L (β, W, ρ ; t, x, γ) p (W|θ) p(β)p (ρ) p(θ) , (10)

where the first term in the right-hand side is the Weibull likelihood, the second is the joint distribution
of the random frailties, and the remaining terms are prior distributions. In (10),t = {

ti j
}

denotes the
collection of times to death,x = {

xi j
}

the collection of covariate vectors, andγ = {
γi j

}
the collection

of death indicators for all subjects in all strata. Marginal posteriors of interest are obtained from (10) by
integrating out any unwanted parameters.
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For our investigations, we retain the parametric form of the baseline hazard given in (4). Thus

L(β, W, ρ ; t, x, γ) ∝
I∏

i=1

ni∏
j=1

{ρtρ−1
i j exp(βT xi j + Wi )}γi j exp{−tρi j exp(βT xi j + Wi )}. (11)

The model specification in the Bayesian setup is completed by assigning prior distributions forβ, ρ, and
θ. Typically, a flat (improper uniform) prior is chosen forβ, while vague but proper priors are chosen for
ρ andθ—say, aG(α, 1/α) prior for ρ, a G(a, b) prior for φ, and anI G(c, d) prior for σ 2, whereG and
I G denote the gamma and inverse (reciprocal) gamma distributions, respectively.

The Gibbs sampler (Gelfand and Smith, 1990) is used to update the parameters in the model. This
requires drawing samples from the full conditional distributions derived from (10). The complexity of the
likelihood in (11) precludes closed-form full conditionals, but the parameters may be updated conveniently
using Metropolis–Hastings substeps (Carlin and Louis, 2000, Section 5.4.4). The regression parameters
may also be updated using the adaptive rejection sampling algorithm of Gilks and Wild (1992), making
use of the log-concavity of their full conditionals.

2.4 Bayesian model choice

Bayesian comparison of a modelM1 versus anotherM2 has historically been accomplished using the
Bayes factor. However, Bayes factors can be difficult to compute using MCMC methods, and in any case
are not well defined for improper prior specifications such as ours. Thus, we are drawn to more informal
model choice methods.

Penalized likelihood criteria, such as the Akaike Information Criterion (AIC; Akaike, 1973) and the
Bayesian (Schwarz) Information Criterion (BIC; Schwarz, 1978), are computational shortcuts popular for
use with traditional, nonhierarchical statistical models. Recently, Spiegelhalteret al. (2002) have provided
asimple and intuitively appealing extension of the AIC criterion called thedeviance information criterion,
or DIC. This criterion is based on the posterior distribution of thedeviance statistic,

D(θ) = −2log f (y|θ) + 2logh(y) , (12)

where f (y|θ) is the likelihood function for the observed data vectory given the parameter vectorθ, and
h(y) is some standardizing function of the data alone (which thus has no impact on model selection). In
this approach, thefit of a model is summarized by the posterior expectation of the deviance,D = Eθ |y[D],
while thecomplexity of a model is captured by the effective number of parameters,pD. Spiegelhalteret
al. (2002) show that a reasonable definition ofpD is

pD = Eθ |y[D] − D(Eθ |y[θ]) = D − D(θ̄) ,

i.e. the expected deviance minus the deviance evaluated at the posterior expectations. Typically, this
‘effective’ parameter totalpD will be less than the actual total number of parameters in the model, due to
the borrowing of strength across random effects (in our case, theWi ). The DIC is then defined analogously
to the AIC as the expected deviance plus the effective number of parameters, i.e.

DI C = D + pD .

Since small values ofD indicate good fit while small values ofpD indicate a parsimonious model, small
values of the sum (DIC) indicate preferred models. As with AIC and other penalized likelihood criteria,
DIC is not intended for identification of the ‘correct’ model, but merely as a method of comparing a
collection of alternative formulations (all of which may be incorrect). Note also that DIC is scale-free; the
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128 S. BANERJEE ET AL.

choice of standardizing functionh(y) in (12) is arbitrary. Thus, values of DIC have no intrinsic meaning;
only differences in DIC across models are meaningful.

Besides its generality, an attractive aspect of DIC is that it may be readily calculated during an
MCMC run by monitoring bothθ and D(θ), and at the end of the run simply taking the sample mean
of the simulated values ofD, minus the plug-in estimate of the deviance using the sample means of the
simulated values ofθ. This quantity can be calculated for each model being considered without analytic
adaptation, complicated loss functions, additional MCMC sampling (say, of predictive values), or any
matrix inversion. For these reasons, we adopt it as our informal model choice criterion in the sequel.

