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We present a new type of deformable model which combines the realism of

physically based continuum mechanics models and the usability of frame-

based skinning methods. The degrees of freedom are coordinate frames. In

contrast with traditional skinning, frame positions are not scripted but move

in reaction to internal body forces. The displacement field is smoothly in-

terpolated using dual quaternion blending. The deformation gradient and

its derivatives are computed at each sample point of a deformed object and

used in the equations of Lagrangian mechanics to achieve physical realism.

This allows easy and very intuitive definition of the degrees of freedom of

the deformable object. The meshless discretization allows on-the-fly inser-

tion of frames to create local deformations where needed. We formulate the

dynamics of these models in detail and describe some pre-computations that

can be used for speed. We show that our method is effective for behaviors

ranging from simple unimodal deformations to complex realistic deforma-

tions comparable with Finite Element simulations. To encourage its use, the

software will be freely available in the simulation platform SOFA.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
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I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Animation
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1. INTRODUCTION

Deformable models are essential for computer animation, espe-
cially for animating characters and soft objects. In current practice,
however, the animator has to choose between two very different
approaches (see Sec. 2 for a brief review).

One approach is skinning (also known as vertex blending or
skeletal subspace deformation). The deformation is kinematically
generated by manipulating “bones,” i.e., specific coordinate frames.
This method is widely used, not only for its simplicity and ef-
ficiency, but because it provides natural and intuitive handles for
controlling deformation. Skinning generates smooth deformations
using a very sparse sampling of the deformation field. Adapta-
tion is simple since frames can be inserted easily to control local
features. These interesting features have made it the most widely
used method for character animation. However, as a consequence
of its purely kinematic nature (i.e., the frame positions need to be
scripted), achieving physically realistic dynamic deformation is a
major challenge with this approach.

The other approach is physically based deformation, typically
using continuum mechanics. This has the significant advantage that
physical realism is “baked in” right from the start. Complex anima-
tions are generated by numerical integration of discretized differen-
tial equations. However, these methods can be expensive and dif-
ficult to use. In the popular Finite Element Method (FEM) frame-
work, the degrees of freedom of the discretized model are the ver-
tices of a mesh, which must be constructed for each simulation ob-
ject. A relatively fine mesh (i.e., a dense sampling of the deforma-
tion field) is required to capture common deformations such as tor-
sion, leading to expensive simulations. Mesh adaptation can be dif-
ficult due to the topological constraints of the mesh. Particle-based
meshless methods have been proposed to address these problems.
While they obviate the need to maintain mesh topology, particles
can not be placed arbitrarily, since each material point has to be
in the range of at least four non-coplanar particles. Therefore, these
methods also need a dense cloud of particles not very different from
the vertices of an FEM mesh.

In this paper, we propose a new approach that combines the ad-
vantages of both skinning and physically based deformation. In-
stead of the vertices of a mesh, the degrees of freedom are a sparse
set of coordinate frames, which parameterize material points us-
ing an advanced skinning method called dual quaternion blending
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Fig. 1. Frame-based model features. Physical realism with very sparse sampling: two frames are sufficient to model a dynamically deformable bunny (Left).

Intuitive animator control: The head and the ears are almost rigid (Middle), but by inserting an additional frame (Right), the ear becomes flexible.

[Kavan et al. 2008]. The equations of motion are derived for the
moving frames by applying the principles of continuum mechanics
across the volume of the deformed object, and solved using classi-
cal implicit time integration.

Contributions
Our main contribution is a new approach which unifies skinning

and physically based deformation modeling. This allows the cre-
ation of efficient physically sound models with very sparse and in-
tuitive sampling, and on-the-fly adaptation to create local deforma-
tions where needed.

In contrast with FEM and traditional particle-based meshless
methods, there is no constraint on the number of frames influenc-
ing each point of the deformable object, because a single frame is
sufficient to represent a displacement field including rotations. This
also allows very sparse sampling; indeed, some simple deformable
models are easily modeled using a couple of frames.

Complex materials can be accurately modeled using maps of
distributed material properties such as density and stiffness. The
weight functions of the control frames also provide the animator
with an additional, very intuitive, method to model the physical be-
havior required in an animation. For instance, rigid regions are eas-
ily obtained by locally associating a large weight to a given frame
and small weights to the others. Moreover, we show that it is pos-
sible to encode the mass and stiffness matrices in six-dimensional
mass-spring systems which are computationally efficient and allow
large deformations. Finally, local deformations can be adaptively
modeled, using dynamically inserted control frames with appropri-
ate weight functions.

The remainder of the paper is organized as follows. Previous
work is summarized in Section 2. The physics of our deformable
model is presented in Section 3. Application to object modeling
is presented in Section 4. Results are discussed in Section 5 and
conclusions are drawn in Section 6.

2. BACKGROUND

Physically based deformable models have attracted continuous at-
tention in Computer Graphics, since the seminal work of Terzopou-
los [Terzopoulos et al. 1987]. We refer the reader to the excellent
survey of [Nealen et al. 2005] on this topic. Here, we briefly re-

view the main Lagrangian models of deformable objects, followed
by a short introduction to skinning.

Mesh-based methods. Early works on deformable models
in Computer Graphics have focused on interconnected particles.
In mass-spring systems [Platt and Badler 1981], constraints on
edge length are enforced to counter stretching. Bending and
shear can be controlled using additional springs. More general
constraints such as area or volume conservation can be enforced
using appropriate energy functions [Teschner et al. 2004]. To
realistically model volumetric deformable objects, it is necessary
to apply continuum mechanics. The spatial derivatives of the
displacement field can be computed using finite differences on a
regular grid [Terzopoulos et al. 1987]. [Terzopoulos and Qin 1994]
studied the case of physically deformable NURBS surfaces for
shape modeling. Finite elements [Bathe 1996; Gourret et al. 1989;
O’Brien and Hodgins 1999; Cotin et al. 1999] allow irregular
meshes, which are generally more convenient to sample objects
with arbitrary shapes, but may be poorly conditioned. The spatial
domain is subdivided into elements such as triangles, hexahedra
or more frequently tetrahedra, in which the displacement field
is interpolated using shape functions. At each point the strain
can be computed using the spatial derivatives of the displace-
ment field. Accurate material models have been implemented
from rheological models relating stress and strain in hyperelas-
tic, viscoelastic, inhomogeneous, transversely isotropic and/or
quasi-incompressible media [Weiss et al. 1996]. For simplicity,
linearized strain has been applied assuming small displacements
in rotated frames [Müller and Gross 2004]. Precomputed defor-
mations modes have been used to interactively deform large
structures [Barbič and James 2005]. Models based on Cosserat
points have been proposed for large deformations in thin structures
[Pai 2002] and solids [Nadler and Rubin 2003]. Since robustness
problems such as inverted tetrahedra [Irving et al. 2006] or hour-
glass deformation modes in hexahedra [Nadler and Rubin 2003]
have been addressed, meshing remain the main issue in fi-
nite elements. To reduce computation time, embedding de-
tailed objects in coarse meshes has become popular in com-
puter graphics [Müller and Gross 2004; Sifakis et al. 2007;
Nesme et al. 2009]. Multi-resolution approaches have
been proposed [Debunne et al. 2001; Grinspun et al. 2002].
In recent work, disconnected or arbitrarily-shaped ele-

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: 2010.



