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Abstract

This paper presents a computational model for reasoning with
causal explanations of observations within the framework of
Abductive Event Calculus (AEC). The model is based on
abductive reasoning based on the notions of ”deserts” and
”oases” on the time line. Our work is motivated from the
need to recover from the inconsistency that can arise when
observations of fluents are added to the narrative of a do-
main description. We study how such observations can be
assimilated via abductive explanations in order to render the
domain frame consistent. Typically, such explanations would
involve non-ground events whose time of occurrence can only
be constraint within some interval. We present some notions
of minimal commitment for such explanations and study how
we can reason and compute with these explanations once they
have been chosen and added to the theory. The computational
model proposed can be readily implemented by exploiting, in
a modular way, any of the different computational models for
Abductive Logic Programming or for Answer Set Program-
ming, augmented, again in a modular way, by suitable forms
of temporal constraint solving.

Introduction
Agents operating within open environments need to reason
about actions and change with partial information. As a re-
sult, it is possible that the narrative information, about event
occurrences and fluent properties at certain time points (or
situations), can lead to inconsistency as we accumulate these
observations in our theory. In many cases, a way to recover
from such an inconsistency is to add to the theory extra event
occurrences that have not been observed but that would ren-
der the theory consistent if indeed they had occurred.

The choice of such hypothetical events can be guided
strongly by the fluent properties that have been observed in
the given narrative. Several works (e.g. (Shanahan 1997))
have suggested that we can draw such hypothetical events
as explanations of the observed properties. This is partic-
ularly appropriate when the inconsistency arises from the
frame persistence of a property, f , from one time point (or
situation) to a later one at which the property has been ob-
served not to hold. Indeed, this form of frame inconsistency,
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as we might call it, can be resolved by assuming that an (un-
known) event has occurred which has the effect of neg(f),
thus explaining the observation of the falsity of the prop-
erty. A framework well suited for capturing this notion of
causal explanations is that of the Abductive Event Calcu-
lus (Eshghi 1988; Denecker, Missiaen, & Bruynooghe 1992;
Shanahan 2000) where abductive explanations can be em-
ployed to recover from frame inconsistency.

In this paper, we study how to reason and compute with
such abductive explanations once the reasoner has chosen an
appropriate explanation. In particular, we highlight the im-
portant need for causal explanations to be as least committal
as possible. As a result these will typically contain assumed
interval events whose time of occurrence is not fully speci-
fied but rather it is non-deterministically constrained. Rea-
soning with such ”open” events and computing this reason-
ing becomes the focus of our work in this paper.

The abductive approach that we are adopting is used both
for the formulation of the semantic notions of explanations
and the reasoning with them and also for the computational
model and implementation of this reasoning. In order to
make this computational model more effective we exploit
the central frame persistence property that the state of af-
fairs remain unchanged over periods of time, called deserts,
where no events have occurred allowing us to concentrate
only on representative time points, oases points. The non-
deterministic nature of interval events in the explanations
makes these notions complicated but still viable. The com-
putational model can be implemented using, in a modu-
lar way, any one of the recent systems of Abductive Logic
Programming (ALP) or of Answer Set Programming (ASP)
by exploiting the close correspondence (Satoh & Iwayama
1992) between ALP and ASP.

The rest of this paper is organized as follows. Section 2
presents background material on the (form of the) abduc-
tive event calculus that we will use. Section 3, formulates
the semantic notions of frame consistency, explanations and
reasoning with interval actions. Section 4 presents the com-
putational model for reasoning with abductive explanations
with its formal results and some implementation details.
Section 5 concludes with a brief discussion of related work
and plans for future work.



holds at(F, T ) ← happens(A, T1), T1 < T, initiates(A, T1, F ), not clipped(T1, F, T ).
holds at(F, T ) ← observed(F, T1), T1 ≤ T, not clipped(T1, F, T ).
holds at(F, T ) ← assume holds(F, 0), not clipped(0, F, T ).

holds at(neg(F ), T ) ← happens(A, T1), T1 < T, terminates(A, T, F ), not declipped(T1, F, T ).
holds at(neg(F ), T ) ← observed(neg(F ), T1), T1 ≤ T, not declipped(T1, F, T ).
holds at(neg(F ), T ) ← assume holds(neg(F ), 0), not declipped(0, F, T ).

clipped(T1, F, T2) ← happens(A, T ), terminates(A, T, F ), T1 ≤ T < T2.
declipped(T1, F, T2) ← happens(A, T ), initiates(A, T, F ), T1 ≤ T < T2.

Figure 1: Domain independent knowledge

Extended Abductive Event Calculus
We will represent theories of Reasoning about Actions and
Change (RAC) in an extended framework of Abductive
Event Calculus (AEC) (Eshghi 1988; Denecker, Missiaen,
& Bruynooghe 1992; Shanahan 2000) drawn by translating
into Abductive Logic Programming (ALP) a simplified form
of the language E (Kakas & Miller 1997b). The reason for
choosing ALP as the underlying representation framework
for RAC is twofold:

• abduction will facilitate the RAC reasoning and its com-
putation in open domains with incomplete information
about the fluents of the domain.

