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Abstract

In this paper, we present a novel postprocessor for speech recognition
using the Augmented Conditional Random Field (ACRF) framework. In
this framework, a primary acoustic model is used to generate state poste-
rior scores per frame. These output scores are fed to the ACRF postpro-
cessor for further frame based acoustic modeling. Since ACRF explicitly
integrates acoustic context modeling, the postprocessor has the ability to
discover new context information and to improve the recognition accuracy.
The results on the TIMIT phone recognition task show that the proposed
postprocessor can lead to significant improvements especially when Hid-
den Markov Models (HMMs) were used as primary acoustic model.

Keywords: Hidden Markov models; augmented conditional random fields;
deep conditional random fields; speech recognition postprocessor.

1 Introduction

Acoustic modeling postprocessing based on methods derived from Conditional
Random Fields [1] is an active area of research [2], [3], [4]. CRFs have a generic
way to define feature functions (constraints). Consequently, the feature func-
tions play a vital role in defining the model and its applications [5]. In this work,
we present a frame based postprocessor for speech recognition based on ACRFs
[6, 7]. The ACRFs paradigm is a nonlinear variant of CRFs where the feature
functions are computed from scoring a large number of Gaussians. The pro-
jection of low dimensional acoustic data into a high dimensional (augmented)
space aims to simplify the classification problem. The main advantage of this
framework is that acoustic context information is explicitly integrated to han-
dle the sequential phenomena of the speech signal and hence can be expected
to improve the recognition accuracy. The ACRFs can be efficiently estimated
using the Approximate Iterative Scaling (AIS) algorithm.

In the original ACRF framework, the process of augmenting the low dimen-
sional space to obtain a high dimensional space (ot → oAug

t ) is based on the
following algorithm:

1. A large number of Gaussians is estimated from the training data using the
EM algorithm [8].

2. The Gaussians provide scores for each frame.
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Figure 1: Frame based postprocessor using augmented conditional random field
(ACRF) framework.

3. The scores are sorted and only the n-best scores are retained to reduce
the the storage requirements during the training. Typically, the n-best
nearest-neighbor shortlist size is set to 10.

4. An augmented vector is constructed and its size dAug equals the number of
Gaussians in the recognition problem. A state feature value is calculated
as a pruned posterior score for each Gaussian and is given by

bi(ot) =
Ni(ot;λ)∑
j Nj(ot;λ)

≈ Ni(ot;λ)∑
j∈n−bestNj(ot;λ)

, (1)

where Ni(ot;λ) ≈ 0 for i /∈ n−best list and the normalization step is
conceptually redundant to improve the ACRFs training speed.

Frame based acoustic models generate state scores. These state scores are
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fed to a decoder to generate the recognition hypothesis. For example, in HMMs
[9, 10, 11, 12], an acoustic feature vector ot may be generated, with an output
probability density function bj(ot), which is associated with state j. A mixture
of Gaussian distributions is typically used to model the output distribution for
each state,

bj(ot) =
M∑
m=1

cjmN (ot;µjm,Σjm), (2)

where M is the number of mixture components, cjm is the component weight

and
∑M
m cjm = 1. µjm and Σjm are the component specific mean vector and

covariance matrix respectively. These state scores can be sorted and normalized
in a similar way as in Equation (1). Hence, the normalized state scores is given
by:

xj(ot) =
bj(ot)∑
s bs(ot)

≈ bj(ot)∑
k∈n−best bk(ot)

, (3)

where bj(ot) ≈ 0 for j /∈ n−best list.
The generated normalized state scores in Equation (3) are fed to ACRF

postprocessor for further acoustic modeling. The ACRF output state scores
can be normalized in a similar way and fed to a second layer ACRF for further
acoustic modeling. An example of the described process is shown in Figure 1.
By explicitly integrating acoustic context modeling using the ACRFs, the post-
processors have the ability to discover new context information and to improve
the recognition accuracy. This is the main motivation behind the work.

In this work, we investigated three different primary acoustic models which
have different modeling power.1 In particular, HMMs were tested as the main
acoustic model. In addition, ACRF acoustic modeling as described in [7] was
evaluated as a primary acoustic model. Finally, powerful deep conditional ran-
dom fileds (DCRFs) [13] were developed as a primary acoustic model. DCRFs
are a variant of hybrid deep neural networks DNN/HMM [14], [15],[16],[17],[18]
formulated using the maximum entropy principle [19]. The main goal of testing
different primary acoustic models is to show the modeling effect of using an
ACRF postprocessor.