Frame-based Elastic Models • 3

ments [Kaufmann et al. 2008; Martin et al. 2008] have been
proposed to alleviate the meshing difficulties.

Meshless methods. Meshless methods do not use an un-
derlying embedding structure but unstructured control points.
In computer graphics, meshless methods have been first in-
troduced for fluid simulation and then extended to solid me-
chanics [Müller et al. 2004; Gross and Pfister 2007]. Each control
point has a given influence that generally decreases with the
distance to it. Standard approximation or interpolation methods
have been investigated for physical simulation such as Shepard
functions, radial basis functions and moving least squares (see
[Fries and Matthies 2003] for an extensive review). Despite the
added flexibility due to the absence of elements, the approximation
function still requires a certain overlap between the influence re-
gions of control points. Particularly the approximation of rotations
requires at least four control points, contrary to our method that ex-
plicitly use rotations in the degrees of freedom. [Martin et al. 2010]
alleviate this problem using an extended moving least squares
method based on deformable frames instead of particles. Their
main focus is on a novel differential measure of deformation, called
elaston, combined with standard RBF weight functions and dense
sampling, resulting in large computation times. In contrast, our fo-
cus is on fast computation and ease of modeling, using sparse sam-
pling and customized shape functions.

Besides continuum mechanics-based methods, fast algorithms
have been developed for video games to simulate quasi-
isometry [Adams et al. 2008; Müller et al. 2005]. They are not able
to model real materials, being based on geometry only.

Skinning. Meshless approximation functions estimate a con-
tinuous deformation field at locations influenced by at least four
control points while finite element functions interpolate defor-
mation inside elements. A third approach, unexploited in phys-
ical simulation until now, consists in interpolating rigid trans-
formations directly. In character animation, this is well known
as skinning (or vertex blending or skeletal subspace deforma-
tion), in which soft-tissues are deformed by blending rigid
transforms [Magnenat-Thalmann et al. 1988]. Various rigid mo-
tion interpolation methods have been proposed and we refer
the reader to [Kavan et al. 2008] for a detailed review. Specifi-
cally, dual quaternion blending offers a good approximation of
the linear interpolation of screws at a reasonable computational
cost [Kavan et al. 2007]. It provides a closed-form solution for
more than two transforms contrary to screw interpolation that re-
quires an iterative treatment. We believe that this makes it well
suited for parameterizing a physically based deformable model; we
exploit these features in our model.

Basics and notation. We now provide background on dual
quaternion skinning and introduce the notations used in our deriva-
tion of the corresponding 3d elasticity method. Let p̄ = [x̄ ȳ z̄]T

be the initial coordinates of a material point in the world coordi-
nates system, as illustrated in figure 2. To simplify the derivations
and without loss of generality, we assume that [x̄ ȳ z̄] are also the
coordinates of the point in the local parameterization of the object.
In this paper, we use a horizontal bar on top to denote the value in
the reference, undeformed, position. Using skinning, the displaced
position p = [x y z]T of the point is computed as

p = Rp̄ + t (1)

where the rotation matrix R and the translation vector t are com-
puted using a weighted sum of the displacements of one or several
moving frames influencing the point. In linear blend skinning, R

Fig. 2. An object undergoing skinning deformation using two moving

frames.

and t are simple weighted sums of each frame’s matrix and vector,
and well-known artifacts occur with large rotations. These prob-
lems can be alleviated using dual quaternion skinning. Dual quater-
nions are pairs of quaternions with a special algebra which repre-
sent rigid transforms when normalized. Most of quaternion proper-
ties hold for dual quaternions. We briefly outline the method here,
and refer the reader to [Kavan et al. 2007; Kavan et al. 2008] for
more details. The position of frame i is represented using a dual
quaternion written as a 8d vector qi = [qiT

0 qiT
ε ]T where qi

0 is
a unit quaternion representing rotation and qi

ε = (ti∧ ◦ qi
0)/2 is

a quaternion representing translation to the frame origin ti. Oper-
ator ◦ denotes standard quaternion product and ∧ denotes conver-
sion from a 3d vector to a quaternion with null scalar part. Blended
displacements are computed as normalized weighted sums of dual
quaternions:

b′ =
b

‖b‖
=

∑

wiT̄iqi

‖
∑

wiT̄iqi‖
(2)

where the 8 × 8 matrix T̄i encodes dual quaternion product with
q̄−1

i , the inverse of the frame transform in the reference posi-
tion. This product represents the transformation applied to the
reference configuration, and it is used as a kinematic parameter
in [Kavan et al. 2008]. The matrix and vector of equation (1) are
then straightforwardly deduced from b′ (see appendix A). Figure 2
shows some isolines of the parameterization, depicted as initially
orthogonal lines within a volume element ∆v centered on point
p̄. The weights wi are functions of p̄, so the blended displacement
{R, t}must be computed at each vertex of the deformed geometry.

We represent frame velocity using the 6×1 vector Ωi = [ωT
i ṫT

i ]T

where ṫi and ωi are the linear and angular velocities. Similar
to standard quaternions, there is a linear relationship between
the velocity vector and the rate of the frame [Han et al. 2008]:
q̇i = (ω̂i ◦ qi)/2, where ω̂i = [ωT

i∧ (ṫi + ti × ωi)
T
∧ ]T is a

dual quaternion representing rigid body velocity. We encode this
linear relationship using the 8 × 6 matrix Li such as q̇i = LiΩi.
We introduce the directional derivative operator ∇i to denote dif-
ferentiation with respect to the six independent degrees of freedom
of frame i , i.e. for a given N-dimensional vector u(q), we have
u̇ =

∑

i ∇iuΩi where ∇iu is a N × 6 matrix.

3. THE DYNAMICS OF FRAME-BASED

CONTINUUM

As shown in the following diagram, we apply a classical method-
ology in continuum mechanics: from the degrees of freedom (i.e.,
frame positions and orientations), we interpolate the displacement
field in the material (i.e., dual quaternion skinning, equation (2)),
from which we compute the strain and strain derivatives through
spatial differentiation (section 3.3). Material properties are then
used to compute the internal elastic energy from the strain (sec-
tion 3.4). By differentiation with respect to the DOFs, we obtain,
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for each frame, a generalized force and force Jacobian (section 3.5)
that we integrate in time to compute the acceleration, velocity and
the new position. The simulation loop is summarized in the follow-
ing diagram; the symbols are defined in the next section.

