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SUMMARY

The incidence of testicular cancer is highest among young men, and then decreases sharply with age.
This points towards a frailty effect, where some men have a much greater risk of testicular cancer than the
majority of the male population. Those with the highest risk get cancer, drain the group of individuals at
risk, and leave a healthy male population which has approximately zero risk of testicular cancer. This leads
to the observed decrease in incidence. We discuss a frailty model, where the frailty is compound-Poisson-
distributed. This allows for a non-susceptible group (of zero frailty). The model is successfully applied
to incidence data from the Danish and Norwegian registries. It is indicated that there was a decrease in
incidence for males born during World War II in both countries. Bootstrap analysis is used to find the
degree of variation in the estimates. In the Armitage–Doll multistage model, the estimated number of
transitions needed for a cell to become malignant is close to 3 for non-seminomas and 4 for seminomas in
both the Danish and Norwegian data. This paper demonstrates that a model including a frailty effect fits
the incidence data well and gives interesting results and interpretations, although this is no proof of the
effect’s truth.
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1. INTRODUCTION

Modelling of cancer incidence rates has a long tradition. Fisher and Hollomon (1951) and Nordling
(1953) found that the logarithm of the death rate for cancer increased six times as rapidly as the logarithm
of the age. The suggestion made by Nordling to explain this relationship was that a cancer cell could be the
end result of seven successive mutations. This was the inspiration for the multistage model of Armitage
and Doll (1954). However, the Armitage–Doll model and the other standard models of carcinogenesis refer
to the development in single individuals. If the models are applied to populations of individuals, there are
good reasons why one has to allow the parameters in the models to vary between individuals. The risk of
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2 T. A. MOGER ET AL.

the occurrence of the various stages leading to malignancy may differ substantially. There are a number
of known factors that may increase the risk of various cancers. Undoubtedly, there will also be a large
number of still unknown factors that could influence carcinogenesis. Among these, genetic factors will be
prominent and increasingly in focus, but certainly also many environmental and lifestyle factors remain to
be discovered. The variation in risk factors could lead to incidence curves which decline at a certain age,
even though the hazard at individual level is increasing for the bulk of the population. This paper shows
how the presence of frailty in an Armitage–Doll model can explain the observed incidence curves.

Incidence rates of cancer usually have to be inferred from data collected by cancer registries. These
data do not commonly contain detailed information about individuals’ risk factors. One is then faced
with the fact that the individual risk factors are generally unknown in studies used to explain incidence
patterns. To account for their influence, one has to allow for some random quantity to model individual
heterogeneity. This is precisely what is done in frailty theory, where the hazard is multiplied by some
random factor which represents the varying level of risk of different individuals (see e.g. Mantonet al.
(1997)).

The incidence of testicular cancer reaches a peak at 30–35 years of age, and then decreases sharply.
This points towards a frailty effect, with some men having a much greater risk of testicular cancer than
the majority of men. When those with the highest risk get cancer, the remaining population consists
mainly of individuals who are virtually non-susceptible to cancer. This paper is a follow-up of a previous
paper presented in an epidemiological setting (Aalen and Tretli, 1999), where a frailty model threw light
on this selection. They used a compound Poisson frailty distribution, which naturally allows for a non-
susceptible group (of zero frailty). The most important parameter is the proportion of susceptibles. The
model corresponds well to biological theories concerning the etiology of testicular cancer (Henderson
et al., 1988). There has been a strong increase of testicular cancer in recent birth cohorts, suggesting an
environmental effect. Because of this, the proportion of susceptibles was modelled as a function of birth
cohorts.

This paper uses the same model as Aalen and Tretli (1999) on incidence data from both the Norwegian
and Danish cancer registries, we shall compare the characteristics in cancer incidence over calendar time
and age for the two countries. Important issues are the parameter estimates, the increase in incidence
over calendar time and the decrease in incidence observed during World War II (see e.g. Bergström et al.
(1996) and Aalen and Tretli (1999)). Bootstrap estimation is used to get information on the uncertainty of
the estimates.