This paper is organized as follows: the mathematical formulation of ACRFs
is given in Section 2. Section 3 describes how to compute the normalized state
scores for different primary acoustic models. Experimental results on a phone
recognition task are given in Section 4. Finally, a summary of the presented
work is given in the conclusions.

2 Augmented Conditional Random Fields

ACRFs are undirected graphical models that maintain the Markov properties of
HMMs. They operate in a high dimensional (augmented) space to improve the
discrimination between speech classes. This augmented space is constructed by

1A primary acoustic model provides the features to the postprocessors.
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Figure 2: ACRF phone model with state scores computed from a window of
augmented frames.

scoring a large number of Gaussians. In addition, by using a large window of
augmented frames, acoustic context information is explicitly integrated allowing
the model to handle the sequential nature of speech signals. Hence, the HMM
conditional independent assumptions are relaxed in this framework. ACRFs
feature functions are based on pruned posterior scores to improve the training
speed. The ACRFs have a batch training algorithm that scales for a large
amount of training data.

The linear chain undirected graphical model behind the ACRF is shown in
Figure 2. The model has the following properties:

• It obeys the Markovian property.

• The state scores are computed from the augmented frames (pruned pos-
terior scores).

Given a state sequence S = (s1, s2, . . . , sT ) and a time sequence of speech
frames or acoustic observations associated an utterance O = (o1,o2, . . . ,oT ),
the maximum entropy conditional distribution defining ACRFs is

PΛ(S|O) =
1

ZΛ(O)

T∏
t=1

exp
(
λstst−1a(st, st−1) +

t+c∑
u=t−c

dAug∑
i=1

λuistxi(ou)
)
, (4)

where λuist and λstst−1
are associated with the feature functions xi(ou) and the

transition functions a(st, st−1).2 The feature functions xi(ot) are computed as
in Equation (3) when HMMs are used as a primary acoustic model. The number
of frames in the acoustic context window is w = 2c+1. ZΛ(O) (Zustandsumme)
is a normalization coefficient referred to as the partition functions and is given

2a(st, st−1) is binary valued and can be used to specify the transition topology.
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by

ZΛ(O) =
∑
S

T∏
t=1

exp
(
λstst−1

a(st, st−1) +
t+c∑

u=t−c

dAug∑
i=1

λuistxi(ou)
)
, (5)

and it can be computed efficiently using the forward algorithm [1].
The feature functions xi(ot) are computed in a different way for other pri-

mary acoustic models. Section 3 will explain how to compute these feature
functions for ACRFs and DCRFs acoustic models. In particular, Equation (11)
and Equation (16) are used for primary acoustic models based on ACRFs and
DCRFs respectively.

The primary acoustic decoding results are based on state scores. Compared
to the primary system, the ACRF postprocessing sees next to the current set
of state scores also those of the neighboring frames, allowing the integration
of context information in the augmented space. It is worth to mention that
when acoustic context information is not modeled ( i.e. c = 0), the ACRF post-
processor and the primary acoustic model should lead to the same recognition
results.

2.1 ACRF Optimization

For R training observations {O1,O2, . . . ,Or, . . . ,OR} with corresponding tran-
scriptions {Wr}, ACRFs are trained using the conditional maximum likelihood
(CML) criterion to maximize the posterior probability of the correct word se-
quence given the acoustic observations. Exact lower bound optimization algo-
rithms for CRFs are very slow [1]. Therefore, we use the Approximate Iterative
Scaling (AIS) algorithm to speed up the training process. The value of the
learning rate is the main difference between exact and approximate algorithms.
An AIS algorithm update equation is given by:

λτ+1
ji (O) = λτji(O) + ηAIS log

Cnum
ji (O)

Cden
ji (O)

, (6)

where ηAIS = 1
w is called the learning rate and τ is the iteration number. The

sparse accumulators of the sufficient statistics, Cji(O), for the jth state and ith

constraint are calculated as follows:

Cnum
ji (O) =

R∑
r=1

Tr∑
t=1

γrj (t|Mnum)oAug
rti , (7)