3. APPLICATION TO MINNESOTA INFANT MORTALITY

3.1 Model fitting

Weapply the methodology above to the analysis of infant mortality in Minnesota. The data were obtained
from the linked birth–death records data registry kept by the Minnesota Department of Health. The data
comprise 267 646 live births occurring during the years 1992–1996 followed through the first year of life,
together with relevant covariate information such as birth weight, sex, race, mother’s age, and the mother’s
total number of previous births. Because of the careful linkage connecting infant death certificates with
birth certificates (even when the death occurs in a separate state), we assume that each baby in the data
set that is not linked with a death must have been alive at the end of one year. Of the live births only 1547
babies died before the end of their first year. The number of days they lived is treated as the responseti j in
our models, while the remaining survivors were treated as ‘censored’, or in other words, alive at the end
of the study period. In addition to this information, the mother’s Minnesota county of residence prior to
the birth is provided. The contiguous county neighbor structure as well as the latitude and longitude of the
centroids of these counties are available fromArcView. This information enabled us to implement both
the geostatistical and the lattice models discussed in Section 2. In addition, we investigate the non-spatial
frailty model (3), as well as a simple nonhierarchical (‘no frailty’) model, which simply setsWi = 0 for
all i .

For all of our models, we adopt a flat prior forβ, and aG(α, 1/α) prior for ρ which we make vague by
settingα = 0.01. Metropolis random walk steps with Gaussian proposals were used for sampling from the
full conditionals forβ, while Hastings independence steps with gamma proposals were used for updating
ρ.

For the geostatistical modeling of theWi (Section 2.1), we use the isotropic exponential correlation
function (6). The inter-county distances (i.e. thedii ′ in (6)) are computed using the coordinates of the
centroids of the counties. For the exponential correlation function, the quantity 3/φ may be thought of
as a measure of the effective isotropic range, i.e. the distance beyond which the correlation between the
observations drops to less than 0.05 (Ecker and Gelfand, 1997). Here we adopt a vagueI G(2, 0.01) prior
for σ 2, ensuring a mean of 100 but infinite variance. Forφ we take a vagueG(0.01, 100) prior, having
mean 1 but variance 100.

For the lattice model of Section 2.2, we use the CAR distribution for theWi . Here we require a
prior for the smoothness parameterλ. Note that this prior will implicitly determine the prior variability
of the random frailtiesWi (see e.g. (9)), but that it will do so differently for each county, depending on
the number of adjacenciesmi . Moreover, (9) is aconditional specification, in contrast to the marginal
specifications in (3) and (7), further complicating the selection of a prior ‘comparable’ to those already
selected forσ 2 and φ. While many authors (Bernardinelliet al., 1995; Bestet al., 1999; Eberly and
Carlin, 2000) have studied this comparability issue, in our case we are fortunate to have a dataset that
is large relative to the number of random effects to be estimated. As such, we simply select a vague
G(0.001, 1000) (mean 1, variance 1000) specification forλ, and rely on the data to overwhelm the priors.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/1/123/246234 by guest on 16 August 2022



Frailty modeling for spatially correlated survival data 129

Table 1. DIC and effective number of
parameters pD for the competing models

Model pD DIC
No frailty 8.72 511
Non-spatial frailty 39.35 392
CAR frailty 34.52 371
Geostat frailty 35.02 360

For each of the above models, we ran five initially overdispersed parallel MCMC chains, and
monitored them using measurements of sample autocorrelations within the chains, cross-correlations
between the parameters, and plots of the sample traces. For the nonhierarchical and non-spatial frailty
models, fairly rapid mixing and convergence to the stationary distribution was observed within 10 000
iterations. For the spatial models, however, convergence was much slower. Here our diagnostic tools
suggested discarding the first 20 000 iterations from each chain as pre-convergence burn-in. Retaining
every 10th of the remaining 5× 10 000 = 50 000 iterations yielded a final sample of size 5000 for
posterior analysis. We also note that the geostatistical model took much longer to run than the other two.
This can be attributed to the computations involving matrix inversions and determinant evaluations of
dimension 87× 87 within each iteration of the sampler (there are 87 counties in Minnesota). The LU
decomposition algorithm (Golub and Van Loan, 1996) was used for this purpose. The CAR model, on the
other hand, avoids this problem since it directly models the weight (inverse dispersion) matrix. The very
large size of our dataset precluded running our models inWinBUGS, so most of our computations were
carried out inVisual C++. Posterior summarization was accomplished inS-plus, while ArcView was
used for mapping the results.