For reviews of frailty theory, see for example the introductions by Aalen (1994) or Hougaard (2000).
As usual in frailty theory we will assume that the hazard rate (i.e. incidence rate) of cancer for an individual
equals the product of an individual-specific quantityZ and a basic rateλ(t), hence the individual hazard
rate is Z λ(t), wheret denotes age. The basic rate is common to all individuals and specifies how the
hazard changes with age. The frailty variable,Z , specifies the level of the hazard for the given individual,
ahigh value ofZ giving a large risk for this individual, and a low value giving a small risk.

Obviously, this frailty model is a simplification. However, as pointed out above, there are biological
reasons to believe that a considerable part of the frailty variation is determined by events happening very
early in life (Aakreet al., 1996; Wanderaaset al., 1998), and it is therefore reasonable to assume a fixed
frailty variable independent oft . Furthermore, the concept of frailty here may also include hereditary
differences, which are of course determined at conception.

In order to apply the model one has to assume a reasonable distribution for the frailtyZ , and a
reasonable shape for the basic hazard rateλ(t). When applying frailty models in a univariate setting, the
analysis is often quite speculative since one has little knowledge about both the frailty distribution and the
basic hazard. However, in testicular cancer there is a good biological basis for making these assumptions,
and the frailty modelling in this setting is not particularly speculative. This is not to deny that a good fit
of the model is no proof of its truth, and other models can give equally good results.
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2. FRAILTY AND MULTISTAGE MODELS

The basic hazard rate is influenced by the process of carcinogenesis, i.e. development of cancer, for
which a number of well established statistical models exist. These models of carcinogenesis operate at
the level of the individual, so they disregard the frailty effect. The classical multistage model of cancer
development (the Armitage–Doll model, Armitage and Doll (1954)) leads to the assumption thatλ(t)
is the hazard rate of a Weibull distribution. This may also be inferred from extreme value theory. One
may imagine that cancer arises by one cell turning malignant (or giving rise to a daughter cell that turns
malignant). There are innumerable cells for which this could happen, and the probability distribution of
the time required for the first malignant cell would therefore be expected to follow an extreme value
distribution. This argument was put forward by Pike (1966). The Weibull distribution is one of the most
frequently applied extreme value distributions. In many cases empirically obtained incidence curves have
an approximate Weibull shape. The similarity between empirically obtained curves and the hazard rate of
an Armitage–Doll model is one of its strengths, and the primary reason why the model is used.

There are also a number of other more complex models of carcinogenesis, see for example Kopp-
Schneider (1997) for an excellent review. However, the resulting expressions for the distribution of time
to tumour are far more complex and not suitable for the statistical analysis carried out here. It appears,
though, that under quite wide assumptions the Weibull distribution is a good approximation as the time to
tumour in carcinogenesis (Kaldor and Day, 1987; Kopp-Schneider and Portier, 1991).

The Weibull model has the formλ(t) = a tk . In multistage models the numberk + 1 is biologically
interpreted as the number of transitions necessary to reach malignancy. So, one might think that the
variation between individuals is mainly in the factora, which is what the frailty model assumes.

By adding a frail proportion of individuals to a population in an Armitage–Doll model, we will show
the effect this has on the hazard curve of the total cohort. The model is illustrated above left in Figure 1. It
is a discrete-time Markov chain with seven states of malignancy development, where all states are transient
except for state seven, which is an absorbing state. This corresponds to a phase type distribution. The cell
starts as a normal cell in state one and reaches full malignancy in state seven. After having reached state
seven, the cell subsequently gives rise to a clone, thus starting the neoplasia. Ifp1, . . . , p6 denote one-step
transition probabilities, the transition probability matrix is given by