• abductive reasoning will also help us formalize notions
of frame consistency and that of explanations of observa-
tions where now abduction is applied to incomplete in-
formation on the events that might have occurred in the
world1.

RAC theories, are therefore ALP theories of the form
KBTR = 〈PTR, ATR, ICTR〉 where PTR is a normal logic
program, ATR is a set of abducible predicates, and ICTR is
a set of integrity constraints. The latter specify which sets of
assumptions drawn form ATR are allowed, thus ruling out
some hypothetical worlds from those modeled in PTR. As
observed later on, PTR are locally stratified programs that
always have a unique stable model.

In the following, f, f1, . . . (neg(f), neg(f1), . . . ) repre-
sent positive (negative) fluent literals, a, a1, ... events and
t, t1, ... time points (which we will assume are natural num-
bers), while T, T1, ..., F, F1, ..., A,A1, ... are variables rang-
ing over time points, fluents and events, respectively. A RAC
theory KBTR = 〈PTR, ATR, ICTR〉 can be separated into
a domain independent and a domain dependent part.
Domain Independent Knowledge. Figure 1, shows the
general domain independent Event Calculus axioms in PTR

that formalize how fluents are caused by events and how
they persist forwards in time. The predicate holds at(f, t)
represents the fact that the fluent f holds at the time
point t. This may happen either because an event oc-
curred in the past initiating the fluent, or the fluent has

1ALP also provides a natural framework in which to compute
explanations but we will not be concerned with this issue in this pa-
per. See for example (Shanahan 2000; Kakas, Michael, & Mourlas
2000) where planning in the AEC can form a basis for computing
explanations.

been observed in the past, or the fluent is assumed (ab-
duced) to hold initially. We assume that 0 is the ini-
tial time point, where no event occurs. The predicate
assume holds(FluentLiteral, T imePoint) is the only
abducible predicate in ATR expressing the fact that we may
have incomplete information on fluents. Note that for a re-
stricted class of theories it is sufficient to allow (as we will in
this paper) such assumptions at the initial time point 0 only.

The domain independent part of any KBTR theory also
contains in ITR an integrity constraint, shown first in Fig-
ure 2(c), that enforces the general consistency on the theory
(and any abducible assumptions) that a fluent and its nega-
tion can not hold at the same time point.
Domain Dependent Knowledge. Figure 2(a), shows the
form of the general domain dependent knowledge in a the-
ory KBTR. These are facts and rules in PTR model-
ing the specific world into consideration: observed(f, 0)
sets initial conditions of the world, rules for initiates and
terminates state how events affect fluents and under which
preconditions. ITR can also contain domain dependent con-
straints as shown in Figure 2(c) stating that the fluents lit-
erals L1, ..., Ln can not all hold together at the same time.
Note that here these are represented as denials but any other
classically equivalent form is also suitable.
Narrative Knowledge, KB0. The domain dependent part
of the knowledge contains also, within PTR, a narrative part,
denoted by KB0. This has the form shown in Figure 2(b),
to describe specific state of affairs. It represents the per-
ceived state of the world in terms of fluents observed to hold
at a (ground) time, and events that have happened at a given
(ground) time. This information may result only in a par-
tial view of the world, which may be an inconsistent view
due to lack of information, as described Section 3. We will
make the simplifying assumption that narratives do not con-
tain concurrent events that at the same time initiate and ter-
minate a fluent.

The above formulation of a RAC framework deals only
with the frame problem. We can easily extend this to
handle also the ramification problem by adopting a stan-
dard solution, e.g (Thielscher 1997; Kakas & Miller 1997a;
Kakas, Miller, & Toni 2001), to incorporate causal ramifi-
cation statements in the domain dependent part of the do-
main description. Hence to express the causal relationship
between the set of fluent literals, l1, ..., ln, and the fluent lit-
eral, l, we can have statements of the form:

generated(l, T )← generated(li, T ), holds at(l1, T + 1), ...,
holds at(ln, T + 1).



initiates(a, T, f) ← holds at(f1, T ), . . . , holds at(fk, T ).
terminates(a, T, f) ← holds at(f1, T ), . . . , holds at(fk, T ).

observed(f, 0).

(a)

happens(a, t).
observed(l, t).

(b)

holds at(F, T ), holds at(neg(F ), T ) ⇒ ⊥
holds at(L1, T ), ..., holds at(Ln, T ) ⇒ ⊥

(c)

Figure 2: Domain dependent knowledge, Narration and Integrity Constraints

for any i : 1 ≤ i ≤ n. The base case of the generate
predicate is given (in the domain independent part) by:

generated(F, T )← happens(A, T ), initiates(A, T, F ).
generated(neg(F ), T )← happens(A, T ),

terminates(A, T, F ).

We can then replace appropriately in the domain in-
dependent axioms (see Figure 1) all occurrences of
happens(A, T ), initiates(A, T, F ) by generated(F, T ),
and those of happens(A, T ), terminates(A, T, F ) by
generated(neg(F ), T ).

As we will see below, the assumptions that we will adopt
on the form of explanations and the type of reasoning with
these will not be affected directly by ramification statements
- the issue is somewhat orthogonal - and therefore we will
not give any further details on this.