Cden
ji (O) =

R∑
r=1

Tr∑
t=1

γrj (t|Mden)oAug
rti , (8)

where r is the utterance index and oAug
t = [ot−c, . . . ,ot, . . . ,ot+c] . Given the

forward score αj(t) and backward score βj(t), the occupation probability of
being in state j at time t, γj , is given by:

γj(t|M) = P (st = j|O;M) =
αj(t|M)βj(t|M)

ZΛ(O|M)
, (9)
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and to avoid the necessity of building lattices, the γj(t|M) is approximated with
state estimates as follows [20]:

γj(t|M) =
exp

(∑t+c
u=t−c

∑dAug

i=1 λuij xi(ou)
)∑

s exp
(∑t+c

u=t−c
∑dAug

i=1 λuis xi(ou)
) . (10)

3 State scores generation

Three different primary acoustic models which have different modeling power
were developed in this work. For HMM, the generated normalized state scores
are computed as in Equation (3) . For ACRF and DCRFs, the goal of this
section is to show how to compute their normalized state scores.

3.1 ACRF as a primary acoustic model

ACRFs can be used as a primary acoustic model if the input features to ACRFs
are based on Equation (1) . The parameter estimation is exactly identical to
described in Section 2. The normalized state scores are given by

xj(ot) =
exp

(∑t+c
u=t−c

∑dAug

i=1 λuij bi(ou)
)∑

s exp
(∑t+c

u=t−c
∑dAug

i=1 λuis bi(ou)
) ≈ exp

(∑t+c
u=t−c

∑dAug

i=1 λuij bi(ou)
)∑

k∈n−best exp
(∑t+c

u=t−c
∑dAug

i=1 λuik bi(ou)
) ,

(11)

where exp
(∑t+c

u=t−c
∑dAug

i=1 λuij bi(ou)
)
≈ 0 for j /∈ n−best list.

3.2 DCRF as a primary acoustic model

Training CRFs on the top of a hidden layer constructed from scoring a large
number of sigmoid functions was introduced in [17]. One way to improve this
approach is to compute the state scores based on a DNN that has several hidden
layers [21]. Deep Conditional Random Fields acoustic models are a particular
implementation of linear chain CRFs where the state scores are computed based
on a DNN that has several hidden layers [13]. The output layer of DCRFs is
based on linear activation functions while in hybrid DNN/HMM it is based on
softmax activation functions. This is the main difference between DCRFs and
hybrid DNN/HMM systems. A graphical representation of the DCRF acoustic
model is shown in Figure 3. The conditional distribution defining DCRFs is
given by

PΛ(S|O) =
1

ZΛ(O)

T∏
t=1

exp
(
λstst−1a(st, st−1) + bst(ot)

)
, (12)

where bst(ot) is computed from a DNN scorer.
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The feed-forward phase of a DNN scorer updates the output value of each
hidden unit. Each hidden unit output is computed as follows:

ohtj = sigm(
n∑
i=1

λijo
h−1
ti ), (13)

where oht is an output of a hidden layer, n is the number of inputs, and h is an
index to a hidden layer. The sigmoid function is computed as follows:

sigm(x) =
1

1 + e−x
. (14)

The output of an hidden layer is forwarded to the next layer until the output
layer is computed as follows (linear activation):

oNtj =
n∑
i=1

λijo
N−1
ti , (15)

where N is the index of the output layer. Hence, bst(ot) = oNtst connects a DNN
scorer to CRFs.

The normalized state scores are given by

xj(ot) =
exp

(
oNtj
)∑

s exp
(
oNts
) ≈ exp

(
oNtj
)∑

k∈n−best exp
(
oNtk
) , (16)

where exp
(
oNtj
)
≈ 0 for j /∈ n−best list.

4 Experiments

In this section, the standard TIMIT phone recognition task is used to evaluate
the proposed approach described in this paper. The training sets consist of 462
speakers and results are computed using the 24 speaker core test set. The DNN
training development set is based on 50 speakers from the test set [22]. The
SA1 and SA2 utterances were not used.