Table 1 compares our four models in terms of two of the criteria discussed in Section 2.4, DIC and
effective model sizepD. For the no-frailty model, we see apD of 8.72, very close to the actual number of
parameters, 9 (8 components ofβ plus the Weibull parameterρ). The other three models have substantially
larger pD values, though much smaller than their actual parameter counts (which would include the 87
random frailtiesWi ); apparently there is substantial shrinkage of the frailties toward their grand mean.
The DIC values suggest that each of these models is substantially better than the no-frailty model, despite
their increased size. Of these, the two spatial frailty models have the best DIC values, though plots of the
full estimated posterior deviance distributions (not shown) suggest substantial overlap. On the whole we
seem to have modest support for the spatial frailty models over the ordinary frailty model.

Tables 2–4 provide 2.5, 50, and 97.5 posterior percentiles for the main effects in our three frailty
models, respectively. In all three models, all of the predictors are significant at the 0.05 level. Since the
reference group for the sex variable is boys, we see that girls have a lower hazard of death during the first
year of life. The reference group for the race variables is white; the native American beta coefficient is
rather striking. In the CAR model, this covariate increases the posterior median hazard rate by a factor of
e0.782 = 2.19. The effect of ‘unknown’ race is also significant, but more difficult to interpret: in this group,
the race of the infant was not recorded on the birth certificate. Separate terms for Hispanics, Asians, and
Pacific Islanders were also originally included in the model, but were eliminated after emerging as not
significantly different from zero. Note that the estimate ofρ is quite similar across models, and suggests a
decreasing baseline hazard over time. This is consistent with the fact that a high proportion (495, or 32%)
of the infant deaths in our dataset occurred in the firstday of life: the force of mortality (hazard rate) is
very high initially, but drops quickly and continues to decrease throughout the first year.

Evidence of the modest amount of spatial similarity in our dataset is provided by the posterior median
for φ in the geostatistical model (Table 4); its value of 0.043 implies a median effective spatial range of
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Table 2. Posterior summaries for the nonspatial
frailty model

Covariate 2.5% 50% 97.5%
Intercept −2.135 −2.024 −1.976
Sex(boys= 0)

girls −0.271 −0.189 −0.105
Race(white = 0)

black −0.209 −0.104 −0.003
native American 0.457 0.776 1.004
unknown 0.303 0.871 1.381

Mother’s age −0.005 −0.003 −0.001
Birth weight in kg −1.820 −1.731 −1.64
Total births 0.064 0.121 0.184
ρ 0.411 0.431 0.480
σ 0.083 0.175 0.298

Table 3.Posterior summaries for the CAR frailty model

Covariate 2.5% 50% 97.5%
Intercept −2.585 −2.461 −2.405
Sex (boys = 0)

girls −0.224 −0.183 −0.096
Race (white = 0)

black −0.219 −0.105 −0.007
native American 0.455 0.782 0.975
unknown 0.351 0.831 1.165

Mother’s age −0.005 −0.004 −0.003
Birth weight in kg −1.953 −1.932 −1.898
Total births 0.088 0.119 0.151
ρ 0.470 0.484 0.497
λ 12.62 46.07 100.4

Table 4.Posterior summaries for the geostatistical
frailty model

Covariate 2.5% 50% 97.5%
Intercept −2.531 −2.436 −2.394
Sex (boys = 0)

girls −0.248 −0.192 −0.104
Race (white = 0)

black −0.220 −0.104 −0.009
native American 0.464 0.753 0.962
unknown 0.318 0.807 1.136

Mother’s age −0.005 −0.004 −0.003
Birth weight in kg −1.970 −1.929 −1.889
Total births 0.082 0.111 0.146
ρ 0.460 0.484 0.497
φ 0.011 0.043 0.079
σ 0.080 0.147 0.264
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Fig. 1. Plot of posterior median frailties for the CAR (using circles as plotting characters), geostatistical (triangles),
and i.i.d. (county numbers) models, with covariates. Counties are sorted horizontally in increasing order of their CAR
median frailty.

