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Abstract

This paper presents and evaluates an approach to deploy image and video processing pipelines that are developed frame-

oriented on a hardware platform that is stream-oriented, such as an FPGA. First, this calls for a specialized streaming

memory hierarchy and accompanying software framework that transparently moves image segments between stages in the

image processing pipeline. Second, we use softcore VLIW processors, that are targetable by a C compiler and have hardware

debugging capabilities, to evaluate and debug the software before moving to a High-Level Synthesis flow. The algorithm

development phase, including debugging and optimizing on the target platform, is often a very time consuming step in

the development of a new product. Our proposed platform allows both software developers and hardware designers to test

iterations in a matter of seconds (compilation time) instead of hours (synthesis or circuit simulation time).

Keywords FPGA · Image processing · Medical imaging

1 Introduction

The goal of interventional medical imaging equipment is

to provide the physician with real-time images from the

anatomy of the patient while performing a medical inter-

vention. One type of such equipment is the interventional

X-ray (iXR) system. Typical interventions using the sys-

tem include repairing blood vessel deformations such as
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aneurysms by positioning stents or replacing heart valves.

During these procedures, blood vessels are filled with a con-

trast medium, which is visualized by X-rays and shown in

real-time high resolution video images to the physician. As

radiation is harmful to patients, doses need to be kept to

a minimum. Using lower doses leads to more noise in the

images, which can be reduced by using image processing

filters.

The iXR is a complex system with strong real-time

requirements. The system consists of many different com-

pute architectures. The image processing algorithms are

often closely tuned to the platform architecture. This makes it

difficult to service the systems. At the same time, FPGA

(SoC) platforms are interesting for these medical systems due

to the long life time, strong performance and good real-time

capabilities. However, FPGAs are often perceived as being

difficult to design for. In order to address these issues, we

have investigated enablers for portability towards FPGAs

exploiting novel tools and techniques such as High Level

Synthesis (HLS) tools. HLS is a promising approach, but

currently still a specialistic toolflow requiring many code

changes and optimization steps to achieve performance.

Especially when moving from frame based video and image

processing algorithms to a streaming implementation.

Image or video processing algorithm development is

mainly done in a frame based manner which allows random
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access of the frame and parallelization techniques such as

tiling. FPGA accelerators cannot buffer a full frame during

processing, due to amongst others memory bandwidth,

power and latency requirements. Therefore, the algorithm

has to be implemented in a stream-based manner, where

we wish to process pixels as soon as they come in and, as

quickly as possible, pass the result on to the next processing

step (accelerator). The current HLS tools require labor

intensive hand optimizations such as using line buffers and

data re-ordering instead of random memory access. There is

a need to abstract away this implementation level in order to

ease the FPGA implementation for the programmer.

Frameworks exist that facilitate mapping computations to

FPGA (including frameworks specifically targeting image

processing), but these do not solve the frame versus stream

problem. Mapping the frame-based software to a stream-

based hardware platform on FPGA creates the following

challenges; creating a framework that moves and buffers

data (in the form of image segments) between stages,

causing the develop/test/optimize cycle time to increase

tremendously because of synthesis.

In this paper, we propose an approach to solve these chal-

lenges by using an FPGA overlay fabric consisting of soft-

core processors that are targetable by OpenCL and a stream-

ing memory framework. After an initial synthesis of the plat-

form, the time required to test iterations reduces from hours

(synthesis time) to seconds (compilation time). The aim

is to allow the final design to achieve better performance

at reduced development time (see Fig. 1).

Figure 1 High-Level Synthesis (HLS) aims to reduce development

time compared to a full-custom RTL design. Recently, FPGA vendors

started to support OpenCL code. Starting from an OpenCL program,

it costs less time to synthesize the first working design to FPGA,

but it requires a considerable number of time-consuming test, debug,

and optimization cycles before it starts to perform comparable to an

HLS design. Using an FPGA overlay accelerates this process. General-

Purpose Processors (GPP) have the advantage of being commodities,

but improving their performance using SIMD (Single Instruction,

Multiple Data) is time-consuming [1] and not portable.