P =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 − p1 p1 0 0 0 0 0
0 1− p2 p2 0 0 0 0
0 0 1− p3 p3 0 0 0
0 0 0 1− p4 p4 0 0
0 0 0 0 1− p5 p5 0
0 0 0 0 0 1− p6 p6
0 0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
The model illustrated here is irreversible, which may not be expected in biological systems with repair and
tumour suppressor mechanisms. A model with non-zero elements on the sub-diagonal can yield different
shaped hazard curves, see Aalen (1995). Of course, the transition probabilityp1 is most important in
determining the shape of the hazard curve. A large value ofp1 gives a steeper curve. The time index
set for the Markov chain isT = (0, . . . , 80), which can be viewed as the age of an individual in years.
To be comparable to the clinical incidence curves, one has to assume that the time from malignant cell
to clinically detectable tumour is relatively constant between individuals. The frailty effect is produced
by adding a small proportion of individuals (e.g. 1%) who are at great risk of obtaining malignant cells,
parallel to the testicular carcinoma situation. The rest of the population (99%) is regulated to have a very
low risk, and a Weibull-shaped hazard for the malignancy. All individuals start in state one. LetS(t) be the
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4 T. A. MOGER ET AL.

Fig. 1. The effect of mixing a frail population with a normal population in an Armitage–Doll model. Illustration of
the model and hazard curves of the normal, frail and mixed populations based on artificial data.

vector showing the distribution of the seven states at timet . The seventh element ofS(t) = S(t − 1)T ×P
is the number of individuals who have reached malignancy att .

Let N be the total number of individuals, and letn(t) and f (t) be the number of malignancies at
time t in the normal and frail population, respectively. In this example, we assume that there are a total
of 1000 individuals in the population. However, the size of the population does not affect the shape of the
curves. The hazard curve for the normal population can be produced by calculating the number of new
malignancies divided by the number at risk for each time index:

n(t) − n(t − 1)

N − n(t − 1)
. (2.1)

This is shown above right in Figure 1, and roughly follows a Weibull distribution. The transition
probabilities arep1 = 0.00 350, p2 =0.000 35, p3 = 0.000 35, p4 = 0.000 35, p5 = 0.003 50,
p6 = 0.003 50. The hazard curve of the frail population is calculated correspondingly to equation (2.1),
and is shown below left in Figure 1. The parameters are fitted to account for a much greater probability for
malignancy, which is reflected in the hazard curve. The frail population has larger transition probabilities
relative to the normal population. The values arep1 = 0.005, p2 = 0.350, p3 = 0.350, p4 = 0.150,
p5 = 0.150, p6 = 0.150. The hazard curve for the total population can be produced by calculating the
weighted hazard

0.99× {n(t) − n(t − 1)} + 0.01× { f (t) − f (t − 1)}
N − 0.99× n(t − 1) − 0.01× f (t − 1)

,

for each time index. The result is shown below right in Figure 1. We see that the hazard curve starts to fall
at a certain age, as if the probability for malignancy, given that one has not reached it at this point, goes
down. This is the frailty effect.
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3. APPLICATION TO TESTICULAR CANCER DATA

3.1 The compound Poisson frailty model

As in Aalen and Tretli (1999),Z is assumed to be compound-Poisson-distributed. The distribution has
a discrete part at 0 for men with zero frailty, and a continuous part corresponding to positive frailties.
This deals with the fact that most men are virtually non-susceptible to cancer, as well as giving a simple
formula for the population survival function when integrating out the frailty. Furthermore, it is rather easy
to include further hierarchical levels, like family membership, in the model. The distribution belongs to
the three-parameter family of power variance function (PVF) distributions which are much used in frailty
theory (Hougaard, 2000). The PVF distributions also include the gamma, inverse Gaussian and stable
distributions.

The distribution is defined as a sum ofN independent gamma-distributed variablesXi with scale
and shape parameterν andη, whereN is a Poisson-distributed random variable with expectationρ. The
probability of zero frailty is given by

p = P(Z = 0) = exp(−ρ).

In a way, the distribution can be seen as a sum of a random number of impulses, from different unknown
factors, where each impulse contributes to the total frailty of an individual.

The survival function of an individual with a given frailty is exp{−Z �(t)}, where�(t) = ∫ t
0 λ(s) ds.