3/0.043 ≈ 70 km. This is larger than the typical distance separating centroids of contiguous counties,
but far smaller than the maximum distance observed in our dataset (about 700 km). Indeed, this provides
some reason why our geostatistical and CAR results should be so similar, since in most cases, borrowing
strength from counties having centroids within 70 km will be nearly the same as borrowing strength
from adjacent counties. This similarity is quite apparent from Figure 1, which plots the posterior median
frailties for our three models. Model-distinct plotting characters are used: circles for CAR, triangles
for geostatistical, and the actual county number for non-spatial frailty. Clearly there are many counties
having radically different fitted frailties under the spatial and non-spatial models, but the fitted frailties are
virtually identical for the two spatial models. Given the geostatistical model’s roughly tenfold increase in
computer effort, we decided at this point not to consider it further in our analysis.

A benefit of fitting the spatial CAR structure is seen in the reduction of the length of the 95% credible
intervals for the covariates in the spatial models compared to the i.i.d. model. As we might expect, there
are modest efficiency gains when the model that better specifies the covariance structure of its random
effects is used. That is, since the spatial dependence priors for the frailties are in better agreement with
the likelihood than is the independence prior, the prior-to-posterior learning afforded by Bayes’ rule leads
to smaller posterior variances in the former cases. Most notably, the 95% credible set for the effect of
‘unknown’ race is (0.303, 1.381) under the non-spatial frailty model (Table 2), but (0.351, 1.165) under
the CAR frailty model (Table 3), a reduction in length of roughly 25%.

The solid curves in Figure 2 demonstrate the prior-to-posterior learning for two parameters (ρ andλ)
in our spatial CAR model, and two parameters (φ andσ ) in our geostatistical model. Note that in all four
cases, the priors are barely visible as nearly flat lines just above the horizontal axes, showing the relative
vagueness of the priors and the high degree of Bayesian learning. While this is itself suggestive of a high
degree of robustness to the prior, we checked this further by rerunning these two models under a prior that
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Fig. 2. Prior to posterior learning under base (solid) and ‘vague’ (dashed) priors.

is even more vague than the ‘base’ prior described above; namelyρ ∼ G(0.001, 1000) (mean still 1 but
variance now 1000),λ ∼ G(0.0001, 10, 000) (mean still 1 but variance now 10,000),φ ∼ G(0.001, 1000)
(mean still 1 but variance now 1000), andσ 2 ∼ I G(2, 0.001) (mean now 1000; variance still infinite). The
dashed curves in Figure 2 show little change in the marginal posteriors under these new priors. While this
confirms only the stability of our results under even less informative priors than ours, the only ‘genuine’
prior information available for this problem comes in the form of restrictions to known ranges (say, the
known maximal intercentroidal distance in the Minnesota map). In any case, in this analysis we prefer to
avoid overly informative priors where possible.

3.2 Mapping summaries

Wenow proceed to mapping summaries of our results. First, to further motivate inclusion of our covariates,
Figures 3 and 4 map the posterior medians of theWi under the non-spatial (i.i.d. frailties) and CAR
models, respectively, in the case whereno covariatesx are included in the model. The fitted i.i.d. model
indicates excess mortality in the north, which is accentuated and extended to a generally increasing pattern
from south to north by the CAR model. This trend, combined with the clear emergence of the Minneapolis
(county 27) and St Paul (county 62) urban area, strongly suggests the need for fitting covariates in our
model, most of which vary spatially.
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I.I.D. model (without covariates)

Fig. 3. Posterior median frailties, i.i.d. model without covariates, Minnesota county-level infant mortality data

CAR model (without covariates)

Fig. 4. Posterior median frailties, CAR model without covariates, Minnesota county-level infant mortality data
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I.I.D. model (with covariates)

Fig. 5. Posterior median frailties, i.i.d. model with covariates, Minnesota county-level infant mortality data

CAR model (with covariates)

Fig. 6. Posterior median frailties, CAR model with covariates, Minnesota county-level infant mortality data
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Fig. 7. Boxplots of posterior median frailties, i.i.d. and CAR models with and without covariates.