Position Strain Energy

q
∂
→ E

Material
→ W

∫

↑ ↓∇

Ω

∫

← Ω̇
Mass
← Γ

Velocity Acceleration Force

In the remainder of this section, we first set up the dynamics equa-
tion, then we derive the local terms of this equation for a continuum
animated using dual quaternion skinning.

3.1 Differential Equation

Models derived using Lagrangian mechanics are ordinary differen-
tial equations which have the following form in generalized coor-
dinates:

MΩ̇− Γ(q,Ω) = Γext(q,Ω) (3)

Here q and Ω are the positions and velocities described in the pre-

vious section, Ω̇ denotes accelerations, Γ internal forces, Γext

external and inertial forces, and M is the mass matrix. Nu-
merous methods have been proposed to solve this ODE, and
without loss of generality we will use Implicit Euler integration
(e.g., [Baraff and Witkin 1998]), which computes velocity updates
by solving the following equation:

(

M− hC− h2K
)

δΩ = h (Γext + hKΩ) (4)

where h is the time step, K = dΓ
dq

is the stiffness matrix, and C =
dΓ
dΩ

the damping matrix. In this paper, we use the popular Rayleigh
assumption: C = αM + βK.

Frame positions are updated based on the updated velocities:

qi
0(t + h) = qi

0(t) +
h

2
(ωi∧ ◦ q

i
0(t)) (5)

ti(t + h) = ti(t) + hṫi ,

followed by a re-normalization of the quaternion part.

3.2 Mass

The generalized mass matrix can be computed by assembling 6×6
blocks:

Mij =

∫

V

ρJT
i JjdV (6)

where ρ is the mass density, and the 3×6 Jacobian Ji maps a frame
velocity vector to a point velocity such as: ṗ =

∑

i JiΩi. The
Jacobian is obtained using chain rule differentiation of equation (1):

Ji = ∇ip =
∂p

∂b′
∂b′

∂b

∂b

∂qi

∇iqi = wiQNT̄iLi (7)

Matrix T̄i (8×8) and Li (8×6) were introduced in section 2. Matrix
N(8×8) is a projection which filters out the changes of norm of the
dual quaternion. Matrix Q(3×8) encodes displacement of the given
point associated to a change of the normalized dual quaternion b′.
The expressions of these matrices are given in appendix A.

3.3 Strain

In the rest shape, the columns of the deformation gradient dp/dp̄
form an orthonormal reference frame, while in deformed state
stretching corresponds to vector length change, and shearing cor-
responds to angles, as illustrated in figure 2. The deformation gra-
dient can be computed by differentiating equation (1):

F =
dp(p̄,b′(p̄))

dp̄
=

∂p

∂p̄
+

∂p

∂b′
∂b′

∂b

∂b

∂p̄
= R + QNW (8)

Matrix W(8×3) encodes the dependence of the weighted sum
b on the material point and depends on the local variations
Wi = ∂wi/∂p̄ of the weight functions in the material (see ap-
pendix A).

Three dimensional strain measures are generally based on the
deformation gradient. Due to space restrictions, in the remainder of
this paper we focus on the popular Green-Lagrange strain tensor,
valid for large displacements. The six independent terms of this
tensor E = (FTF − I)/2 can be represented in vector form as:
E = [ǫxx ǫyy ǫzz ǫxy ǫyz ǫzx]T .

3.4 Strain energy and stress

The strain energy density W (p̄), representing the potential elastic
energy per unit volume stored at a given point, is: W = ETS/2
where S is the stress in a vector form. Due to space restrictions,
we focus on Hookean elasticity and obtain the popular St. Venant-
Kirchhoff material: S = HE, where H is the standard 6 × 6
Hooke’s stiffness matrix. The density of strain energy is thus
W = ETHE/2.

Non-linear models could be easily obtained by updating H and
its derivatives as a function of E at each time step. For non-uniform
materials, H simply depends on p̄ and for anisotropic materials, H
takes a generalized form as discussed in [Bathe 1996].

More general models can be derived using the same methodol-
ogy. In appendix B, we provide formulas for volume preserving
materials, and general hyperelastic materials based on the invari-
ants of the deformation tensor.

3.5 Force and stiffness matrix

The computation of forces depends on the derivative of the strain
with respect to the DOFs:

∇iE =
1

2
(FT

∇iF + ∇iF
T F) (9)

This 3 × 3 × 6 third-order tensor is computed by differentiating
equation (8) (see appendix A). We write it as a 6 × 6 block Bi

using the vector form of the strain:

Bi = ∇iE (10)

The generalized force Γi acting on frame i is the negative of the
energy gradient with respect to the degrees of freedom:

Γi = −

∫

V

∇iW
T dV = −

∫

V

BT
i HEdV (11)

The stiffness matrix K used in implicit integration methods (see
Eq. 4) is the Jacobian of the force. Each 6 × 6 block Kij encodes
the variation of the force on i due to a displacement of j:

Kij = ∇jΓi = −

∫

V

[BT
i HBj + (∇jB

T
i )HE]dV (12)

The first term encodes the change of intensity of the internal forces,
while the second involves a third-order tensor which encodes the
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change of direction. In our experiments, the latter can be safely
ignored, but it may be necessary in case of large angular velocities.

3.6 External forces

Since the dynamics equation (3) is applied to the moving frames,
which are the independent DOFs, each 3d external force fext ap-
plied to a given point p̄ must be mapped to 6d forces applied to the
moving frames. Using the Jacobian and applying the power conser-
vation law fext

T ṗ =
∑

i Γext
T
i Ωi for any Ωi, we find that the

external force is dispatched over the frames as:

Γext i = JT
i (p̄)fext (13)

4. MODELING OBJECTS

The quantities derived in section 3 are analytically defined at any
point in space, except for the weights and weight derivatives that
are numerically estimated as we will see in section 4.1. In this sec-
tion, we address weight, sampling and integration issues.