This paper is organized as follows. Section 2 discusses

the background and related work. Section 3 proposes

the approach of developing frame-based programs for

stream-based architectures. Section 4 presents the hardware

implementation of the platform, while Section 5 presents the

software stack. Section 6 discusses the experimental results

performed on the platform, and Section 7 ends with the

conclusions.

2 RelatedWork

A common aim in the development of support frameworks

for specific application domains is to reduce Non-Recurring

Engineering costs by speeding up development time and

facilitating component re-use. The performance may be

slightly negatively affected (a specific full-custom design is

hard to beat), but that is usually offset by lower development

costs and shorter time-to-market [2].

In this section, we first discuss general approaches to

speed up image processing workloads, then proceed to

focus on FPGA acceleration including software support

approaches, followed by a discussion of hardware support

approaches using overlays and image processing fabrics and

hardware integration frameworks.

2.1 Accelerating Image ProcessingWorkloads

Currently, there are numerous ways to either optimize image

processing code or mapping it to FPGA/GPU. On common

ARM and x86-based systems, Single Instruction, Multiple

Data (SIMD) instruction set extensions such as AVX can be

exploited to gain considerable performance [3]. There exists

efforts to be able to insert these instructions automatically

and some compiler support exists. When a new generation

of processors or SIMD extensions is introduced, however,

code must be optimized, leading to large costs in testing

and validation. A study about optimizing HEVC using the

AVX SIMD extension concludes that ”The large speedup,

however, could only be achieved with high programming

complexity and effort.” [1].

GPUs suffer from the problem of performance portabil-

ity [4]. This means that for a new GPU generation, the

same issue arises where engineering effort may be required

to optimize the code again. Additionally, GPUs primarily

target floating point calculations, that are usually algorith-

mically not necessary for image processing.

To facilitate the optimization process and to aid design

space exploration for various target execution platforms, the

Halide programming language and compiler can be used

to generate code from a functional description of a filter

[5]. Mapping parallel computations to a variety of com-

putational fabrics (including multicore CPUs, GPUs and
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FPGA) can be done using OpenCL [6]. An overview of the

challenges in designing embedded image processing sys-

tems (including a discussion of the gap between high-level

algorithm description and low-level hardware design meth-

ods) is given in [7].

2.2 FPGA Acceleration

Mapping computations to FPGA can be performed in a

number of ways. High-Level Synthesis [8] is becoming

a standard tool in many FPGA design environments.

Additionally, FPGA vendors are supporting OpenCL

through for example SDAccel [9]. The traditional approach

of developing datapath designs in VHDL can still be utilized

for very specific designs or if the HLS tools are not

able to meet certain requirements. In the image processing

application domain, the HLS toolflow has some drawbacks.

Code modifications are often necessary, as it is not possible

to write code in a frame-based way. Efficient tools need

to be able to identify buffers in such a way that it can

be mapped to FPGA efficiently (stream based) to prevent

prohibitively slow main memory accesses. The ROCCC

HLS compiler [10] is able to insert smart buffers that can

provide some data reuse, and in [11] this concept has been

extended into a framework that can generate VHDL code

for sliding window filters with optimized memory structure.

Other related efforts exist, that aim to generate streaming

designs from C code [12] or make use of Domain-Specific

Languages (DSL), such as Halide, are Darkroom [13]

and HIPAcc [14]. These approaches are able to generate

hardware components for FPGA by providing an abstraction

layer for HLS. Using HLS and frameworks that generate

HDL code, quality of result is not always consistent and

synthesis times are still very long. This means there is still

a gap to be bridged between the image processing code and

FPGA development.

