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Frame-Theoretic Analysis of
Oversampled Filter Banks

Helmut Bölcskei,Member, IEEE, Franz Hlawatsch,Member, IEEE, and Hans G. Feichtinger

Abstract—We provide a frame-theoretic analysis of oversam-
pled finite impulse response (FIR) and infinite impulse response
(IIR) uniform filter banks (FB’s). Our analysis is based on a
new relationship between the FB’s polyphase matrices and the
frame operator corresponding to an FB. For a given oversampled
analysis FB, we present a parameterization of all synthesis FB’s
providing perfect reconstruction. We find necessary and sufficient
conditions for an oversampled FB to provide a frame expansion.
A new frame-theoretic procedure for the design of paraunitary
FB’s from given nonparaunitary FB’s is formulated. We show
that the frame bounds of an FB can be obtained by an eigen-
analysis of the polyphase matrices. The relevance of the frame
bounds as a characterization of important numerical properties
of an FB is assessed by means of a stochastic sensitivity analysis.
We consider special cases in which the calculation of the frame
bounds and synthesis filters is simplified. Finally, simulation
results are presented.

Index Terms—Filter banks, frames, oversampling, polyphase
representation.

I. INTRODUCTION

UNIFORM filter banks (FB’s),1 i.e., filter banks with
the same decimation factor in each channel [1]–[7],

correspond to a class of discrete-time signal expansions.
The relation between discrete-time signal expansions and
maximally decimated (or critically sampled) FB’s has been
studied in [1], [2], [8], and [9]. It has also been recognized that
oversampledFB’s [2], [4], [7], [10] correspond toredundant
signal expansions [2], [11]–[21]. Oversampled FB’s have
recently received increased attention due to their improved
design freedom [17], [21]–[23], and noise immunity [21]–[23].
These advantages of oversampled FB’s come at the expense
of increased computational cost. Thus, oversampled FB’s
allowing an efficient implementation, such as oversampled
DFT FB’s [4], [7], [11], [16], [21], [24], [25] and oversampled
cosine modulated FB’s [21], [24], [26], are of particular
interest.

The theory of frames[25], [27]–[33] is an appropriate
mathematical framework for redundant signal expansions. Due
to the correspondence between redundant signal expansions
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1For the sake of brevity, we shall use the termfilter bank (FB) instead of

uniform filter bank.

and oversampled FB’s, the theory of frames is similarly
appropriate for oversampled FB’s. The use of frame theory
for the study of oversampled FIR FB’s was first proposed
by Cvetkovíc and Vetterli [11], [12], [20] and has also been
discussed in [13]–[19].

In this paper, we present a frame-theoretic approach to
oversampled FB’s [14]–[17] that is based on an extension of
the Zibulski–Zeevi method for the analysis of continuous-time
Weyl–Heisenberg frames [34]–[36]. Our approach extends
previous work reported in [11]–[13] and [18] and leads to
several further original results that include

• a parameterization of all synthesis FB’s providing perfect
reconstruction (PR) for a given oversampled analysis FB;

• methods for estimating the frame bounds of an FB,
constructing paraunitary FB’s from nonparaunitary FB’s
and calculating approximations to PR synthesis FB’s;

• a stochastic sensitivity analysis for oversampled FB’s
involving the frame bounds.

In addition, we show that certain results formulated in
[11]–[13] and [18] for the FIR case also hold in the IIR
case. Our approach is based on the fact (to be shown in
the paper) that the FB’s polyphase matrices provide matrix
representations of the frame operator corresponding to an FB.
This fundamental result allows an efficient frame-theoretic
analysis of oversampled FIR and IIR FB’s.

We shall now outline the paper’s organization and main
results. Section II briefly reviews oversampled FB’s and their
connection to frames. Section III shows that the polyphase
matrices provide matrix representations of a FB’s frame,
analysis, and synthesis operators; these matrix representations
will furnish a basis for most of our subsequent results. In
Section IV, a parameterization of all synthesis FB’s providing
PR for a given oversampled analysis FB is presented, and
a condition for completeness is given. Section V formulates
necessary and sufficient conditions for an oversampled FIR
or IIR FB to correspond to a frame. A stochastic sensitivity
analysis highlighting the importance of the frame bounds is
provided, it is shown how the frame bounds can be estimated
from the polyphase matrices, and the approximative construc-
tion of the minimum norm PR synthesis FB is discussed.
In Section VI, we show that oversampledparaunitary FB’s
correspond totight frames, and we propose a new method
for constructing paraunitary FB’s from given nonparaunitary
FB’s. Section VII considers important special cases where the
calculation of the minimum norm synthesis FB and the frame
bounds is simplified. Finally, simulation results are presented
in Section VIII.
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Fig. 1. N -channel uniform filter bank.

II. OVERSAMPLED FILTER BANKS AND FRAMES

In this section, we briefly review oversampled FB’s and
their relation to frames in . We discuss the type of frames
corresponding to FB’s, and we show that if the analysis frame
is of that type, then so is the dual synthesis frame.