The speech was analyzed using a 25ms Hamming window with a 10 ms fixed
frame rate. The speech is represented using 12 mel frequency cepstral coefficients
(MFCCs), energy, along with their first and second temporal derivatives, result-
ing in a 39 element feature vector. Another representation used for DCRFs is
based on using a Fourier-transform-based filter-bank with 40 coefficients (plus
energy) distributed on a mel-scale, together with their first and second tem-
poral derivatives resulting in a 123 element feature vector. The features are
pre-processed to have zero mean and unit variance and acoustic context infor-
mation is integrated using a window of 9 frames (4 left + current frame+ 4
right) to construct the final frames.

The original 61 phone classes in TIMIT were mapped to a set of 48 labels,
which were used for training [23]. After decoding, this set of 48 phone classes
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Figure 3: Linear chain DCRF model (the state scores are computed from a
DNN).

was mapped down to a set of 39 classes. The phone error rate (PER) metric,
which is analogous to word error rate, is used to report phone recognition results.

Each phone of the baseline HMMs was represented using a three state left-to-
right model. Mixtures of Gaussian densities with diagonal covariance matrices
were used for state scoring (emission probabilities). The HMMs were trained
by the maximum likelihood criterion using the conventional EM algorithm [24].
Discriminative training based on Minimum Phone Error (MPE) criterion was
used to refine the HMMs [25]. The acoustic scale was set to 1/6 and I-smoothing
parameter τ was set to 100.

Similar to the HMMs, the ACRF-based models emply three-state left-to-
right phone models. The transition parameters were initialized from trained
HMM models. Other parameters were initialized to zero. The same model
structure was used for postprocessor ACRFs. A Viterbi pass (forced alignment)
of the reference transcription using HMMs trained using the maximum like-
lihood criterion was used to accumulate the Mnum sufficient statistics. The
number of frames in the acoustic context window, w = 2c + 1, was set to 19.
For ACRFs primary acoustic models, 7917 Gaussians were used to construct
the augmented space.

A powerful primary acoustic model based on DCRFs was evaluated. Each
phone was represented using a three state left-to-right DCRF. The transition
parameters were initialized from trained HMM models as in ACRFs. The DNN
parameters were initialized to random values. The DNN has nine hidden layers
and each layer has 2048 neurons. For training DCRFs, the PDNNTK toolkit
[26] in combination with the Theano library [27] is used, allowing transparent
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Table 1: HMM decoding results on TIMIT recognition task in terms of PER.

Model 10 Mix 40 Mix
HMM baseline 32.3% 29.9%

ACRF postprocessor1 28.7% 27.9%
ACRF postprocessor2 28.2% 27.5%

Table 2: Decoding results on TIMIT recognition task in terms of PER for
different primary acoustic models.

Model ACRFs DCRFs
baseline 27.3% 22.7%

ACRF postprocessor1 26.7% 22.3%
ACRF postprocessor2 26.6% 22.5%

computation for CPUs and GPUs.
The acoustic modeling process starts with generating the state scores of the

primary models in pruned posterior forms. These scores are fed to the first
ACRF postprocessor. The output state scores of the first ACRF postproces-
sor are generated in pruned posterior forms and are fed to the second ACRF
postprocessor in all experiments.

A generic bi-gram in-house decoder is used to generate the recognition phone
sequence for the different acoustic models. Table 1 shows the decoding results
when HMMs are used as a primary acoustic model. The results show that the
first stage of ACRFs postprocessing leads to significant improvement in terms
of PER. When ACRFs and DCRFs were used as primary acoustic models, the
improvements are smaller than HMMs as shown in Table 2. The second stage
of postprocessing did not lead to improvements. These results may suggest that
ACRF postprocessing has limited ability for powerful acoustic models.

5 Conclusions

In this paper, an augmented conditional random field postprocessor for speech
recognition is presented. In this framework, a primary acoustic model is used
to generate state posterior scores per frame. These posterior scores are then
used as input to an ACRF. The main goal of this process is to model the
acoustic context information in a high dimensional space constructed using the
primary acoustic model state scores. Consequently, the postprocessor acoustic
model discovers new context information and improves the recognition accuracy.
Three different primary acoustic models were investigated in this work (HMM,
ACRF, and DCRF). Results on the TIMIT phone recognition task show that
the proposed postprocessor can lead to significant improvements especially when
HMMs were used as a primary acoustic model.
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