2.3 FPGA Overlays

To reduce compilation time and enhance portability, FPGA

overlays are becoming an interesting research area. Using

an overlay on FPGAs would allow software programmers

to target familiar architectures, without understanding the

low-level details. MARC [15] is one such project where a

multi-core architecture is used as an intermediate compila-

tion target. It consists of one control processor and multiple

processors (Cores) to perform computations. The data cores

are used to run OpenCL kernels and the control core is used

to schedule work to the data cores. The authors conclude

that using such an overlay dramatically reduces develop-

ment time and bridges the gap between hardware and soft-

ware programs at an acceptable performance hit compared

to hand-optimized FPGA implementation. Another related

effort is OpenRCL [16]. The concept of using accelerators

to speed up applications while retaining programmability is

discussed in [17].

In [18], a toolset is introduced for customized softcore

image processing on FPGA. Customizing the softcores is

a concept that can be added to our proposed framework

to improve performance. Resource-efficient processing ele-

ments are introduced by [19, 20] and [21]. Our framework

could make use of these processors if they were available,

but our chosen processor supports OpenCL and we provide

our own design-space exploration. A similar framework has

been introduced in [22], but instead of providing stream-

based processing that allows scalability, they employ shared

memory in a banked organization, accessible via a crossbar.

This reduces scalability as will be evaluated in Section 6.

2.4 Integration Frameworks

There have been related efforts in creating FPGA develop-

ment frameworks that facilitate development and integra-

tion. One example is RIFFA [23], an open source project

that provides communication and synchronization between

host and FPGA accelerators using PCIe. As we are using

I/O directly connected to the FPGA board, we do not require

PCIe interfacing. A commercial framework that can incor-

porate HSL-generated accelerators, hand-written VHDL

and IP is the DYnamic Process LOader or Dyplo from Topic

Embedded Products [24]. It incorporates a network on chip

which connects both software functions and FPGA accel-

erators together. The network can be re-routed at run time

and designated areas of the FPGA can be re-configured

with a different accelerator through Xilinx Partial Recon-

figuration [25].

3 Approach

This section will outline how we have used a slightly

modified view on the OpenCL programming model to target

our proposed streaming-based hardware framework while

using ordinary OpenCL kernels.

3.1 OpenCL’s View on Parallel Computing

In many cases a compute ‘problem’ consists of a data-

set for which each element needs to undergo a certain

transformation and basically this transformation is the same

for each element. Consider the code example in Fig. 2:

Every b[i] is produced by the exact same code fragment

and there is no dependency of an element of b[] to another

element of b[]. Such an operation is called a ‘kernel’ in

OpenCL terminology. Conceptually, all 128 computations

could have been executed concurrently, on a platform that
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Figure 2 Code example of an OpenCL kernel.

provides 128 processing elements. This kind of parallelism

is the main target of OpenCL: execution of as many kernels

in parallel as possible. Note that the code for each kernel

is identical, but the execution flow can be different for

example due to the boundary checking ‘if’ statement in

the ‘get()’ function. The OpenCL framework tries to have

many accelerators performing the same operation on many

datasets independently. One element of such a dataset is

called a ‘work-item’.

3.2 OpenCLMemory Model

OpenCL defines 4 types of memory objects:

1. Global Memory – read/write accessible from both the

host and the execution device

2. Constant Memory – like Global Memory, but read-only

for execution devices

3. Local Memory – only accessible within (a group of)

execution devices

4. Private Memory – only accessible from a single

execution device

OpenCL also defines a data cache between the Global /

Constant memories and the execution devices. This cache is

optional, but in practice it is always needed to avoid slow-

down due to data transfers. This cache needs to be carefully

designed, as many cores will try to access it simultaneously

and in case the cache does not have enough access ports

that immediately creates a new bottleneck. Note that Global

/ Constant memory can be physically located either on the

host side or on the compute devices. When located at the

host side, the compute devices need a pull mechanism to

retrieve the argument data (work-item) which is inherently

slower than the push mechanism the host uses when the

memory is located on the devices (and conversely it is faster

for results). Also note that this model uses a frame-buffer

approach, not a streaming approach. Figure 3 shows the

OpenCL memory structure.