As regards the qualification problem the situation is dif-
ferent. This problem is not currently understood well
enough (with the notable exception of (Thielscher 2001))
to be able to address it in our framework and the underlying
computational model that we are developing. In addition,
the qualification problem has an intricate link with the prob-
lem of frame consistency and hence further study is needed
for their integration especially when we wish to do this at
the computational level.

Given a theory KBTR we can reason about what fluents
may or may not hold at different time points as follows.

Definition 1 (|=cred
TR ). Given a (ground) fluent f [t], a theory

KBTR credulously entails the fluent, KBTR |=cred
TR f [t], iff

there exists a set ∆ of (ground) atoms in the predicates in
ATR such that

PTR ∪∆ |=LP holds at(f, t) and PTR ∪∆ |=LP ITR,

with |=LP a semantics of normal LP, which we choose to be
the stable model semantics (i.e. P |=LP C means classical
truth of the clause C in a stable model of P ).

We note here that the form of the logic programs, PTR,
are locally stratified (a level mapping can be constructed
based on the time of the holds at predicate at the head of the
rules - see e.g. (Shanahan 1997)) and hence PTR∪∆ always
has a unique stable model. Note that when we have ramifi-
cation statements for this local stratification property to hold
we also need to impose that these statements are acyclic on
the ground fluent literals that they related.

Based on this credulous form of reasoning, |=cred
TR , we can

define a skeptical entailment, |=skep
TR , as follows:

Definition 2 (|=skep
TR ). Given a (ground) fluent f [t], a tem-

poral reasoning theory KBTR skeptically entails the fluent,
KBTR |=skep

TR f [t], iff

KBTR |=cred
TR f [t] and KBTR 6|=cred

TR f [t],

where f is the (idempotent) negative instance of f .
Example 1. Let us consider a variation of the well-known
example of the parked car (Kautz 1986) with the following
domain dependent knowledge together with an empty KB0:

initiates(park(Car), T, parked(Car))←
holds at(free place, T ).

terminates(park(Car), T, free place).

Without any information about the current state of the
world, we can conclude credulously, for any time point now,
that KBTR |=cred

TR holds at(free place, now), since it
is possible to assume assume holds(free place, 0), with-
out violating any constraint. Instead reasoning skepti-
cally, KBTR 6|=skep

TR holds at(free place, now), given
the fact that it is also possible to assume that the place
is not available, and then conclude that KBTR |=cred

TR

holds at(neg(free place), now).
Note that above we have made several simplifying as-

sumptions on the form of the RAC theories and the queries
for their temporal projection. Amongst these are the fact
the assumption that a given theory is consistent and that the
events in the narrative refer to specific ground times. We
will see in the next section how we need to relax these two
assumptions and extend suitably the reasoning.

Frame Consistency and Causal Explanations
Any RAC theory KBTR with an empty narrative is al-
ways consistent provided that its integrity constraints ITR

are classically consistent at every time point. When the nar-
rative KB0 is non-empty though the theory may become
inconsistent.

We can distinguish two types of inconsistency: classi-
cal inconsistency where KB0 together with the integrity
constraints ITR alone is inconsistent and frame inconsis-
tency where KB0 is classically consistent with ITR (at every
time point) but becomes inconsistent (at some time point(s))
when we consider the whole KBTR thus allowing the per-
sistence of fluents from one time point to another. In this
paper we will concentrate on the problem of frame inconsis-
tency.

A frame consistent theory KBTR is then a theory such
that there exists a set of assumptions ∆ such that PTR ∪
∆ |=LP ITR. This notion of frame (in)consistency can eas-
ily be reformulated as follows.



Definition 3 (Frame consistency). Let be KBTR be
a temporal reasoning theory, Obs the subset of KB0

{observed(l, t)|observed(l, t) ∈ KB0}, and KB′

TR =
KBTR \ Obs. Then KBTR is frame consistent iff
KB′

TR |=cred
TR Obs.

This means that a frame consistent theory is such that it
is possible to find at least one set of assumptions, ∆, on
the abducible predicate assume holds (i.e. a possible state
of affairs) that satisfies, under the general frame persistence
laws, the integrity constraints of the theory coherently with
the given observations on fluents.

Example 2. Adding to the theory KBTR of Example 1 a
narrative KB0 containing both observed(free place, 3)
and observed(neg(free place), 3) makes it classi-
cally inconsistent. On the other hand, adding a nar-
rative containing both observed(free place, 0) and
observed(neg(free place), 10) makes it frame inconsis-
tent.

Intuitively speaking, while the first narrative appears in-
trinsically contradictory, the second one is typically ex-
plained by assuming that in between 0 and 10 someone has
occupied the parking space, i.e. an unknown event has oc-
curred that can render the theory frame consistent. This
frame inconsistency resolving event comes as an explanation
of (some of) the observations in the hitherto inconsistent nar-
rative. Indeed, the above formulation of frame consistency
motivates (as already proposed in the literature (Shanahan
1989; 1997)) the use of causal explanations of the observa-
tions as a general method to recover from frame inconsis-
tency.