Integrating out the unknown frailty variable, produces the population survival functionS(t) = L Z (�(t)),
where L Z (a) denotes the Laplace transform ofZ . The Laplace transform of the compound Poisson
distribution (Aalen, 1992) are

L Z (s) = exp[−ρ{1 − L X (s)}],
whereL X (a) denotes the Laplace transform ofXi . Hence the population survival function and hazard rate
are

S(t) = exp{−ρ + ρ L X (�(t))} γ (t) = −ρ L ′
X (�(t)) λ(t). (3.2)

In the gamma case,L X (s) is given by(1+ν−1s)−η. By using this, and inserting the Weibull basic rate
with a = 1 to avoid over-parametrization, we get the following population survival function and hazard
rate (Aalen, 1992):

S(t) = exp

{
ρ

(
1 + 1

ν

1

k + 1
tk+1

)−η

− ρ

}
γ (t) = (

ρη
ν

)tk

[1 + {ν(k + 1)}−1tk+1]η+1
. (3.3)

The individual hazard rate increases indefinitely fork > 0. The equationγ ′(t) = 0 has three solutions:

t = 0, t =
{

1+k(η+1)
k(k+1)ν

}k+1
, andt = ∞. Since the curve starts at zero att = 0, the population hazard rate

is unimodal, and has a maximum att =
{

1+k(η+1)
k(k+1)ν

}k+1
.

An important feature of the hazard rate in equations (3.2) and (3.3) is that the Poisson parameterρ is a
proportionality factor. Hence, if covariates are introduced only into this parameter, we have a proportional
hazards model. An interesting issue is that the frailty model in this case actually leads to proportional
hazards, whereas most models of frailty type would lead to non-proportional hazards. Since proportional
hazards play such a fundamental role in survival analysis, it is nice to see that proportionality can occur
naturally, instead of being an assumption introduced just for convenience.
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6 T. A. MOGER ET AL.

The result here is a special case of a more general result for proportional hazards and Lévy processes
(Aalen and Hjort, 2002). As another example, let the frailty be gamma-distributed. Then, if covariates are
included only in the shape parameter of the gamma distribution, the resulting marginal model will have
proportional hazards. The connection between this and the compound Poisson example is the fact that
covariates are introduced via the time parameter of a Lévy process.

3.2 Data and statistical analysis

Norwegian incidence data have been collected by the Cancer Registry of Norway, which has received
information on all cancer patients in the country since 1953. The reporting of cancer cases is compulsory
for physicians. The reporting system is based on pathology and cytology reports, clinical records and death
certificates, Ninety-eight per cent of testicular tumours are histologically verified. The Danish Cancer
Society established one of the world’s first cancer registries, which includes cancers diagnosed since 1943.
In the statistical analysis all testicular cancers reported between 1943 and 1997 in Denmark and between
1953 and 1997 in Norway are included. The data are separated into seminomas or non-seminomas, and
the same model is used for both.

We use the same model as in Aalen and Tretli (1999). The data are divided into 18 five year birth
cohort intervals, starting with 1885–89 and going up to 1970–74, and 13 age intervals, 0–14 years, 15–19
years, 20–24 years,. . . , 65–69 years, 70 years and above. As in Aalen and Tretli (1999), letRi j be the
number of observed testicular cancer cases of a specified type in birth cohorti and age groupj , and let
Ti j be the number of person years at risk. The partition points of the age intervals, starting with 15 years
and going up to 70 years, are denoted byt1, . . . , t12. We exclude the age interval 0–14 years. There are
very few cancers in early childhood, and they are presumably of a different kind than those occurring after
the start of sexual maturity (Jørgensenet al., 1993). We assume that timet = 0 in the frailty model is the
13th birthday of the individual.