3.3 Streaming Data and OpenCL

The OpenCL model works with Single Instruction Multiple

Data (SIMD) processing. One set of kernels is operating

on the full data set. Other sets of kernels have to be

programmed each time for iterative processing, where the

data is stored to the global memory in between processing

steps. This approach is shown in Fig. 4. We would like to use

OpenCL in a data pipelined, or streaming, implementation

as explained in the previous section. This means that we

Figure 3 OpenCL memory structure.
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Figure 4 OpenCL data model.

would like a situation where we can program different sets

of kernels where data is passed on from one set to the next,

as depicted in Fig. 5. Here, results are no longer written back

to global memory, but passed to other accelerators through

a connection mechanism that needs to be scalable (as we

are targeting highly parallel workloads running on large

numbers of compute devices) and able to provide sufficient

Figure 5 Streaming data model.

bandwidth. This can be a Network on Chip or a certain

connection topology that suits the application.

Note that an alternative approach could be to execute

the different kernels consecutively on every compute device

(essentially, we are changing the kernel instead of moving

the data - keeping the data set local). This requires every

compute device to be capable of storing the instruction

stream of each kernel in local instruction memory or cache.

The storage capacity of these memories is an important

design parameter as is explored in Section 4.1. Additionally,

the size of the instruction stream will typically be larger than

the size of a data block.

3.4 OpenCL Data Architecture

In OpenCL a kernel always has a full view on the entire

dataset but in most cases that is not necessary. Given that

a certain kernel is operating on a block of data, this ker-

nel only needs a limited view on the total working set as

depicted in Fig. 6. In this example (a 5x5 convolution ker-

nel), the data located more than 2 lines above the current

coordinates (x,y) are not needed anymore and the lines more

than 2 lines below (x,y) are not needed yet. Assuming a

set of compute devices are processing the data line by line,

each device requires 5 lines of storage capacity to store their

working set. A control mechanism should feed each com-

pute device with the appropriate data in time and keep track

of the locations of lines when assigning tasks to ensure the

needed input lines are present and output results are only

overwriting stale data. The OpenCL system provides a suit-

able basis to build such a mechanism: the command queue.

This queue distributes work-items to the compute units, so

it knows exactly which work-items are being processed.

Consequently, it knows about the maximum view of each

kernel and can compute the required data (sub)set as well.

Determining the maximum view size of the kernels in

the image processing pipeline also influences certain param-

eters of the required hardware infrastructure (the storage

capacity of the local memories of the compute devices).

Conversely: for a given size of hardware buffers there is a

maximum view size for each kernel. The process of find-

ing the optimal buffer sizes between all kernels is important

to prevent bottlenecks while minimizing the required sizes.

There are numerous approaches to solve this, for example

by performing simulations with iteratively decreasing buffer

sizes, but this is outside the scope of this work. In our ref-

erence platform, we assume all filters have a maximum

window size of 5x5 and will therefore need a buffer size

of 5 lines for input and 1 additional line for output. The

width of the lines depends on the stripe length (e.g., how the

image is divided into vertical stripes), which also determines

how many vertical lines of pixels need to be processed

redundantly.
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Figure 6 A kernel only needs a

limited view on the total

working set.

4 Implementation - Hardware

An FPGA-based platform targeting image processing

pipelines needs a number of elements; a streaming mem-

ory structure, processing units, one or more DMA units,

interfaces with off-board electronics (to receive the image

and output it after processing), and control & debug inter-

faces with a central host. Additionally, run-time support is

needed to move the image segments through the streaming

memory structure. This should be done as transparently as

possible in order to keep frame-based programmability.

4.1 Processing Element

The processing elements used in this work are based on

the ρ-VEX VLIW processor developed by TU Delft [26].

The implementation of this processor is written in a very

generic way, so design space exploration can be performed.

In our application domain, there is ample parallelism on

both instruction level and data level (that can be exploited

by SIMD or multithreading). The design-time configuration

options available for the ρ-VEX are listed in Table 1.