The basic notion of a causal explanation is for-
malized as follows. Within the framework of our
AEC we extend the set of abducible predicates ATR

to a new set, AExt
TR , that contains also the predi-

cate assume happens(EventType, T imePoint). This
would allow us to make abductive hypotheses that events
have occurred. The extended set of abducible hy-
potheses, AExt, now has also sentences of the form
assume happens(e, T ∗) where e is an event constant and
T ∗ is a time point or an existentially quantified variable.
Given this extension and the bridge rule:

happens(A, T )← assume happens(A, T ).

we have the following definition (the extended theory is re-
ferred to as KBExt

TR ).

Definition 4. Let KBTR be a temporal reasoning the-
ory, Obss a chosen (fluent) set of observations of this
and KB′

TR = KBTR \ Obss. Then an explanation,
〈E(Obsinc), C〉, of Obss is a set of abducibles E(Obss) ⊆
AExt

TR , together with an associated set of temporal con-
straints C, on the time variables appearing in E(Obss) such
that, for every assignment π of these variables into the nat-
ural numbers satisfying C, (written C |= π)

KB′Ext
TR ∪ E(Obss)π |=cred

TR Obss.

Clearly, if a theory is frame consistent then for any subset
of its observations there exists an explanation which does not
contain any hypotheses on assume happens. Note also that

we can use instead a stronger notion of explanation where
we require that the observations are a skeptical consequence
of the theory KB′Ext

TR when extended with the explanation.
There are two important issues to consider when gener-

ating such causal explanations: (i) how are the observations
selected and (ii) which of the many possible explanations are
more significant. We will only address these briefly in this
paper and concentrate more on how we reason and compute
this reasoning once we have chosen an explanation.

With regards to the first question clearly the subset Obss

selected should be such that KB′

TR = KBTR \ Obss, is
frame consistent. In practice, observations may be collected
in some sequence and hence it may be relatively easy to no-
tice when the theory first becomes frame inconsistent and at-
tribute this to the last observations. This does not necessarily
mean that it is the last observations that need explaining but
it is a good heuristic for how to choose the observations to
be explained.

There are several ”qualities” that we may require from
our causal explanations. Apart from the fact that we want
the time of the assume events to be constraint to be before
that of the observations, hence the name causal, the other
major property that we would require is that the explana-
tion is least committal, in the sense that it tries to minimize
any extra conclusions that it would impose on the theory.
There are two general restrictions on the explanations that
we can adopt for this. First we introduce in the language for
each fluent constant, f , two abstract event types start(f)
and stop(f) with the simple effect rules:

initiates(start(f), T, f).
terminates(stop(f), T, f).

and restrict our assume happens hypotheses to refer only
to these. In other words we allow only assume happens
hypotheses of the form assume happens(stop(f), T ∗) or
assume happens(start(f), T ∗) for any ground fluent f
and T ∗ a time point or an existentially quantified variable.
This means that our explanations will not cause any other
new effects apart from the ones we are trying to explain (and
their ramifications if we have such statements in the theory).

Example 3. Consider again Example 2 in which the nar-
rative KB0 contains both observed(free place, 0) and
observed(neg(free place), 10).

The last observation can be explained by assuming
assume happens(stop(free place), T ∗), with T ∗ con-
strained to be between 0 and 9. Note that this explanation
does not say exactly how the free space was terminated,
e.g. by an event of parking or by a no-parking sign etc., thus
been least committal.

Secondly, we can impose a notion of minimality on the ex-
planations particularly with the way that the unknown time
of the occurrence of the assumed events is constrained. In-
formally, minimality means that explanations are composed
of a minimal number of assumptions, whose time constraints
are as general as possible.

Definition 5 (<<). Given an explanation
〈E(Obss), C〉 and f a fluent, let N(E, start(f))
be the number of assume happens(start(f), T ′)



in E(Obss) and N(E, stop(f)) the number of
assume happens(stop(f), T ′) in E(Obss). Then an
explanation, 〈E(Obss), C〉 is smaller than another
one, 〈E(Obss)′, C ′〉, denoted by 〈E(Obss), C〉 <<
〈E(Obss)′, C ′〉, iff

• for all fluents f , N(E,X(f)) < N(E′, X(f)) (with X =
start and X = stop)2, or

• for all fluents f , N(E,X(f)) = N(E′, X(f)), and ∀ π
time assignments: C ′ |= π ⇒ C |= π, i.e. all the ad-
missible time points for the bigger explanation are also
admissible for the smaller one.

Definition 6. An explanation 〈E(Obss), C〉 is minimal for
Obss iff there exists no explanation 〈E(Obss)′, C ′〉 such
that 〈E(Obss)′, C ′〉 << 〈E(Obss), C〉.

Given these two restrictions on the explanations, in many
cases (but not always) we can have a unique minimal ex-
planation for an observation on a fluent f consisting of only
one stop(f) or start(f) event with the interval constraint
for this event maximal.

Example 4. The frame consistent narrative KB0 =
{observed(free place, 0). happens(park(my car), 3).}
of Example 2 becomes frame inconsistent when updated
with observed(neg(parked(my car)), 10) as in (Kautz
1986). A causal explanation of the last observation, which
is minimal, is:
〈assume happens(stop(parked(my car)), T ), T ∈ [4, 9]〉.