Define the expected number of cases,µi j , as the average hazard rate per year for birth cohorti and
age intervalj multiplied by the number of person years:

µi j = Ti j
[
ln

{
S(t j−1 − 13)

} − ln
{

S(t j − 13)
}]

/5. (3.4)

The likelihood function, based on a Poisson model, is given as follows:

L =
i=18∏
i=1

j=13∏
j=2

µ
Ri j
i j exp(−µi j ).

Parameters to be estimated by the method of maximum likelihood are the Weibull shape parameterk, the
Poisson parameterρ and the scale and shape parametersν andη of the underlying gamma distributions.
A penalized likelihood term is added to account for changes in the parameterρ over calendar time. Each
birth cohort is then assumed to have its own specific value,ρi for cohorti , so only the probabilityp of
susceptibility is assumed to change with time. Since the damage leading to testicular cancer is supposed
to take place during the foetal development (Hendersonet al., 1988), a change in risk of damage over time
would give a birth cohort effect, but no period effect (Wanderaaset al., 1998). This leads to a pure cohort
model. The seminomas and non-seminomas are analysed separately.

The following penalization term is subtracted from the log likelihood (we defineρ0 = 0):

1

2
δ

18∑
i=1

(ρi − ρi−1)
2.
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Frailty and cancer 7

Fig. 2. Observed (discrete points) and expected (continuous curve) incidence rates for testicular cancer by cohort for
some age groups. The curves include both seminomas and non-seminomas from Denmark and Norway.

The parameterδ determines the extent of smoothing to be applied. In our analysis we putδ = 4, as in
Aalen and Tretli (1999).

We are especially interested in how the proportion of susceptible individuals develops over time, that
is, in plotting the valuespi = 1 − exp(−ρi ). A plot was given in Aalen and Tretli (1999), but with no
indications of uncertainty. Since the penalization term will give strong correlations between the estimates
for cohorts close to each other, simply drawing pointwise confidence intervals on a plot ofpi versus cohort
is not very informative. The degree of smoothness of the curves will not be indicated in such a plot. Instead
we will show the results of the bootstrap estimation. The advantage of the bootstrap is that features of the
curves can be judged for their significance in a far more flexible way than with more traditional methods.

3.3 Results

The estimates from the penalized likelihood are shown in Table 1. Compared to the previous publication
(Aalen and Tretli, 1999), the birth cohort intervals are shifted one year to match the intervals of the
acquired Danish data. Hence, the parameter estimates from the Norwegian data in Table 1 are not exactly
equal to the estimates given there. The higher incidence of testicular cancer in Denmark is probably the
reason why most of the Danish parameters have somewhat smaller standard errors than the Norwegian
parameters. One may test ifν, η andk are equal for the two countries, which yields proportional hazards.
Since the Danish and Norwegian data are independent, the pooled standard error of each parameter is√

se2Denmark+ se2Norway. We assume that the difference between the parameters divided by the pooled

standard error follows an approximately standard Normal distribution. The tests for equal parameters for
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8 T. A. MOGER ET AL.

Fig. 3. Observed (discrete points) and expected (continuous curve) incidence rates for testicular cancer by age group
for some of the most recent cohorts. The curves include both seminomas and non-seminomas from Denmark and
Norway.

Table 1.Maximum likelihood estimates of the parameters

Seminomas Non-seminomas
Parameters ν η k ν η k

Danish
Estimates 1.76×105 0.25 3.37 1.21×103 0.23 2.13

se 0.51×105 0.06 0.14 0.23×103 0.07 0.15
Norwegian

Estimates 8.98×104 0.33 3.09 1.18×103 0.32 2.08
se 3.10×104 0.10 0.18 0.30×103 0.11 0.19

Joint analysis
Estimates 1.34×105 0.30 3.26 0.98×103 0.35 2.00

se 0.30×105 0.06 0.12 0.12×103 0.06 0.10

seminoma cancer give two-sidedp-values of 0.17, 0.73 and 0.22 forν, η andk, respectively. For non-
seminomas, the correspondingp-values are 1, 0.49 and 0.83. Hence, we assume that the hazards are
proportional, and carry out a joint analysis. The resulting estimates are shown at the bottom of Table 1.
Figures 2 and 3 demonstrate the good fit of the model to the Danish data. Since examples of good fit to
the Norwegian data were given in Aalen and Tretli (1999), we will not repeat those figures here.