Figures 5 and 6 then repeat this mapping exercise for the models employing all the covariates listed in
Tables 2 and 3. As expected, no clear spatial pattern is evident in the i.i.d. map, but from the CAR map we
are able to identify two clusters of counties having somewhat higher hazards (in the southwest following
the Minnesota River, and in the northeast ‘arrowhead’ region), and two clusters with somewhat lower
hazards (in the northwest, and the southeastern corner). Thus, despite the significance of the covariates
now in these models, Figure 6 suggests the presence of some still-missing, spatially varying covariate(s)
relevant for infant mortality. Such covariates might include location of birth (home or hospital), overall
quality of available health or hospital care, mother’s economic status, and mother’s number of prior
abortions or miscarriages.

3.3 Model checking

In addition to the improved appearance and epidemiological interpretation of Figure 6, another reason
to prefer the full (with covariates) CAR model is provided in Figure 7, which shows boxplots of the
posterior median frailties for the four cases corresponding to Figures 3–6. The tightness of the full CAR
boxplot suggests this model is best at reducing the need for the frailty terms. This is as it should be,
since these terms are essentially spatial residuals, and represent lingering lack of fit in our spatial model
(although they may well also account for some excessnon-spatial variability, since our current models
do not include non-spatial frailty terms). Note that all of the full CAR residuals are in the range (–0.15,
0.10), or (0.86, 1.11) on the hazard scale, suggesting that missing spatially varying covariates have only a
modest (10–15%) impact on the hazard; from a practical standpoint, this model fits quite well.

We now consider several additional plots and diagnostics designed to check the fit of our Weibull-
lognormal CAR frailty model with covariates to the observed survival times. First, the solid curve in
Figure 8 traces the observed Kaplan–Meier curve (a nonparametric summary of the data), while the dot-
dashed curve gives the Kaplan–Meier curve based on a sample from the posterior predictive distribution
under the no-frailty model. The dashed curve is similar, except that it is under the CAR frailty model; for
this model, 95% equal-tail pointwise credible intervals are also shown as dotted curves. Note that these
intervals capture the data-based solid curve beginning near Day 20, whereas more than 100 days elapse
before the dot-dashed, no-frailty curve is reliably within the spatial frailty model bounds. Overall, the
agreement between the solid (data) and dashed (CAR frailty) curves is quite good, with the latter nearly
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Fig. 8. Kaplan–Meier plots for model checking: solid, as computed from the data itself; dot-dashed, from posterior
predictive samples, no-frailty model; dashed, from posterior predictive samples, CAR frailty model (with dotted
curves indicating 95% pointwise confidence limits).

perfectly capturing the initial drop during Day 1, as well as the slower decline in the post-neonatal period.
The area of disagreement lies in the period between Days 1 and 35. Banerjee and Carlin (2002) show that
asemiparametric (Cox) model is required to further improve the fit in this range for these data.

Next, we considered plots (not shown) of Bayesian standardized residuals, defined asri j = [ti j −
E(ti j |t)]/

√
Var(ti j |t), and found all to be less than 1 in absolute value. Finally, we computed a Bayesian

p-value (Gelmanet al., 1995, p. 169) based on the goodness-of-fit statisticD = ∑
i
∑

j [g(ti j ) −
E(g(ti j )|θ)]2/Var(g(ti j )|θ). This is computed as the empirical proportion ofD∗ replicates, each arising
from a posterior predictive sample, that exceed the actual observed value,Dobs. Taking g equal to the
identity function and the hazard function, the values obtained (0.264 and 0.312, respectively) also indicate
acceptable fit on both scales.

3.4 Neonatal versus post-neonatal mortality

Since the risk factors associated with neonatal (death within the first 28 days) and post-neonatal (death
during Days 29–365) mortality can be very different, infant mortality cases are frequently divided into
these two classes in the epidemiology literature. To check if a similar difference in risk factors would
be borne out in our setting, we refit our CAR frailty model to two modifications of our dataset: one
considering only neonatal mortality (where all deaths after 28 days are considered censored), and another
considering only post-neonatal mortality (where all deaths prior to 28 days are eliminated from the
analysis).