Example 5. Starting again from Example 2, suppose that
it is known that initially there is not space, and hence the
attempt to park at 3 has not the desired effect (as confirmed
by the later observation at 10):

KB0 =
{ observed(neg(free place, 0)).

happens(park(my car), 3).
observed(neg(parked(my car)), 10). }

However, the latest observed(free place, 2) makes the
theory frame inconsistent and both the facts free space at 2
and neg(parked(my car)) at 8 must be explained. A mini-
mal explanation is

〈 {assume happens(start(free space), T1),
assume happens(stop(parked(my car)), T2)},
{T1 ∈ [0, 1], T2 ∈ [4, 9]} 〉.

Finally, explanation selection could ultimately depend on
domain specific criteria such as heuristic preferences or cru-
cial experiments (see e.g. (Sattar & Goebel 1991)) namely
actively looking for further observations that would discrim-
inate between different explanations.

Reasoning with Explanations
From this point onward in this paper we will assume that an
explanation is chosen that recovers frame consistency and
that the reasoner will adopt this as part of its theory. Un-
til and if further information invalidates this the events in
the explanation are treated equivalently as the known events.
How do we then reason we these interval events whose time
is not fixed to a specific ground time point?

2Several variations of this condition are possible.

An assignment π that fulfills the constraint store C, i.e
C |= π, associated to interval events in an extended nar-
rative, is called placement. Reasoning then needs to con-
sider all allowed placements thus covering all possible inter-
leavings of these events between them and with the existing
ground narrative.3 Placing interval events according to dif-
ferent placements can lead to completely different scenarios,
even if the placements fulfill the same total order. This is due
to the way in which placed events interfere with the existing
one and the fluents that hold or do not hold in that specific
time point. We will see below in section 4 how we can em-
ploy computational techniques that can reduce significantly
the number of placements that need to be considered in our
reasoning.

In this context, we interpret credulous reasoning as the ex-
istence of a placement of the interval events in our extended
theory which allows the fluent to be credulously proved
against the grounded theory resulting from the placement.
Skeptical reasoning, instead, is interpreted as the fact that all
the placements fulfilling the constraints allow the fluent to be
skeptically proved against the grounded theory. Intervals are
represented as constraints, in terms of the binary operators
≤ and < defined over ground time points and existentially
quantified variables. For instance {s ≤ T, T ≤ e} stands for
T ∈ [s, e]. Constraints, in a constraint store, can also relate
different variables, e.g. {s ≤ Ti, Ti ≤ e, Ti ≤ Tj}.

Definition 7 (KB+

TR). A temporal reasoning theory is an
extended theory, written KB+

TR, if its narrative contains a
set of non-ground predicates and a temporal constraint store

∃ T1 . . . , Tn. C(T1, . . . , Tn). happens(a1, T1).
...
happens(an, Tn).

such that the variables T1, . . . , Tn are quantified from the
outside over all the constraints in C(T1, . . . , Tn). A predi-
cate happens(a, T ). is called an interval event.

The application of a placement to an interval event is
given by happens(a, T )π = happens(a, Tπ), and it trans-
forms an extended theory KB+

TR into a ground KBTR one.
The formal notion of entailment for KB+

TR in terms of that
for theories KBTR with ground narratives is defined as fol-
lows.

Definition 8 (|=cred
TR+). Given a theory KB+

TR, a placement
π and a ground fluent literal f [t], then

KB+

TR |=cred
TR+ f [t] ⇔ ∃ π KB+

TRπ |=cred
TR f [t].

Hence a credulous conclusion now depends on the extra
dimension of a placement π as well as the existence of a
set of assumptions ∆ from ATR. Note that the set of ab-
ducibles does not contain assume happens now whose role
ends with the generation and selection of an explanation.

3The problem of determining (all) the placements that fulfill
the constraint set C can be addressed with efficient constraint solv-
ing techniques, like the ones presented in (Dechter, Meiri, & Pearl
1991; VanBeek 1992).



Building on credulous reasoning, as for KBTR theories, we
define skeptical conclusions as follows where all possible
placements need to be considered.

Definition 9 (|=skep

TR+). Given a theory KB+

TR and a ground
fluent literal f [t], then

KB
+

TR |=
skep

TR+ f [t] ⇔ ∀ π KB
+

TRπ |=cred
TR f [t] ∧

KB
+

TRπ 6|=cred
TR f [t].

where π is a placement and f [t] is the (idempotent) negation
of f [t].
Example 6. Consider Example 4, with the frame consistent
narrative:

KB0 =

{ observed(free place, 0).
happens(park(my car), 3).
observed(neg(parked(my car)), 10).
happens(stop(parked(my car)), T ).{T ∈ [4, 9]} }.

In this theory holds at(neg(parked(my car)), time)
holds skeptically for any time time ∈ [10,∞).
But for time ∈ [5, 9] we can show credulously
both holds at(parked(my car), time) and also
holds at(neg(parked(my car)), time), since for any
of the two fluent literals and a given time point, a placement
that entails it exists. Hence none of literals can be proved
skeptically at these times.