Figures 4 and 5 show the estimated proportions of susceptibles,p, in the two countries for seminomas
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Fig. 4. Estimated proportion (middle curve) of men susceptible to seminoma cancer in Denmark and Norway with
pointwise 95% confidence bands based on 200 bootstrap samples.

and non-seminomas, respectively. They also include 95% pointwise confidence bands based on the
percentile method (Efron and Tibshirani, 1993, chapter 13) from 200 bootstrap samples. The increase
in the proportion of susceptible men in recent birth cohorts is obvious in all four curves, but particularly
for Danish seminomas. The confidence bands are wider for the most recent birth cohorts, since these are
incomplete. One may perform an overall test for the difference in proportion of susceptibles in Denmark
and Norway by adding the 200 seminoma and non-seminoma bootstrap samples, and accumulating over
all 18 birth cohorts. This yields 3526 out of 3600 samples with positive differences, giving a two-sided
p-value of 0.04. All birth cohorts show a significant difference at the 5% level, except the 1900–04 cohort
and the two most recent cohorts.

In Aalen and Tretli (1999), it was indicated that there was a slight decrease in risk during World War
II in Norway. This also seems to be the case in Denmark, at least for seminoma cancer. Both Denmark
and Norway were under German occupation in World War II between 1940 and 1945. This is evident
in Figure 6, which shows the estimated proportion of men susceptible to seminoma cancer in the birth
cohorts around World War II. Since the plotting of more samples in the same figure yields a dense plot of
curves which cannot be distinguished individually, we have chosen to show just 20 samples. A sample of
200 bootstraps from the Danish seminoma data shows that 197 of the estimated curves drop during World
War II, giving a two-sidedp-value of 0.03. A 95% confidence interval for the difference in proportion
of susceptibles between the 1940–44 cohort and the 1935–39 cohort is (−0.134%,−0.007%). A similar
bootstrap from the Norwegian seminoma data produces 194 incidence curves that drop during the war,
corresponding to ap-value of 0.06. The confidence interval for the difference is (−0.116%, 0.003%).
For non-seminoma cancer, the bootstrap sample of 200 shows at best a levelling off in the proportion
of susceptibles during the war. The confidence intervals for the difference are (−0.058%, 0.039%) and
(−0.023%, 0.061%), for Denmark and Norway respectively.

As an illustration, we can use the model to predict the development in the number of testicular cancer
cases over calendar time. If we assume that the age and population distributions do not change, and that
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10 T. A. MOGER ET AL.

Fig. 5. Estimated proportion (middle curve) of men susceptible to non-seminoma cancer in Denmark and Norway
with pointwise 95% confidence bands based on 200 bootstrap samples.

the proportion of susceptibles (decided by the parameterρ) isconstant since the most recent birth cohorts,
the expected number of new cases per year can be calculated from equation (3.4). For instance, to get
the total number of cancer cases in the calendar period from 1985–89, we add the expected number of
cancers in the age groups 15–19 year-olds born in 1970–74, 20–24 year-olds born in 1965–69, and so
on. For future calendar periods, we use the expected number of cancers in the different age groups from
the 1970–74 cohort. The population sizes are 1.9 million for Denmark and 1.5 million for Norway. These
correspond to the mean numbers of males over 14 years of age in 1985–89. The population increases
slowly in both countries. For the Norwegian data, this gives a prediction curve with a starting point near
the most recent observed value of 246 cases in 1999, shown in Figure 7. As all data are organized in
five-year intervals, the figure shows the mean number of cases per year in future five-year periods from
1995–99 up to 2030–34. For the Danish data, however, using the 1970–74 cohort as a basis for the curve
gives a starting point which is far too high. The resulting estimate for the period 1995–99 is 379 cases
per year, while the observed number of testicular cancer cases in Denmark today is around 300. This
indicates that theρ for the 1970–74 cohort is overestimated, as it is based on only two observed values.
Instead, we have used theρ from the 1965–69 cohort as the most recent estimate from the Danish data.
This gives a curve which starts at 310 cases per year, shown in Figure 7. As more and more cohorts are
dominated by theρ from the most recent birth cohort, the curves flatten out. The figure clearly illustrates
the dynamics of the population, since the number of cases continues to increase for several years, even
though the proportion of men susceptible to testicular cancer is assumed constant after the 1970–74 and
1965–69 birth cohorts.
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Fig. 6. 20 bootstrap estimates for the proportion of Danish and Norwegian men susceptible to seminoma cancer in
the birth cohorts around WWII.