4.1 Weight functions

Weight functions encode frame influences and must be defined at
each integration point and geometry vertex. In contrast to other
meshless methods, our weights do not need to constitute a parti-
tion of unity thanks to the intrinsic normalization in equation (2),
and can be negative (see example with cubic splines in section 5).
When normalized, they are analogous to shape functions in FEM.
Moreover, by setting quasi-infinite weights near frames, our de-
formation field becomes interpolating and not only approximating,
which is convenient to constrain and interact with the model us-
ing Dirichlet constraints. This is not the case with moving-least-
squares meshless methods [Adams et al. 2008; Martin et al. 2010],
where penalty terms need to be added. A frame weight function is
typically a decreasing function of the distance to the frame origin in
the rest configuration. A cutoff value can be set, with the constraint
that each point must always be influenced by at least one frame. In
figure 3, we show a U -shaped object controlled by two frames 0
and 1, and we display with colors the weight of frame 0 computed
with different methods. Euclidean distance fails to capture the ge-
ometry of the object because close parts in Euclidean space move
similarly (point p̄ is equally influenced by frames 0 and 1 in the
example). Though geodesic distances are more accurate, artifacts
can occur far from all frames. At p̄, the influence of frame 0 is
not negligible compared with the influence of frame 1. As a result,
this point moves along with frame 0 even if frame 1 remains fixed,
contrary to what we would expect. To solve this, we use harmonic
weight functions [Joshi et al. 2007] computed at initialization time.
To compute the weight field of a frame, we fix its weight to a max-
imum value at its origin and to 0 at the origin of the others. To ease
the numerical solution of the harmonic equation, our samples are
aligned on a voxel grid, and we iteratively convolve the grid with a
Gaussian mask until convergence. We assume that boundaries are
dissipative, meaning a constant extrapolation of the weights in the
Gaussian kernel. This results in the desired weight distribution as
shown in the right of Figure 3 where p̄ is only influenced by frame
1. The weight gradients are required in the computation of matrix
W involved in the strain formulation. We approximate them us-
ing central differences in the weight map. It is straightforward to
rigidly attach a part of an object to a given frame, by constraining
the weights of all other frames to a null value, as shown in Figure 8.
This is more convenient than using high stiffnesses, which are nu-
merically difficult. The transitions to the deformable parts are natu-

Fig. 3. Left: Discretization for volume integrals computation. Right:

Weight related to frame q0 using different distance measures (red=max

weight and white=min weight)

rally obtained thanks to the smoothness of the harmonic functions.
Exploring the possibility of tuning the material stiffness using the
shape functions is clearly an avenue for future work. This is more
difficult using FEM and traditional particle-based approaches be-
cause points do not encode rotations. [Nesme et al. 2009] encode
the material stiffness within coarse elements using shape functions
after a fine-level static analysis, but they use traditional shape func-
tions and material parameters at the fine level.

4.2 Volume integrals

To apply the dynamics equation (3) to a given object, we need to
integrate the quantities defined in section 3 over the volume of the
object. In finite elements, quadrature rules are generally available
to compute the integrals in each cell as weighted sums of a small
number of function values at precise parametric points. This is not
possible in our meshless method. We compute the integral of any
function f by regularly discretizing the volume inside the bounding
box of the undeformed object:

∫

V

f(p̄)dV ≃
∑

k

f(p̄k)∆v , (14)

where volume ∆v corresponds to the sampling resolution, and the
function is null outside the object (see figure 3 left and figure 4).
This straightforwardly allows us to model complex objects with
non-uniform mass or stiffness, provided that a property map such
as a 3d texture or a medical image is available.

Fig. 4. Sample points in a deformed configuration with hue mapping of

the strain (hi res. bunny example: 15000 samples, 2 frames)
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At each time step, we compute the terms of the system’s differen-
tial equation (equation (3)) by summing the local quantities defined
in sections 3.2-3.6 over all the samples, as shown in Algorithm 1.

foreach frame i do
Compute Li ; // sec. 2
Γi = 0, Mi = 0;
for frame j in 0..i do

Kij = Kji = 0;
end

end
foreach volume sample s do

compute b′s ; // sec. 2
compute Rs, ts, Qs, Ns, Fs, Es ; // sec. 3.3
foreach frame i do

compute Jsi ; // eq. 7

compute Bsi, Γi += BT
isHsEis∆v ; // eq. 11

Mi += ρsJ
T
siJsi∆v ; // eq. 6

for frame j in 0..i do
Kij -= BT

isHsBjs∆v ; // eq. 12
end

end
end
foreach frame i do

for frame j in 0..i-1 do
Kji = KT

ij ;

end
end

Algorithm 1: Computation of forces and system matrices using
the samples.

4.3 Fast pre-computed models

The computation time of the volume integrals as explained in sec-
tion 4.2 is proportional to the number of volume samples. A trade-
off between efficiency and speed can be obtained by tuning the res-
olution of the grid. It may also be possible to pre-compute a reduced
set of representative voxels at initialization time in the same spirit
as [An et al. 2008]. To speed up the computations even more, we
show how to pre-compute the mass and stiffness matrices at initial-
ization time. This frees us from iterating over the integration points
at each time step.

Mass. For simplicity we lump the mass of each frame by ne-
glecting the cross terms in equation (6): M̄i = M̄ii. The result-
ing global mass matrix is block diagonal, which simplifies the time
integration step (equation (3)). Note that the mass has only an influ-
ence on the dynamics of the system, and not on the static solutions
(i.e., equilibrium configurations), which makes the simplification
hardly noticeable in many applications. We pre-compute the mass
matrices in the reference configuration and we update them at each
time step. Let Ri be the 3 × 3 rotation matrix of frame i with re-
spect to its initial orientation and Ri the associated rotation matrix
in 6d. The updated mass at time t is then given by rotating M̄i as
following:

Mi = RiM̄iR
T
i , Ri =

[

Ri 0
0 Ri

]

(15)

Stiffness. To avoid stiffness computations at each time step, we
transform the initial stiffness matrix into a generalized joint spring
network.

Fig. 5. Principle of the pre-computed 6d-spring system. In green: registra-

tion for stiffness warping; in black: initial frames; in blue: deformed frames

At initialization time, for each frame pair (i, j), we compute the
hinge frame m̄ in the middle of the two, as illustrated in Figure 5.
In a deformed configuration, the joint is represented by two frames
mi = (qi ◦ q̄−1

i ◦ m̄) and mj = (qj ◦ q̄−1
j ◦ m̄) respectively

attached to frames i and j, and the gap in between is a measure of
the deformation created by the relative displacement of the moving
frames. In the reference state, block K̄ij encodes the 6d force cre-
ated at ti, the origin of frame i, as a function of a displacement of
frame j expressed at tj ,the origin of frame j. The equivalent joint
stiffness K̄m encodes the 6d force as a function of a 6d displace-
ment, both expressed at tm, the origin of frame m. Computing the
joint stiffness based on the off-diagonal block requires simple rigid
body mechanics to change the points where the 6d forces and dis-

placements are expressed. Let Θ(j) =

[

ω
u(j)

]

denote a small 6d

displacement (velocity times unit time step) expressed at point tj .
The same displacement expressed at point tm is given by:

Θ(m) =

[

I 0
lj× I

]

Θ(j) = D(lj)Θ(j) , (16)

where lj = (tj − tm), (.)× is the cross product matrix opera-
tor. Note that D(a)D(b) = D(a + b) for arbitrary vectors a,b,
so multiplying equation 16 with D(−lj) gives the inverse relation