Computing with Explanations
We will now assume that theories are frame consistent where
possibly a chosen causal explanation has been added to it to
render it so. We will then develop a computational model
for such theories based on the underlying abductive reason-
ing of the ALP framework in which these theories are ex-
pressed. We start with the notion of deserts and oases, in-
troduced in (Kakas, Miller, & Toni 2001), to help us com-
pute with theories that have a ground narrative and then we
generalise the model to narratives that can contain interval
events with their existentially quantified variables and tem-
poral constraints over them.
Deserts and Oases. Given a (consistent) theory with a
ground narrative, the properties that hold within a desert,
i.e. an interval without event occurrences, are identical at
all the time points in the desert. This will allows us to re-
strict our attention to a finite set of time points called oasis
points and hence ground (partially) the theory when comput-
ing with this. The next Propositions 1 allows us to ground
the integrity constraints of the theory.

Definition 10. Given a narrative, KB0 and a ground
fluent literal f [tn+1] (corresponding to the query
holds at(f, tn+1)), the relative time line, TL, is the
(maximal) totally ordered sequence of ground instants

TL = [0 = t0, t1, ..., tn, {tn+1}],

where ∀ i ∈ [1, . . . , n] ∃ happens(a, ti) ∈ KB0. (Note
{tn+1} is added to the time line iff tn+1 is a time instant
beyond the last event in KB0).
Each interval [ti +1, ti+1] is called a desert, and each point
ti is an oasis.

Proposition 1. Given a theory KBTR, a fluent literal f [t],
a desert [ti +1, ti+1] in the relative time line, and a set ∆ ⊂
ATR then ∀ t ∈ [ti + 1, ti+1] :

PTR ∪ ∆ |=LP holds at(f, t)
⇔

PTR ∪ ∆ |=LP holds at(f, ti + 1)

PTR ∪∆ |=LP ITR(t)⇔ PTR ∪∆ |=LP ITR(ti + 1)

where ITR(ti + 1) is obtained from ITR by grounding all
the universally quantified (time) variables to the value ti+1.
Proposition 2. Given a theory KBTR, a fluent literal f [t],
ti the oases, and a set ∆ ⊂ ATR of abducibles then:

PTR |=
cred
TR holds at(f, t)
⇔

∃∆ PTR ∪∆ |=LP holds at(f, t) ∧
∀ i = 0, ..., n PTR ∪∆ |=LP ITR(ti + 1),

Basic computational model. Given Proposition 2, we can
build a computational model for credulously, and hence also
skeptically, reasoning since the right-hand side has a pro-
cedural interpretation under an ALP abductive proof proce-
dure. This computational model can be described simply as
in Figure 3.
Example 7. Given the narrative of Example 2 KB0 =
{observed(free place, 0). happens(park(my car), 3).},
and the query holds at(parked(my car), 6), the oasis
points are {1, 4, 7} and the ground integrity constraints are:

holds at(F, 1), holds at(neg(F ), 1)→ ⊥
holds at(F, 4), holds at(neg(F ), 4)→ ⊥
holds at(F, 7), holds at(neg(F ), 7)→ ⊥

In this settings the query can then be credulously and skep-
tically proved.

We note that we can also use this computational model
to answer non-ground queries. Lack of space prevents us
from giving the details. In the example above, the ex-
istentially quantified query holds at(parked(my car), T ),
∃ T ∈ [2, 5] (as well as its universally quantified version)
can be examined, by considering the extremes of the inter-
val [2, 5] as extra oases points and checking that the ground
query holds at one of (all) the oases falling within the inter-
val [2, 5]. The query holds at T = 4, and so the existential
query succeeds but the universal one fails since the query at
T = 3, the new oasis 2 (plus one), does not hold.
Essential Placements. According to Definition 8, entail-
ment for theories with interval events in their narratives de-
pends on the existence of a placement, i.e. an ordering of the
interval events that makes the narrative ground. The basic
computational model introduced above can be extended to
theories KB+

TR that include interval events by considering
only a restricted class of essential placements. For simplic-
ity of presentation, we present the credulous case only, on
which the skeptical one is straightforwardly defined.

An effective computational model for KB+

TR requires us
to extend the partition of the time line into deserts and oases
to include as oases the extremes of the intervals of interval
events and the time-points of the observations. This is so be-
cause the placement of an event relatively to the query time
point and the observations can change the state of affairs.



query credulous TR(〈PTR, ATR, ITR〉, KB0, holds at(f, t), AbducedPredicates) ←
extract oases(KB0, t, Oases),
instantiate constraints(ITR, Oases, OITR),
prove ALP (〈PTR, ATR, OITR〉, holds at(f, t), AbducedPredicates).

prove ALP (〈PTR, ATR, OITR〉, KB0, holds at(f, t), Delta) ← Calls any abductive proof
procedure (a simple ALP proof procedure for ground abduction suffices for the basic model).

Figure 3: Basic computational model

Definition 11. Given a query literal f [t] and an extended
narrative containing a set of interval events referring to in-
tervals [sj , ej ], the relative extended time line ETL is the
(maximal) totally ordered sequence

ETL = [0 = t0, t1, ..., tn],

where ∀ i (∃ observed(f, ti) ∈ KB0 ∨ ∃ happens(a, ti) ∈
KB0 ∨ ti = t ∨ ∃ j ti = sj ∨ ti = ej).

We now give the definition of essential placement and
show how proofs can be computed by considering only es-
sential placements, which are finite in number. We will de-
note by © the (commutative and associative ) composition
operator for substitutions of assignments and by ε the empty
substitution.