4. DISCUSSION

An important question is whether the incidence in susceptibility is still rising today, or is levelling
off. The overestimatedρ for the 1970–74 cohort from the Danish data clearly illustrates that this question
is difficult to assess. Figures 4 and 5 indicate that the incidence continues to increase, except perhaps
for Norwegian seminomas. For this group the estimated proportion could be levelling off for individuals
born after 1964. Of the 200 bootstrap samples, 77 even yield a decrease in the estimated proportion of
susceptibles from birth cohort 1965–69 to 1970–74. However, the estimates are based on few observations
for these cohorts, and Figure 4 shows that the observation is consistent both with a decline in susceptibility,
and with a continued strong increase.

Prediction of testicular cancer development in the Nordic countries up to 2022 has been done by
Møller et al. (2002, pp. 50–1). They applied a Poisson regression-based age-period-cohort model, and
projected trends in incidence from recent to future periods. To avoid the problem with rates that grow
exponentially over time, they used a power link instead of a log link. They also projected only half the
linear trends for the periods 2013–17 and 2018–22, based on the belief that the curves would eventually
tend to flatten. This resulted in a significantly lower number of cases per year than the compound Poisson
frailty model. In addition, the predicted incidence curves for Denmark and Norway seem to cross after
2020, which is not possible in the simple prediction model used here. Still, the curves presented here
correspond to a conservative prediction from the compound Poisson frailty model, since the proportion of
susceptibles is assumed to be constant for future birth cohorts.

An interesting feature is the drop or levelling off in estimates both for Norwegian and Danish men
born during World War II. This was observed in the original estimates (Aalen and Tretli, 1999) and are
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12 T. A. MOGER ET AL.

Fig. 7. Prediction lines for the number of testicular cancer cases per year in future five-year periods in Denmark and
Norway.

also in accordance with Bergström et al. (1996). It is a consistent feature in the bootstrap estimates, so it
might be a real phenomenon. Beneficial health effects of the change in diet and lifestyle in Norway during
World War II have also been seen in other contexts (Knapp, 1997; Toverud, 1956; Tretli and Gaard, 1996).

For non-seminoma cancer, the estimated values of the Weibull parameterk are close to 2 in both
the Danish and the Norwegian data. According to the Armitage–Doll interpretation ofk, these values
would mean that a cell has to go through three transitions in order to become malignant. For seminoma
cancer, the estimated values ofk indicate that four transitions are necessary in order to reach malignancy.
However, for the Danish seminomas the 95% confidence interval fork is (3.10, 3.64), so it does not
include the value 3. There is also no biological support that we are aware of for these estimates. For
retinoblastoma cancer, which occurs in early childhood, Knudson (1971) estimated that two events are
required to reach malignancy. For colorectal cancer, which occurs late in life, Fearon and Vogelstein
(1990) proposed that five or more events are required. Hence, the estimates for testicular cancer, which
occurs in early adulthood, lie within that range.

The proportion of susceptible individuals is increasing in the birth period 1890–1970, but the increase
is somewhat larger for the seminomas. This indicates that one or several exposure factors may influence
the susceptibility for seminomas and non-seminomas differently. The differentk -values may also indicate
that the genetic pathway differs between the two types of testicular cancer.
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