Θ(j) = D(−lj)Θ(m). Let Γ(m) =

[

τ(m)
f

]

denote a 6d force

applied at point tm. The same force expressed at point ti is given
by:

Γ(i) =

[

I −li×
0 I

]

Γ(m) = D(li)
T Γ(m) (17)

where li = (ti − tm). Based on this, we derive the joint stiffness
corresponding to an off-diagonal block as:

K̄m = D(−̄li)
T K̄ijD(−̄lj) (18)

The joint stiffness is considered constant in the joint frame m. We
project 6d vectors from this frame to the world frame using matrix

Rm =

[

Rm 0
0 Rm

]

, where Rm is the 3 × 3 rotation matrix of

frame m. The joint stiffness in world coordinates is thus given by:

Km = RmK̄mRT
m (19)

The corresponding block of the warped stiffness matrix is derived
by expressing the force applied to frame i as a function of the dis-
placement of frame j:

Kij = D(li)
T KmD(lj) (20)
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To derive the other blocks, we notice that the displacements of i and
j create opposite forces because elastic forces come from relative
displacements. Moreover, a joint force on one frame is associated
with the opposite force on the other frame, due to Newton’s third
law. Based on this, and by changing the points where the displace-
ments and forces are expressed, we derive the remaining blocks as:

Kii = −D(li)
T KT

mD(li) (21)

Kjj = −D(lj)
T KmD(lj) (22)

Kji = D(lj)
T KT

mD(li) (23)

Linear and angular momentum are preserved by construction
(Kii = −D(ti − tj)

T Kji). One can easily verify that, in the ref-
erence configuration, K = K̄. When we have a global rotation,
K̄ is just rotated by Rm, as expected. We can conclude that the
stiffness matrix derived from our joint springs has all the expected
properties.

Given frame positions, each joint force is computed based on
the gap between the joint frames shown in Figure 5. Let θi and
θj be the transformations from frames m to mi and m to mj ,
respectively, expressed as 6d displacements. Since θi = −θj by
construction, we straightforwardly deduce the forces applied to the
frames as:

Γi = D(li)
T (Km + KT

m)θj (24)

Γj = −D(lj)
T (Km + KT

m)θj (25)

The net internal forces and stiffness matrices are computed by
summing the contribution of all pairs of frames. Only the frames
with intersecting weight fields interact. The weight cutoff value can
be used to tune the sparsity pattern. The initial 6 × 6 stiffness ma-
trices K̄m of these generalized joint springs are pre-computed by
accumulating the contributions of sample points at arbitrarily fine
resolutions. They can thus precisely encode complex material and
geometry for small deformations, and they provide acceptable pre-
cision for large deformations. The location of the joint can be ar-
bitrary. While the halfway location seems a reasonable choice, the
study of its optimal position with respect to the object geometry is
kept for future work.

Using this approach, the computation of the matrices using Al-
gorithm 1 is applied only once at initialization. Then at each time
step, the much simpler Algorithm 2 is applied.

foreach frame i do
Γi = 0;
for frame j in 0..i do

Kij = Kji = 0;
end

end
foreach frame i do

Mi = RiM̄iR
T
i ; // sec. 4.3

for frame j in 0..i-1 do
add Kij , Kji, Kii, Kjj ; // eq. 20-23
add Γi, Γj ; // eq. 24-25

end
end

Algorithm 2: Computation of forces and system matrices using
the mass-spring system.

4.4 Adaptivity

A local deformation can be modeled by inserting a frame at a de-
sired location p∗ within the deformed object, as shown in Figure 9.
To insert a frame, we need to estimate the associated undeformed
position p̄(p∗). The analytical inversion of the skinning mapping
function p(p̄) is difficult. Fortunately, we can efficiently solve the
equation numerically using Newton’s method and the deformation
gradient F = ∂p/∂p̄ of equation (8). The initial guess p̄(0) is
set to the closest sample point. We then iteratively refine the so-
lution using: p̄(k+1) = p̄(k) + F(p̄(k))−1(p∗ − p(p̄(k))). The
search typically converges in 3 iterations with a stop criterion of
‖p∗ − p(p̄(k))‖ < 10−5.

Once the additional frame is inserted, we compute its weight
field in the reference state and update the mass-spring network ac-
cordingly. This adds a new mass matrix block along with a number
of new stiffness blocks. Moreover, all previous mass and stiffness
blocks whose spatial domain intersects the inserted weight field
must be recomputed. To speed up these computations, the weights
of the inserted frame are based on geodesic distances, quickly eval-
uated in a single propagation pass through the voxel grid up to the
desired cutoff value. Each voxel contains the list of frames and
weights which influence it, and contributes to the (lumped) mass
block using equation (6) and to new stiffness blocks using equa-
tion (12).

5. VALIDATION AND RESULTS

5.1 Implementation

Our method has been integrated in the simulation platform SOFA
(http://www.sofa-framework.org/) and will be freely avail-
able in the upcoming release. In principle, any time integration
scheme can be used to solve equation (3), although we prefer the
implicit Euler scheme with a conjugate gradient solver for stability
and large time-steps. For implicit schemes, the stiffness matrix K
is evaluated to provide force variations given a displacement. The
solver returns an updated generalized velocity Ωi = [ωT

i ṫT
i ]T

for each frame i.
In our framework, we decouple physics, collision handling and

visualization through three different models. Any type of visual
and collision models can be plugged into our method (e.g., dis-
crete/parametric surface/volume, bounding volume hierarchy, etc.)
as we provide a volumetric displacement field, as well as mapping
functions Ji to transfer interaction forces to the frames.

The main simulation loop maps samples to their deformed po-
sitions and computes the strain, the mapping function and the
strain derivative at their location. For visual model points, only
deformed positions are required, while for collision points, the
mapping function Ji is also needed. To handle collisions and
self-collisions, the fast GPU-based detection method presented in
[Faure et al. 2008] and the method for collision response presented
in [Allard et al. 2010] are used. Finally, we accumulate, for each
frame, sample contributions in terms of mass, force and stiffness
(space integration), handle collisions and perform time integration.

For the fast pre-computed version of the simulation (section 4.3),
there is no physical sample involved, since the material behavior is
encoded in the pre-computed stiffness matrices.