Definition 12 (Essential placement). Given a theory
KB+

TR, in which m interval events (i.e. m temporal vari-
ables) occur with the associated temporal constraints C, a
ground fluent literal f [t], and the relative extended time line
ETL = [0 = t0, t1, ..., tn], then a placement π is essential
iff π = ©iπi, with i ∈ [0, n], and

1. ∀ i, j ∈ [0, n] dom(πi) ∩ dom(πj) = ∅ ∧
∀ i ∈ [1,m] π(Ti) ∈ [0,∞),

2. C |= π,
3. ∀ i πi = ε ∨

∃ k, o πi : [Ti1 , . . . , Tik
] → [ti + 1, . . . , ti + 1 + o],

with o ≤ k ∧ ti + o ≤ ti+1.

Intuitively speaking, the definition requires that an essen-
tial placement can be partitioned in n placements, one for
each desert, such that

1. they are disjoint and π is total over time variables of in-
terval events in KB+

TR,

2. π fulfills the partial order induced by temporal constraints
in KB+

TR, and

3. each πi either

- is the empty substitution (no events are mapped in that
desert), or

- maps, in any order, a set of k temporal variables into
o ≤ k contiguous time points starting at the beginning
(ti + 1) of the desert, and not spilling out into the next
desert.

It is easy to see that the definition of essential placement
encompasses all the possible orders in which interval events
can be placed at the beginning of a desert, respecting the
temporal constraints C, but without imposing any further
ordering on the placement of interval events (which hence

can be interleaved in all the possible ways that respect time
constraints).
Extended Computational Model. The definition of essen-
tial placement satisfies the following proposition, directly
leading to the computational model for extended theories.
Proposition 3. Let KB+

TR be a theory, f [t] a ground fluent
literal, π a placement, and π̃ an essential placement, then

∃ π KB+

TRπ |=cred
TR f [t] ⇔ ∃ π̃ KB+

TRπ̃ |=cred
TR f [t]

Proposition 3 gives directly a computational model for
credulously reasoning with interval events, |=cred

TR+ , as de-
fined in Definition 8, by restricting attention to essential
placement. The prolog-like specification of Figure 4 pro-
vides a procedure which, given an extended theory and a flu-
ent, proves the fluent by building, if any, an essential place-
ment that gives a ground narrative under which the fluent is
entailed. Again this exploits in a modular way any underly-
ing ALP proof procedure.

This extended computational model contains two non-
deterministic choices:
i a total order of temporal variables fulfilling the minimal

partial order, MPO, of C

ii a partition of the totally ordered time variables into
deserts,

Note that i. enforces constraint fulfillment, and i. plus ii.
determine the parameters k and o of point 3.(b) of Defi-
nition 12. Then, values are assigned to variables defining
the actual placement, which by construction is an essential
placement.

Given a sound and complete underlying ALP proof proce-
dure this computational model for KB+

TRis itself sound and
complete. This is formalized in Figure 4 for credulous rea-
soning. For skeptical reasoning we have analogous results.
Note also that quantified queries can be treated similarly (as
in the basic computational model) but are not detailed here.
Definition 13 (`cred

TR+). Given a non-ground theory KB+

TR,
the computational model for |=cred

TR+ , indicated as `cred
TR+ , is

defined as follows:
KBTR `cred

TR+ f [t]
⇔

query credulous extended TR(KB+

TR, holds at(f, t))
succeeds.

Theorem 1 (|=cred
TR+ ⇔`cred

TR+ ). Assuming that the abductive
proof procedure used in query credulous extended TR/2
is correct and complete, the computational model `cred

TR+ is
correct and complete with respect to |=cred

TR+ :

KB+

TR |=cred
TR+ f [t] ⇔ KB+

TR `cred
TR+ f [t].



query credulous extended TR(KB+

TR, holds at(f, t), AbducedPredicates) ←
extract extended oases(KB0, t, ETL),
extract minimal partial order(ETL, C, MPO),
generate a total order(MPO, TotalOrder),
generate a partition of total order over oases(TotalOrder, ETL, TOPartition),
generate an essential placements from a partition(TOPartition, EssentialP lacement),
apply essential placement(KB+

TR, EssentialP lacement, GroundTheory),
prove ALP (GroundTheory, holds at(f, t), AbducedPredicates).

Figure 4: Extended computational model

Example 8 illustrates a case of non-ground theories and
an existential query for the credulous and skeptical case.
Example 8. [Computing with explanations] Let us recon-
sider Example 6, where KB0 =
{observed(free place, 0). happens(park(my car), 3).
observed(neg(parked(my car)), 10).}

has been extended with a (minimal and causal) explanation
of the last observation:
〈assume happens(stop(parked(my car)), T ′), T

′ ∈ [4, 9]〉.

The extended time line, considering the existential
query holds at(parked(my car, T )), {T ∈ [4, 20]}, is
[0, 3, 4, 9, 10, 20]. It also includes the extremes of the
query interval. The partial order induced by the constraints
4 ≤ T, T ≤ 20 and 4 ≤ T ′, T ′ ≤ 9 does not impose any
ordering between the two variables, then the following three
total orders can be generated in order to define the possible
essential placements.