In our dataset, 934 (60%) of the 1547 deaths are neonatal; of these, 495 (32% of the total, and 53% of
the neonatal deaths) occur during the first day. Tables 5 and 6 give posterior summaries of the CAR frailty
model fits to the neonatal and post-neonatal groups separately. Note that sex, birthweight and total births
are significant for both groups, while mother’s age and native American race are significant only for the
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Table 5. Posterior summaries, CAR frailty model
applied to neonatal deaths

Covariate 2.5% 50% 97.5%
Intercept −0.378 0.003 0.385
Sex(boys= 0)

girls −0.393 −0.264 −0.134
Race(white = 0)

black −0.738 −0.464 −0.190
native American −0.256 0.146 0.549
unknown 0.301 0.899 1.495

Mother’s age −0.011 0.000 0.011
Birth weight in kg −2.487 −2.501 −2.524
Total births 0.0270 0.074 0.122
ρ 0.215 0.228 0.242
λ 18.58 52.14 109.70

Table 6. Posterior summaries, CAR frailty model
applied to post-neonatal deaths

Covariate 2.5% 50% 97.5%
Intercept −6.455 −5.884 −5.314
Sex(boys= 0)

girls −0.724 −0.554 −0.385
Race(white = 0)

black −0.021 0.277 0.576
native American 0.709 1.068 1.429
unknown −0.350 0.533 1.415

Mother’s age −0.064 −0.049 −0.032
Birth weight in kg −1.063 −0.936 −0.808
Total births 0.1597 0.2149 0.2701
ρ 0.7342 0.7923 0.8603
λ 14.45 48.01 104.2

post-neonatal group, and black and unknown race are significant only for the neonatal group. Thus the
two groups differ in ways that are both intuitive and substantively intriguing. Children of older mothers do
better in Days 28–365, suggesting that this group of children may receive better post-neonatal care. This
effect may, however, be somewhat confounded with birth weight, which while significant in both tables
plays a more dramatic role in the neonatal group. Native Americans have elevated post-neonatal mortality
(possibly due to distance from health care facilities with NICUs), while blacks have elevated neonatal
mortality. Previous studies of this area could of course suggest many other potential social, demographic,
and economic covariates for investigation. We also see an increase in the fittedρ value from Table 5 to
6, consistent with the less steep decrease in the survival curve during the post-neonatal period, previously
seen in Figure 8. Finally, maps (not shown) of the posterior median frailties for the two groups differ little
from the corresponding one for the combined group shown in Figure 6.
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4. COMPARISON OF SPATIAL FRAILTY AND LOGISTIC REGRESSION MODELS

Weare not aware of previous attempts at considering infant mortality as a time-to-event problem, with
or without spatial correlation. In more general contexts (say, a clinical trial enrolling and following patients
at spatially proximate clinical centers), a spatial survival model like ours may be the only appropriate
model. However, since our dataset does not have any babies censored because of loss to follow-up,
competing risks, or any reason other than the end of the study, there is no ambiguity in defining abinary
survival outcome for use in a random effects logistic regression model. That is, we replace the event time
datati j with an indicator of whether the subject did (Yi j = 0) or did not (Yi j = 1) survive the first year.
Letting pi j = Pr(Yi j = 1), our model is then

logit(pi j ) = β̃
T

xi j + W̃i ,

with the usual flat prior for̃β and an i.i.d. , CAR, or geostatistical prior for thẽWi . Other authors (Doksum
and Gasko, 1990; Ingram and Kleinman, 1989) have shown that in this case of no censoring before follow-
up (and even in cases of equal censoring across groups), it is possible to get results for theβ̃ parameters in
the logistic regression model very similar to those obtained in the proportional hazards model (1), except
of course for the differing interpretations (log odds versus log relative risk, respectively). Moreover, when
the probability of death is very small, as it is in the case of infant mortality, the log odds and log relative
risk become even more similar. Since it uses more information (i.e. time to death rather than just a survival
indicator), intuitively, the proportional hazards model should make gains over the logistic model in terms
of power to detect significant covariate effects. Yet, consistent with the simulation studies performed by
(Ingram and Kleinman, 1989), our experience with the infant mortality data indicate that only a marginal
increase in efficiency (decrease in variance) is exhibited by the posterior distributions of the parameters.