5.2 Accuracy

To validate the mechanical accuracy of our method, we model
the deformation of a beam using regularly spaced frames along
the axis, with piecewise linear weight functions. We apply an
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extension force to the beam and verify that the force-extension
law precisely matches the theoretical St. Venant-Kirchhoff model
f = ǫ + 3ǫ2/2 + ǫ/2, independently of the number of frames
and the volume sample densities. Bending is more complex be-
cause it simultaneously involves extension-compression and shear,
especially with large displacements as shown in the example in
Figure 6. We obtain similar results with FEM, our model being
slightly less extended, as illustrated in the left of the figure. This
confirms that accurate continuum mechanics can be performed us-
ing our model. In the right of Figure 6, we show bars deformed

Fig. 6. Left: comparison of our model (green) with 5 frames along the

main axis and 10 × 10 × 9 samples in the volume, with a St-Venant-

Kirchhoff model (red) with 10× 10× 9 points, with same loads and mate-

rial parameters. Right: comparison of beams with 5, 3 and 2 frames in our

model, from front to back.

using different numbers of frames. As usual, fewer degrees of free-
dom result in more stiffness. As with FEM, the weight functions
have an important influence on the results. The slight bumps on
the interpolated surface are due to the nearly constant curvature be-
tween two consecutive frames, resulting from the dual quaternion
blending between the two frames. A Catmull-Rom spline interpo-
lation can generate a smoother shape due to the negative weights
that couples non-consecutive frames. However, the gradient of the
weights is not constant, producing inhomogeneous deformations
which is not what we expect with homogeneous materials.

5.3 Deformation modeling and adaptivity

The most appealing feature of our method is probably its ability to
easily model deformable objects using a reduced number of control
primitives. In the video, the T-shaped rubber object shown in Fig-
ure 7 (Young’s modulus E = 200kPa, Poisson’s ratio ν = 0.3)
exhibits compression, shear, bending and torsion using only two
frames, corresponding to a total of 12 DOF. The same number of
DOF only allows to model a single linear tetrahedron in FEM,
which can not exhibit torsion and bending! In the example with
three frames, the mechanical properties are computed by integra-
tion over the volume as described in section 4. The object auto-
matically exhibits an asymmetric stiffness reflecting its asymmetric
shape.

The turtle shown in Figure 8 (E = 700kPa, ν = 0.3) illustrates
the ability to tune the stiffness using the shape functions. The turtle
is animated using seven frames, and the weights associated with the
frame located in the shell appear as color maps. In the middle, the
weights are computed using standard harmonic coordinates. The
shell is not rigid because the weight of the shell frame is lower in
the regions near the neck and near the legs, which thus undergo
non-rigid motion blending. In the right of the figure, we have im-
posed a high weight inside the whole shell and let the weight in
the remaining volume be computed automatically. This results in a
rigid shell, as shown in the video.

Fig. 7. An object with asymmetric stiffness automatically computed based

on its asymmetric shape.

Fig. 8. Modeling stiffness using weight functions. Top: (Left) The de-

formation frames. (Middle) Shell weights automatically computed. (Right)

Weights set to model a rigid shell. Bottom: the turtle with a rigid shell.

In the example shown in Figure 1, two frames are sufficient to
model a deformable bunny (E = 700kPa, ν = 0.3) . Adding flex-
ibility to an ear is done using an additional frame, which is dramat-
ically simpler than editing the mesh of an FEM model. In the same
video, we show that a dynamically inserted frame at the contact
point with an object can be used to generate a local deformation, as
illustrated in Figure 9. The range of the local deformation can be
tuned using the weight function of the inserted frame. Such a high
level of adaptivity in a physical model is straightforward with our
model, while it is difficult to implement using previous methods.

Fig. 9. More or less global deformation produced by dynamically insert-

ing a frame with two different weight functions
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5.4 Performance

The FEM simulation of the bar in Figure 6 runs at 65 fps. While
our model with 5 frames runs at 38 fps, the speed increases dra-
matically to 700 fps using precomputed generalized springs. For
a static solution implemented using Newton’s method, the conver-
gence to the equilibrium takes 20 times fewer iterations than using
FEM, due to a lower number of DOFs.

Table I summarizes the simulation performance for the turtle and
bunny models on a 2.33GHz quad-core PC without parallel imple-
mentation. The integration of one time step, shown in the column
labeled ”physical time”, takes an average of 7ms. We have tested
two resolutions for the computation of volume integrals, yielding
minor changes in the deformation. One is suited for interactive sim-
ulation while the other is more adapted to off-line rendering. Both
are robust to large deformations. Further speedup can be obtained
with the fast spring network presented in Section 4.3 whose com-
plexity only depends on the number of interacting frames. How-
ever, the overall computation time also depends on the number of
vertices of the visual and collision models. As expected, the spring
model provides good results in relatively large linear deformations,
but is not as robust for large non-linear deformations. This issue
will be investigated in future work.

Table I. Summary of simulation performance
Model Visual Collision Physical Precomp. fps

time (ms) time (ms) time (ms) time (s)
(# points) (# points) (# points/frame)

Turtle 4 40 106 5 7
(low res.) (6642) (6642) (2313 / 7)

Turtle 4 40 648 110 1.4
(hi res.) (6642) (6642) (15452 / 7)

Turtle 4 40 10 110 19
(springs) (6642) (6642) (0 / 7)

Bunny 10 7 51 1.5 15
(low res.) (34000) (2500) (2323 / 2)

Bunny 10 7 250 34 3.7
(hi res.) (34000) (2500) (15526 / 2)

Bunny 10 7 10 34 37
(springs) (34000) (2500) (0 / 2)

The results reported in Table I were obtained using our cur-
rent implementation, with a lot of room for future optimization.
The speed greatly depends on the number of integration points, as
shown by the comparison between low resolution and high resolu-
tion. At each conjugate gradient iteration used in our ODE solver,
the stiffness matrix product requires the mapping of frame displace-
ments to strain changes, then the computation of the correspond-
ing stress changes, and finally the mapping back to frame forces
(see eq. 12). The intensive part of this computation is the product
with the matrix B, which currently is implemented as a dense ma-
trix even though it is sparse. Another avenue for optimization is to
further reduce the number of integration points, which is currently
huge compared with the number of independent DOF, even in the
low resolution version.

At each iteration, our implicit solver not only computes the force
changes due to internal forces, but also due to contact forces. Frame
displacements are thus also mapped to displacements of the vertices
of the collision model and contact forces are mapped back to the
frames. Here also, our implementation does not exploit sparsity;
moreover, a further optimization could skip vertices without con-
tact forces. This unnecessary processing of the collision vertices
explains why the computation time is higher than expected when
using precomputed generalized springs. The model shown in Fig-
ure 6 has no collisions and allows an easier comparison with FEM.

As few as 5 frames (30 independent DOFs) allow us to obtain a
smooth bent shape similar to the shape obtained using 10× 10× 9
FEM nodes (2700 DOFs). Since our method assumes a locally uni-
form strain around each integration point, we found that 10×10×9
integration points were required to obtain the same amount of bend-
ing using the same material parameters. We can quantify the dif-
ference between two methods by measuring the distance between
the endpoints of the centerline, relative to the length of the bar. In
this configuration, the difference between FEM and our method is
only 2.5%. When the number of integration points are the same
in the two methods, the computation time per iteration should be
similar, provided that the same level of optimization is applied to
each implementation. However, the number of iterations to con-
verge depends on the number of independent DOFs. In this regard
our method is significantly better, needing 5 times fewer iterations,
as can be seen in the accompanying video.