The processor will be configured in the smallest issue

width to improve timing and limit area utilization as

much as possible. Any decrease in area utilization may

results in a larger number of cores, which will directly

improve performance. Disabling forwarding in the pipeline

and adding additional pipeline stages will impact code

performance due to additional latency between operations,

but this penalty can be reduced or even removed by using

Table 1 Design-time configuration options of the ρ-VEX processor

and their effect on various exploration metrics.

Configuration Area Code

option utilization performance Timing

Issue-width − − + −

Forwarding − + −

Traps +/− +/− +/−

Breakpoints +/− +/− −

Perf. counters − +/− −

Additional

pipeline stages +/− − +

loop unrolling in the ρ-VEX compiler in order to fill the

latency slots with other operations. This requires the cores

to have sufficiently sized instruction memories, resulting in

another trade-off as the memory sizes will impact timing

and, to a certain extent, the number of cores that will fit on

the FPGA (Table 2).

4.2 Memory Structure

The memory structure as used in our overlay is introduced

in [27]. The concept is to organize the cores into streams

of a configurable number of cores. Within such a stream,

each processor has a local (scratchpad) instruction memory

and a local data memory. The sizes of these memories must

be set at design-time and determine the maximum size of

the program (.text section of the binary), and the maximum

size and number of line buffers that cores can store. Similar

to the design-space exploration of the instruction memory

size, as discussed in Section 4.1, the size of the data memory

buffers is an important parameter that should be carefully

considered. Too large data memories can limit the number

of cores that can be placed on the FPGA and create timing

difficulties, too small memories can results in bottlenecks in

the stream or prevent a certain core from supporting certain

filters (for example, a convolution filter with a 5x5 pixel

window size needs at least 5 buffered input lines and a buffer

to write the output line).

Table 2 Example of the design-space exploration of the ρ-VEX

pipeline organization, area utilization and timing.

Pipeline N Resource utilization Freq.

Forward Stgs LUT FF BRAM (MHz)

Enabled 7 64 99% 29% 81% 149

Enabled 5 64 93% 26% 81% 103

Disabled 7 75 96% 33% 95% 162

Disabled 5 75 98% 30% 95% 143

Disabled 7 4 5% 2% 5% 200

Disabled 7 64 82% 28% 81% 193

N denotes the number of cores in the design. The bottom two rows

represent designs that were placed & routed using manually created

placement constraints to improve timing, the upper rows are results

from running without constraints.
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In addition to its own local data memory, each core in a

stream is able to access the data memory of its predecessor

by means of an address decoder (see Fig. 7). Each core

in the stream will run a filter in the image processing

pipeline. The local data memories are implemented using

dual-ported BRAMs so that each core has single-cycle

access to both memory regions. The first and last memories

in the streams are connected to an AXI bus using a DMA

unit. The image is segmented to distribute the workload over

the available streams, while taking into consideration the

necessary overlap to perform the window-based operations.

Sending data, commands, parameters and synchronization

is performed using the local memories (for example,

convolution kernel parameters are propagated through the

stream). Loading the instruction memories, debugging and

resetting the individual cores is performed using a separate

debug bus that is operating on a lower frequency to avoid

timing difficulties. These last tasks are only performed

during startup or debugging, therefore the lower frequency

will not interfere with the performance.

4.3 Interfaces

This section will discuss the hardware interfaces that move

data to and from the processing elements and the outside

world.

4.3.1 DMA Unit

As stated, the first and last core of each stream is connected

to a DMA unit that can transfer blocks of data to the AXI

bus. This connection is implemented in a non-blocking way,

to allow cores to send a request to the DMA unit without

having to wait until it becomes available. Arbitration is

performed by means of a simplified Network-on-Chip

(NoC), as is depicted in Fig. 8.