On the other hand, we did find some difference in terms of the estimated random effects in the logistic
model compared to the proportional hazards model. Figure 9 shows a scatterplot of the estimated posterior
medians ofWi versusW̃i for each county obtained from the models where there were no covariates, and
the random effects were assumed to i.i.d. The sample correlation of these estimated random effects is 0.81,
clearly indicating that they are quite similar. Yet there are still some particular counties that result in rather
different values under the two models. One way to explain this difference is that the hazard functions are
not exactly proportional across the 87 counties of Minnesota. A close examination of the counties that had
differing W̃i versusWi shows that they had different average times at death compared to other counties
with similar overall death rates. Consider for example County 70, an outlier circled in Figure 9, and its
comparison to circled Counties 73, 55, and 2, which have similar death rates (and hence roughly the same
horizontal position in Figure 9). We find County 70 has the smallest mean age at death, implying that it
has more early deaths, explaining its smaller frailty estimate. Conversely, County 14 has a higher average
time at death but overall death rates similar to Counties 82, 48, and 5 (again note the horizontal alignment
in Figure 9), and as a result has higher estimated frailty. A lack of proportionality in the baseline hazard
rates across counties thus appears to manifest as a departure from linearity in Figure 9.

The detection and implications of non-proportional hazards for the frailty terms has received little
attention in the literature to date. In this simple case where logistic regression is also an appropriate model
for the data, this comparison of estimated random effects appears to offer a useful diagnostic tool.

5. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper we have described several hierarchical approaches to frailty modeling for spatially cor-
related survival data, and illustrated the methods with a dataset on infant deaths by county in Minnesota.
Our decision to adopt Bayesian methods, implemented using MCMC computational algorithms, enables
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Fig. 9. Posterior medians of the frailtiesWi (horizontal axis) versus posterior medians of the logistic random effects
W̃i (vertical axis). Plotting character is county number; significance of circled counties is described in the text.

full posterior inference on the resulting main effects and county-level frailties, and without resort to model
simplifications or approximations. Our approach appears to pay dividends in the specific application. In
particular, the GIS maps of the smoothed frailties resulting from our models suggest overall trends in
infant mortality, as well as potential regions to target for further investigation (say, to uncover an as yet
unidentified spatially varying covariate) or public health intervention efforts. We have also clarified a
possible benefit to using spatial frailty models instead of simpler spatial logistic regression models (when
applicable) in spatially oriented survival analyses, and suggested a related diagnostic for departures from
proportional hazards.

The CAR prior, when implemented with the common 0–1 adjacency weighting we have used, is well
known to have awkward theoretical properties due to noninvertibility and edge effects; see e.g. Wall
(2000). That is, the adjacency weights implicitly determine a precision matrix that does not correspond
to a proper covariance structureH , as in (7); see e.g. Bestet al. (1999) and Carlin (1999) for further
discussion of this point. The CAR model can be made invertible by using weights satisfying a certain
condition (Besag and Kooperberg, 1995; Conlon and Waller, 1999) investigate the use of such a covariance
specification based on distance, and plot the induced CAR weights versus distance in an attempt to
calibrate these two approaches. However, the calibration is difficult, and in any case the approach forfeits
the computational simplicity of the weight-specification approach, since it now demands inversion of the
(typically large) H at each iteration, just as in the geostatistical approach. Since in our experience the
smoothed frailty maps are similar under the two procedures for comparable prior specifications, we tend
to favor the computationally simpler (weight-based) CAR approach.

Previous work by Carlin and Hodges (1999) suggests a generalization of our basic model (4) to

h(ti j ; xi j ) = ρi t
ρi −1
i j exp(βT xi j + Wi ) .

That is, we allow two sets of random effects: the existing frailty parametersWi , and a new set of shape
parametersρi . This then allows both the overall level and the shape of the hazard function over time to
vary from county to county. Either i.i.d. or CAR priors could be assigned to these two sets of random
effects, which could themselves be correlated within county. In the latter case, this might be fit using the
so-called ‘2-fold CAR’ model (Kimet al., 2001).
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Finally, one might wonder about nonparametric alternatives to our parametric (Weibull) baseline
hazard function. Clayton (1994) formulates the Cox model using counting process notation, and shows
how to estimate the baseline hazard and regression parameters using MCMC methods. While somewhat
contrived, frailty terms may be incorporated in this approach, and so could be exploited in our spatial
frailty setting. An alternative would be to use the mixture of monotone functions approach of Gelfand
and Mallick (1995), as illustrated for stratified data by Carlin and Hodges (1999); here again, the strata
become geographic regions, connected via a spatially correlated mixing distribution. We hope to explore
these and other extensions in a future manuscript.
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