We also compared the methods at coarser resolutions, as shown
in Figure 10. We used the same number of FEM nodes as integra-
tion points in the frame-based method, as with the previous com-
parison. Three frames were used with 2 × 2 × 2 points, and five
frames with 4 × 4 × 4 points. The frame-based model becomes
softer as the resolution decreases, while the FEM model becomes
stiffer. We notice that the FEM converges faster than our method on
the coarse example. However, our method is closer to the reference
result. In the 4× 4× 4 example, the distance between the endpoint
of the centerline in our model from the endpoint in the reference
FEM is 13%, while it is 25% in the FEM. In the 2×2×2 example,
the distance is 15% in our model, while it is 42% in the FEM.

Fig. 10. Comparison of FEM simulation (in blue) and frame-based simu-

lation (in green) for 4 × 4 × 4 (left) and 2 × 2 × 2 (right) FEM nodes and

integration points. The reference high-resolution FEM is shown in red. The

integration points are shown as disks. The green curve is the outline of a

visual model bound to the frames.

Our method clearly outperforms the FEM when fine meshes are
required to preserve smoothness while the spatial deformation fre-
quencies are sufficiently low so that it can be captured by a reduced
number of DOFs. It can be seen as a new type of reduced model,
more local and more intuitive than the reduced models produced by
traditional modal analysis.

6. CONCLUSION

We have presented a new type of deformable model using con-
tinuum mechanics applied to objects undergoing skinning defor-
mation fields. Our approach allows the creation of sparse mesh-
less models with arbitrary constitutive laws, and we have demon-
strated it using St. Venant-Kirchhoff materials. The models are ro-
bust to large displacements and deformations. We have shown that
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the behavior of objects with complex materials and geometries can
be simulated using a small number of moving frames. Moreover,
the deformation can be encoded in a computationally efficient way
using six-dimensional mass-spring systems precomputed from the
mass and stiffness matrices. Compared with FEM, adaptivity is eas-
ier because no volumetric mesh is used, and mixing rigid and de-
formable frames is straightforward using appropriate shape func-
tions. Sampling is easier than with traditional particle-based mesh-
less methods because there is no constraint on the number and on
the placement of the frames. Moreover, the ability to use con-
strained weight fields, rather than radial basis functions, simpli-
fies the design and simulation of objects composed of rigid and
deformable parts.

Currently, the range of the local deformations obtained by in-
serting frames at contact points depends on the distance to the other
frames. This limitation will be addressed in future work. More gen-
erally, the optimal placement of frames and the design of weight
functions will have to be investigated, as well as automatic inser-
tion and deletion of frames to handle large deformations or even
topological changes. Hardware implementations would certainly
accelerate the mapping of the visual and collision models, the com-
putation of the volume integrals and allow better on-the-fly resam-
pling. The relation between stiffness and weight functions could
be exploited such as in [Nesme et al. 2009] to simulate fine distri-
butions of heterogeneous materials using coarse frame sampling.
Another interesting study will be the comparison, in the context
of physically-based simulation, of various blending methods de-
veloped in geometric modeling such as the linear combination of
matrices (i.e., linear blend skinning) or the linear combination of
the log-quaternion representations [Weber et al. 2007].
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APPENDIX

A. DETAILED MATRIX EXPRESSIONS

Dual quaternion corresponding to the current frame position:

qi =

[

qi
0

qi
ε

]

= [ai
0 bi

0 ci
0 wi

0 ai
ε bi

ε ci
ε wi

ε]
T

where qi
0 is the real part representing rotations and qiT

ε =
(ti∧ ◦ qi

0)/2 is the dual part representing translations to the frame
origin ti = [ti

x ti
y ti

z]
T and ti∧ = [ti

x ti
y ti

z 0]T .
Relative transformations from the rest configuration:

qi ◦ q̄
−1
i = T̄iqi , T̄i =

[

H−[(q̄i
0)
−1] 0

H−[(q̄i
ε)
−1] H−[(q̄i

0)
−1]

]

H−(q) =







w c −b a
−c w a b
b −a w c
−a −b −c w






, q =







a
b
c
w







where H− is the Hamilton operator that encodes right quaternion
products.
The linearly blended dual quaternion is:

b =
∑

wiT̄iqi =

[

Q0

Qε

]

Normalized dual quaternion:

b′ =
b

‖b‖
=

1

‖Q0‖

[

Q0

Qε

]

−
Qε.Q0

‖Q0‖3

[

0
Q0

]

= [qT
0 qT

ε ]T = [a0 b0 c0 w0 aε bε cε wε]
T

The rigid transformation equivalent to b′, that maps reference ma-
terial point positions to current positions through frame displace-

ments, is [Kavan et al. 2008]:

R(b′) =





1− 2b2
0 − 2c2

0 2a0b0 − 2w0c0 2a0c0 + 2w0b0

2a0b0 + 2w0c0 1− 2a2
0 − 2c2

0 2b0c0 − 2w0a0

2a0c0 − 2w0b0 2b0c0 + 2w0a0 1− 2a2
0 − 2b2

0





and t(b′) = 2





−wεa0 + aεw0 − bεc0 + cεb0

−wεb0 + aεc0 + bεw0 − cεa0

−wεc0 − aεb0 + bεa0 + cεw0





There is a linear relationship between velocity and rate of the
frame: q̇i = (ω̂i ◦ qi)/2 [Han et al. 2008]. It can be represented
by a 8× 6 matrix Li such as q̇i = LiΩi and we have:

Li(qi) = ∇iqi =
1

2

[

Li0 0
Liε Li0

]

, Li0 =







wi
0 ci

0 −bi
0

−ci
0 wi

0 ai
0

bi
0 −ai

0 wi
0

−ai
0 −bi

0 −ci
0







Liε =





wi
ε + ci

0ti
z + bi

0ti
y ci

ε −wi
0ti

z − bi
0ti

x −bi
ε + wi

0ti
y − ci

0ti
x

−ci
ε + wi

0ti
z −ai

0ti
y wi

ε + ci
0ti

z + ai
0ti

x ai
ε −wi

0ti
x − ci

0ti
y

bi
ε −wi

0ti
y −ai

0ti
z −ai

ε + wi
0ti

x − bi
0ti

z wi
ε + bi

0ti
y + ai

0ti
x

−ai
ε − bi

0ti
z + ci

0ti
y −bi

ε + ai
0ti

z − ci
0ti

x −ci
ε −ai

0ti
y + bi

0ti
x





To compute the Jacobian (equation (7)) and the deformation gradi-
ent (equation (8)), we need the first-order derivatives Q, N and W
that are given by (see also the long equation (26)) :