The requesting core writes the target address and the data

(or size) to be transfered into a BRAM, and flags the request

in a control register. Each pair of streams is connected

to an arbiter (router) in a fully unbalanced organization

(this creates a better layout for Place and Route). Each

arbiter contains registers in order to avoid a long timing

path. When receiving a new request, an arbiter will lock

itself until the payload has been fully transferred (similar

to wormhole switching). This way, all payloads will be

transferred undivided, so the burst mode of the AXI bus

can be used most effectively. The priorities of the arbiters

are set such that streams that are further away from the bus

interface have precedence.

4.3.2 Debug Bus

In order to support the extensive debugging capabilities

that are offered by the ρ-VEX processor, a separate bus

is created that operates on a lower frequency than the

datapaths and memories. This is because this bus is not

performance critical and the lower clock will facilitate

timing on the FPGA. The bus is bridged to the AXI main

bus by means of an AXI slave interface, and connected to

all cores in the system (all of which are memory-mapped

into the AXI slave’s address space). The functionality of the

debug bus is determined by the memory regions of each ρ-

VEX core that it is able to access - the instruction memory,

data memory, and control registers. The set of control

Figure 7 Overview of the streaming memory framework. Obtaining

the image segment from the source and writing it to the sink is per-

formed by a DMA unit that accesses framebuffers in the DRAM on the

FPGA. Transfers between stream units are performed by local buses

in the FPGA fabric, connecting local memories instantiated using

BRAMs.
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Figure 8 DMA unit that is in essence a simple NoC with switches leading up to an AXI bridge that bursts packets of streaming data to a

framebuffer in DDR (or any memory address provided by the requesting stream).

registers allow standard operations such as halting and

resetting the core, but also more advanced requests such as

register file access, setting watch/breakpoints and toggling

single-step execution mode.

To be able to use all debugging functionality, the ρ-VEX

must be configured with traps enabled. Whenever a trap

occurs during execution, the core will store the cause, the

location in the program (program counter value), and an

argument in a control register. This way, it is possible to

ascertain what went wrong before the core halted or trapped

into the trap handler. For example, if the core performs a

memory read to an invalid address (unmapped or unaligned

address), it will show the cause associated with invalid data

access, along with the program counter that contained the

corresponding load instruction and the address it was trying

to access.

5 Implementation - Software

This section describes the implementation from a software

point of view, starting with the buffer management and

how the workload is parallelized over multiple cores, how

the system performs the necessary synchronization, the

way that OpenCL support has been implemented, how

the interfaces are programmed and lastly how to develop

applications for the platform.

5.1 Compilation and Operation

The process elements, as discussed in Section 4.1, are based

on the VEX instruction set architecture [28]. There is a full

toolchain available for these cores, that must be used to

compile code for the platform. A C compiler is available,

along with a port of binutils and an architectural simulator

that can be used for initial debugging of the code during

development. The process of writing parallel code for the

platform will be discussed in more detail in Section 5.4.

To load the binaries into all the processing elements,

the current platform implementation includes a management

core. In principle, this can be a (hard) ARM-based device

(in case of Zynq and comparable platforms), or even an

additional ρ-VEX core, but in our current implementation

it is a microblaze processor as it is used in Xilinx

reference designs to configure the AXI-based platform and

peripherals. This core is not running any filters, but only

concerns itself with sending commands to all the processing

elements. It is able to access all the processing elements’

control registers, instruction memory and data memory by

means of the debug bus. In addition, it can control the DMA

unit using control registers.

At startup time, the management cores resets and halts all

processing elements and loads the corresponding instruction

stream into the instruction memory of each core in each

stream. Then it populates a datastructure in the data
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Figure 9 Struct that contains a single line of a stripe of the image that

is being processed. It contains the position in the frame so it can be

used as input for subsequent filters or written into a frame buffer.

memories of each core in order to have them wait for

instructions (see also Section 5.3) and releases the cores.

During normal operation, the instruction memories only

need to be loaded once, however, it is possible to change the

image processing pipeline by simply halting the cores and

uploading a different instruction stream.