T
′ < T There are four essential placements fulfilling this

total order and the set of constraints: π̃1 = {T ′ = 5, T =
6}, π̃2 = {T ′ = 5, T = 10}, π̃3 = {T ′ = 5, T = 11},
and π̃4 = {T ′ = 5, T = 21}. Let us consider π̃3, and the
corresponding ground narrative:
{observed(free place, 0). happens(park(my car), 3).
observed(neg(parked(my car)), 10).
happens(stop(parked(my car)), 5)}

In this case, the query holds at(parked(my car, 11),
which has been made ground, can not be credulously (and
hence also skeptically) proved. Similarly, for the cases of
π̃1, π̃2 and π̃4.

T
′ = T The only possible essential placement is π̃5 =

{T ′ = 5, T = 5}:
{observed(free place, 0). happens(park(my car), 3).
observed(neg(parked(my car)), 10).
happens(stop(parked(my car)), 5)}

In this case the query holds at(parked(my car, 5)), now
ground, can be credulously proved against the ground theory
Hence, the essential placement π̃5 allows the existentially
quantified query to be proved against a non-ground theory,
according to the definition of |=cred

TR+ .

T
′ > T Again there is only one essential placement,

π̃6 = {T ′ = 6, T = 5}:
{observed(free place, 0). happens(park(my car), 3).
observed(neg(parked(my car)), 10).
happens(stop(parked(my car)), 6)}

against which, the query holds at(parked(my car, 5)) can
be proved credulously.

On the other hand, as we have seen that it is not the case
that for all the possible essential placements the correspon-
dence query holds, e.g. the case of π̃3, it follows that the
existentially quantified query does not hold skeptically.

Related work and Conclusions
We have presented a computational model for reasoning
with causal explanations in RAC theories. In particular, we
have shown how this computational model can be applied
to reasoning with interval events, where their time of occur-
rence cannot be known exactly, that arise naturally in such
explanations.

This work was motivated by the need to address the
problem of frame inconsistency in open problem domains
where the information available in the theory is incom-
plete. The problem of frame inconsistency and the proposal
to use causal explanations to address it is a relatively old
one. The stolen car scenario (Kautz 1986) and the Stan-
ford murder mystery (Baker 1989) exposed the problems
in a simple way. Several works have addressed the prob-
lem in terms of causal explanations for assimilating ob-
servations. In particular, the works of (Shanahan 1989;
Denecker, Missiaen, & Bruynooghe 1992) base this on the
Abductive Event Calculus within the Abductive Logic Pro-
gramming framework as we have in this paper.

Clearly, our work is also strongly related to the prob-
lem of planning and in particular abductive planning where
there has been a lot of activity, e.g. (Eshghi 1988; Mis-
siaen, Bruynooghe, & Denecker 1995; Shanahan 2000;
Kakas, Michael, & Mourlas 2000; Finzi, Pirri, & Reiter
2000). But planning relates more to the problem of comput-
ing the explanations rather than reasoning with them once
they are found. Typically, in planning such reasoning is not
done until after the plan has been executed when we reason
with the ground events of the executed planned actions and
not the interval events originally in the plan.

Reasoning with explicit narratives is at the heart of the
Event Calculus framework and has also been studied within
several other frameworks that are based on the Situation
Calculus (see e.g. (Pinto & Reiter 1995; Baral, Gelfond,
& Provetti 1997)) by suitably extending their ontologies to
include the occurrence of actions. With the exception of
(Shanahan 1997) we are not aware of other work which at-
tempts to addresses in some detail the problem of reasoning
and computing with interval events. This work uses circum-



scription to formalize the reasoning but does not address in
a systematic way, as we have, the formulation of a general
computational model to compute this in a viable way. In
fact, many recent works on RAC concentrate on other issues
and avoid the problem of reasoning with interval actions by
assuming that the given theories are frame consistent and
that the known events are the only events that have occurred
in the world. Our work puts an emphasis on providing a vi-
able computational model for narratives with interval events
linking this with temporal constraint solving.

An important characteristic of our computational model is
that this is a general model which can exploit in a modular
way any given computational method or system for Abduc-
tive Logic Programming (ALP). Through the equivalence
between the ALP framework (for normal logic programs)
and Answer Set Programming this modular exploitation of
general systems can be extended also to the use of ASP sys-
tems. We are currently implementing our model using an
ALP system and using this to provide the temporal reason-
ing module of an autonomous agent (Kakas et al. 2003a;
2003b). A full implementation requires the integration with
a constraint solver to handle the time constraints on interval
events. This is currently under investigation as is also the
possibility of implementing our model using ASP systems
and using this as a testbed for comparison between ALP and
ASP systems in order to examine the problem conditions
best suited for each approach.

Another important problem for future work is the study
of the link between the problem of frame inconsistency, as
we have addressed in this paper, with the qualification prob-
lem (Thielscher 2001) where we cannot assume that once
an event has occurred its effects will necessarily be gener-
ated. This opens several interesting possibilities least of all
being the basic problem of deciding when it is appropriate
to attribute the apparent frame inconsistency to an unknown
event (and hence look for causal explanations) or to the fail-
ure of an already executed action to generate its effect.
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