N(b,b′) = ∂b′

∂b
=

[

N0 0
Nε N0

]

with N0 = − 1
‖Q0‖

(q0q
T
0 − I)

and Nε = − 1
‖Q0‖

(q0q
T
ε + qεq

T
0 )− Qε.Q0

‖Q0‖3
(I− q0q

T
0 )

W(p̄) =
∂b

∂p̄
=

∑

T̄iqiWi with Wi =
∂wi

∂p̄

Wi represents the weight gradients and are numerically computed
in the voxel grid by central differences.
The derivative of the deformation gradient is needed to compute
the derivative of the strain (equation (9)). Applying the derivation
chain rule and using Einstein summation convention, we obtain a
third-order tensor:

∇iFabc = wi[
∂R
∂b′ abd

NdeT̄i ef Li fc] +QadNde[ ∂W
∂qi ebf

Li fc]

+wi[
∂Q

∂b′ ade
Nef T̄i fgLi gc]NdhWhb + wiQad[ ∂N

∂b def
T̄i fgLi gc]Web

Notations can be simplified by expressing each 3 × 3 submatrix
∇iFk = ∂F/∂Ωik using the operators ∆R, ∆W, ∆Q and ∆N:

∇iFk = wi∆R([NT̄iLi]
k) + QNT̄i∆W([Li]

k)

+wi∆Q([NT̄iLi]
k)NW + wiQ∆N([T̄iLi]

k)W

Each operator produces a matrix from a 8 × 1 column vector
V = [VT

0 VT
ε ]T = [v0 v1 v2 v3 v4 v5 v6 v7]

T (for instance the
kth column of NT̄iLi). They are obtained by differentiating R,
W, Q and N (see also long equations (27) and (28)):

∆W(V) = VWi
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Q(p̄,b′) =
∂p

∂b′
= 2





−wε + a0x + b0y + c0z cε − b0x + a0y + w0z −bε − c0x−w0y + a0z aε + w0x− c0y + b0z w0 −c0 b0 −a0
−cε + b0x−a0y −w0z −wε + a0x + b0y + c0z aε + w0x− c0y + b0z bε + c0x + w0y −a0z c0 w0 −a0 −b0
bε + c0x + w0y −a0z −aε −w0x + c0y − b0z −wε + a0x + b0y + c0z cε − b0x + a0y + w0z −b0 a0 w0 −c0



 (26)

∆R(V) = 2





−2(b0v1 + c0v2) −c0v3 + b0v0 + a0v1 −w0v2 b0v3 + c0v0 + w0v1 + a0v2
c0v3 + b0v0 + a0v1 + w0v2 −2(a0v0 + c0v2) −a0v3 −w0v0 + c0v1 + b0v2
−b0v3 + c0v0 −w0v1 + a0v2 a0v3 + w0v0 + c0v1 + b0v2 −2(a0v0 + b0v1)



 (27)

∆Q(V) = 2





xv0 + yv1 + zv2 − v7 zv3 + yv0 −xv1 + v6 −yv3 + zv0 −xv2 − v5 xv3 + zv1 − yv2 + v4 v3 −v2 v1 −v0
−zv3 − yv0 + xv1 − v6 xv0 + yv1 + zv2 − v7 xv3 + zv1 − yv2 + v4 yv3 − zv0 + xv2 + v5 v2 v3 −v0 −v1
yv3 − zv0 + xv2 + v5 −xv3 − zv1 + yv2 − v4 xv0 + yv1 + zv2 − v7 zv3 + yv0 −xv1 + v6 −v1 v0 v3 −v2



 (28)

∆N(V) =

[

∆N0 0
∆Nε + ∆Nc ∆N0

]

with:

∆N0 = −
1

‖Q0‖2
[q0V

T
0 + V0q

T
0 + V0.q0(I− 3q0q

T
0 )]

∆Nε = −
1

‖Q0‖2
[q0V

T
ε + Vεq

T
0 + Vε.q0(I− 3q0q

T
0 )]

∆Nc = −
1

‖Q0‖2
[qεV

T
0 + V0q

T
ε + V0.qε(I− 3q0q

T
0 )

−3V0.q0(qεq
T
0 + q0q

T
ε )]− 2

Qε.Q0

‖Q0‖2
∆N0

B. EXTENSION TO OTHER MATERIALS

Volume preservation: For volume preserving materials, we need
to compute the unit volume change with respect to the degrees of
freedom. The unit volume is the determinant of the deformation
gradient: J = det(F). Its derivative is obtained from already de-
fined matrices:

∇iJk =
∂J

∂Ωik

= det(F)
∑

lj

F−Tlj∇iFljk

Inverted elements have a null strain and strain energy, resulting in
a stable but undesired configuration. To circumvent this, an energy
term with bulk modulus k is generally added to penalize volume
change from the initial configuration. Possible expressions for the
energy density, force and stiffness are:

W =
k

2
(J−1)2 , Γi = −k(J−1)∇iJ

T , Kij ≈ −k∇iJ
T
∇jJ

Isotropic hyperelastic material: a widely spread approach in me-
chanical engineering is to express the energy density W in terms of
the three invariants of the right Cauchy-Green deformation tensor
C = FTF. They are function of the strain and volume:

I1(C) = Tr(C) = 2εxx + 2εyy + 2εzz + 3

I2(C) = (Tr(C)2 − Tr(C2))/2

= 4(εxx + εyy + εzz + εxxεyy + εxxεzz

+εyyεzz − ε2
xy + ε2

xz + ε2
yz) + 3

I3(C) = det(C) = J2

Their derivatives are obtained using the rows of B:

∇iI1 = 2(Bi1 + Bi2 + Bi3)

∇iI2 = 2∇iI1− 8(εxyBi4 + εxzBi5 + εyzBi6) + 4(εxx

(Bi2 + Bi3) + εyy(Bi1 + Bi3) + εzz(Bi1 + Bi2))

∇iI3 = 2J∇iJ

The relationship ∂W/∂Ii is given by the material model (e.g.,
Mooney-Rivlin). Plugging this relationship into the following
equations, we can compute forces and stiffness matrices as:

Γi = −[
∂W

∂I1
∇iI1 +

∂W

∂I2
∇iI2 +

∂W

∂I3
∇iI3]T

Kij ≈ −[∇iI1T
∇j

∂W

∂I1
+ ∇iI2T

∇j

∂W

∂I2
+ ∇iI3T

∇j

∂W

∂I3
]

For incompressible materials, one can use reduced invariants in-
stead. They are obtained using previously introduced variables:

Ī1 = J−2/3I1 (29)

Ī2 = J−4/3I2

Ī3 = J
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