5.2 Buffer Management

As discussed in Section 4.2, the image processing workload

will be distributed across the available cores in two

dimensions - each core in a stream will perform a separate

filter (task-level parallelism), and each stream will handle

a part of the image (data-level parallelism). The image

is divided by vertical stripes of a certain width. In our

reference design, the total number of cores is 16 streams of

4 cores each and the default stripe width is 60 pixels. The

stripes are buffered per line in the local data memories of the

processing elements. The data structure of these buffers is

depicted in Fig. 9. The type of filters that are to be supported

by a certain core in the stream determines the number of

line buffers that need to fit into the input data memory. If

the filter operates on a 5x5 window to produce 1 output line,

there must be enough storage capacity to store 5 lines in the

input memory and 1 line in the output memory. Note that

these storage requirements overlap between two adjacent

cores. The buffers circulate in such a way that the required

input lines are stable, and the line that is not needed anymore

will be used as output storage for the previous core (see

Fig. 10). The horizontal overlap is handled by extending

the stripes on both sides when reading in the input from

the framebuffer using DMA. This overlap is dependent on

the filter size in the same way as the required number of

buffered lines.

When distributing block-based filters among multiple

streams, some amount of overlap is required between the

stripes. Instead of communicating these pixels between

cores (which is not supported by the memory structure),

our platform redundantly computes them in every stream.

The largest filter size determines the necessary amount of

Figure 10 Diagram showing the

overlap between stripes

allocated to neighboring

Streams, and lines that

automatically overlap because

they are allocated to the same

stream.
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overlapping pixels, and these are added to the workload

automatically by the management core. Edges can be dealt

with in different ways; each core could implement the edge

behavior and perform a check on each input line to identify

whether it is an edge line. However, this will increase code

size. Another option is to implement the behavior on a

dedicated core and instruct the management core to send all

edge lines to it. If the management core is fast enough, it

could also perform the filters on all the edge lines directly.

5.3 Synchronization and Communication

As the processing elements’ data memories are not

connected to the AXI bus directly, but to a slower debug bus,

Figure 11 Example of a struct that is used to communicate between

the cores, and to synchronize the streams. It can be used to change

which filter should be performed, update filter parameters, and to apply

backpressure to predecessor cores (using the state member). This struct

is used to communicate between core 1 and 2 (therefore it does not

contain any parameters for cores 0 and 1) and contains 6 linebuffers.

controlling each individual core from the microblaze using

this debug bus would be too slow. However, each processing

element is able to receive commands from the management

core by means of a data structure that is depicted in Fig. 11.

The struct contains a state member that is used for

synchronization and to control buffer ownership. The

predecessor core can take ownership of a line buffer by

writing the index of that particular buffer into the state field.

The buffers contain consecutive lines in a circular fashion

and it is always implied that the buffers that are not reserved

by the predecessor core contain valid lines (so that these can

be used as input by the successor core). The successor core

resets the state value to 0 when it is finished processing its

line. The predecessor core will wait for this event before

proceeding with the next line, so this mechanism can be

used to apply backpressure.

In addition to the state member, the structs contain a filter

parameter struct for each following core. An example of

this struct is depicted in Fig. 12. If the state field is set to

-1, a core will propagate these values to its successor. This

way, new values can be loaded into each core. Lastly, the

communication struct contains a number of line buffers. As

discussed, the exact number must be set by the designer

after careful consideration of the filters that a certain core

needs to be able to perform. Automating this using a

dataflow buffer sizing analysis method could be considered

as possible future work.

5.4 Application Development

One of the related work in terms of software development

for image processing filters is Halide [5]. It can generate

Figure 12 Example of a struct that is used to communicate filter

parameters between cores. In theory, each core in the stream could

have a specific struct because they can all have a distinct instruction

memory containing different filters. In our reference implementation,

the cores all support two different filters (median and convolution),

and the kernel that is used for the convolution can be modified using

the struct.



J Sign Process Syst (2019) 91:47–59 57

code by describing the relationship between an output pixel

and its required input pixels. This is possible because the

operations are the same for each pixel, using different

input pixels. As discussed in Section 3, a work-item size

of a single pixel is bad because of overhead (not only on

a software level, but this would also prevent the DMA

engine from achieving high bus throughput as this requires

burst transfers). Therefore, the platform operates on lines

instead of pixels. Developing filters for the platform consists

of modifying the frame-based reference implementation

into a line-based implementation. In the halide analogy,

instead of describing how to calculate a single pixel, the

programmer must specify how to compute a line of a given

length. The difficult facets of the code transformation are

handled by the hardware framework as outlined in the

previous sections. These include time-consuming and error-

prone elements such as buffer management, dividing the

workload over multiple processing elements (whose number

will most likely change during the exploration phase),

synchronization, and I/O (using DMA transfers).

The framework supplies the input linebuffers and an

output linebuffer, the width of the line, and parameters

for the filter (if applicable). Kernels can be programmed

in OpenCL and compiled with our LLVM backend from

the Portable OpenCL (pocl) framework [29]. Alternatively,

kernels can be programmed in C or VEX assembly code.

The kernel code must be linked together with a control loop

that polls for work (supplied by the framework).

6 Experiments/Evaluation

To evaluate the approach, we have developed a reference

implementation using the framework and synthesized this

Figure 13 Layout of a 64-core

platform on a Xilinx VC707

evaluation board. Each color

represents a ρ-VEX 2-issue

VLIW processing element. The

cores are organized in 16

streams of 4 cores. The upper

right corner contains additional

logic such as the HDMI

interface, DDR controller,

Microblaze and DMA unit.
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Figure 14 Resource utilization comparison with a related platform

[22]. The advantage of this work is that it provides the option of adding

additional processing pipelines instead of increasing the number of

cores connected to a central memory component. This is far more scal-

able and allows us to place a considerably larger number of cores on

an FPGA.

for the Xilinx VC707 evaluation board with a Virtex 7

FPGA. The VHDL design is fully parameterized, and

the fabric is organized in 16 streams of 4 consecutive

cores with each 4 KiB of instruction and data memory.

Figure 13 depicts the layout of the placed and routed design

on the FPGA, after providing placement constraints for

each individual stream of 4 cores while constraining the

management core (microblaze) and interface logic such as

HDMI and DDR controllers to the upper right corner.

In Fig. 14, a comparison has been made with a related

effort named BioThreads [22], showing the advantage of our

memory structure regarding scalability.

The workload of the medical imaging platform con-

sist of window-based image processing algorithms. For

our evaluation, we have implemented the convolution oper-

ator that can be used with various filter kernels (which

can be programmed into the processing elements as dis-

cussed in Section 5.3). The detector provides images with

a resolution of 960 by 960 pixels. As our reference plat-

form has 16 parallel streams, this results in a line size

of 60 pixels. Table 3 depicts the performance of the plat-

form for a convolution kernel using a 3x3 and 5x5 filter

size.

Table 3 Performance for different filters of a single processing

element per line, per image segment, and the total throughput assuming

a 16-stream platform running at 200 MHz assuming no I/O stalls.

Algorithm Cycles/line Cycles/img Frames/s

(60 pixels) (960x960) (200 MHz)

Convolution 3x3 4005 3844800 52

Convolution 5x5 10216 9807360 20

7 Conclusions

This paper presented our approach of using a VLIW-

based FPGA fabric that allows image processing kernels

to be programmed in a frame-based fashion and processed

efficiently in a stream-based fashion. The hardware

framework handles most of the required effort in the

required code transformation by automatically assigning

image segments to parallel pipelines of processing elements.

Our memory structure is scalable and allows pipelines of

different size with different filters to be mapped to the

fabric. Instead of repeatedly synthesizing the platform,

designers can explore and debug the design using this

framework by only recompiling OpenCL or C code. If the

platform does not provide enough throughput to satisfy the

performance requirements, the code that is mapped onto the

VLIW softcore processors can be passed through a HLS

toolflow to produce a faster system that uses the same

streaming memory structure. Results show that the platform

is more scalable compared to a related image processing

framework.
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