A. Oversampled FB’s

We consider an -channel FB (see Fig. 1) with subsampling
by the integer factor in each channel. The transfer functions
of the analysis and synthesis filters are and

, with corresponding impulse responses
and , respectively. The subband signals are given

by

(1)

with ,
, and the reconstructed signal is

(2)

with and
. Here, and denote

the FB analysis and synthesis operator, respectively.
In thecritically sampled(or maximally decimated) case
, the subband signals contain exactly as many samples

(per unit of time) as the input signal . In theoversampled
case , however, the subband signals are redundant
in that they contain more samples (per unit of time) than
the input signal . Oversampled FB’s offer more design
freedom and improved numerical properties as compared
with critically sampled FB’s, and they have noise-reducing
properties [17], [21]–[23]. The design freedom is increased
since for a given oversampled analysis FB, there exists a
whole class of synthesis FB’s providing PR (see Section IV-
A). The noise-reducing properties of redundant representations
[21]–[23], [28], [37] allow a coarser quantization of the
subband signals at the cost of increased sample rate [21]–[23]
(see Section V-C).

Our frame-theoretic analysis of oversampled FB’s will be
based on the well-knownpolyphase representation[1], [2],
[5], [38] of FB’s or, equivalently, the discrete Zak transform
[39]–[42]. The polyphase decomposition of the analysis filters

reads

with

The analysis polyphase matrix is defined as
. The synthesis filters can be

similarly decomposed as

with

The synthesis polyphase matrix is defined as
.

B. Uniform FB Frames

If the FB satisfies PR with zero delay,2 i.e., ,
then (2) yields

This shows that a PR FB corresponds to an expansion of
the input signal into the function set

, [1], [2], [43]. In general,
the set is not orthogonal; therefore, the expansion
coefficients, i.e., the subband signals ,
are obtained by projecting the signal onto a “dual”
set of functions . Critically sampled FB’s provide
orthogonal or biorthogonal signal expansions [43], whereas
oversampled FB’s correspond to redundant (overcomplete)
expansions [2], [11]–[21].

The theory of frames[25], [27]–[33] is a powerful vehi-
cle for the study of redundant signal expansions. The set

is said to be aframe for if 3

(3)

with the frame bounds and . The frame
bounds determine important numerical properties of the FB
as discussed in Sections V-C and V-D. If the analysis set

is a frame for , then PR can always be
achieved, and a particular synthesis set providing PR is given
by (see [28] and [30])

(4)

2We note that our theory can easily be extended to PR with nonzero delay.
3Here, l2( ) denotes the space of square-summable functionsx[n], i.e.,
1

n=�1
jx[n]j2 <1.
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Here, is the inverse of theframe operatorof
defined as

The frame operator is a positive definite, linear operator that
maps onto . It can be written as , where

is the analysis operator in (1), and is its adjoint [44].
The frame bounds and are the infimum and supremum,
respectively, of the eigenvalues of [28], [30].

If the analysis set is a frame, then the synthesis
set defined by (4) is also a frame (the “dual”
frame) with frame operator and frame bounds ,

. A frame is calledsnug if
and tight if . For a tight frame, we have

, where is the identity operator on ;
hence, there is simply .

The analysis and synthesis frames corresponding to (uni-
form) FB’s have a specific “shift invariant” structure since

and ,
i.e., they are generated by uniformly time shifting the FB
impulse responses and . A frame with such a
shift-invariant structure will be called auniform filter bank
frame(UFBF). Such frames have also been considered in [12],
[13], [19], and (in a continuous-time setting) in [45].

FB’s whose analysis functions satisfy the frame
condition (3) and whose synthesis functions are cho-
sen as the dual frame of provide UFBF expansions.
If is a UFBF, then the dual frame as
defined by (4) is again a UFBF, i.e., it is generated by uni-
formly time shifting a dual set of functions given by

with . This can be seen as follows.
Introducing the unitary time-shift operator as

, we can write . Using
and (with denoting

the adjoint of ), it is easily shown that both the frame
operator and its inverse commute with the time-shift
operator , i.e., and . We
then obtain

with
.

Even though our frame-theoretic approach is valid both for
oversampling and critical sampling, in this paper, we restrict
our attention to oversampled FB’s and the corresponding
UFBF’s. We just note that the frames corresponding to criti-
cally sampled FB’s areexact, i.e., orthogonal or biorthogonal
function sets [8], [43].

III. M ATRIX REPRESENTATIONS

Important problems in frame theory include the inversion
of the frame operator and the calculation of frame bounds

. In this section, we will show that the FB’s frame
operator , analysis operator , and synthesis operator
can be expressed in terms of the FB’s polyphase matrices.
Thus, the inversion of the frame operator and the calculation
of the frame bounds can be reduced to operations involving
the polyphase matrices.

A. Matrix Representation of the Frame Operator

The following result extends the Zibulski–Zeevi represen-
tation of continuous-time Weyl–Heisenberg frame operators
[34]–[36].

Lemma 3.1:Let , where is the frame
operator corresponding to a UFBF. Then, the polyphase com-
ponents of and the
polyphase components
of are related as

(5a)

with

(5b)

or equivalently, using the polyphase vectors
and

with (6)

where denotes4 the paraconjugate of
[1].

Proof: Evaluating the polyphase components
of the signal

, (5) is obtained after sim-
ple manipulations.

Thus, the frame operator can be expressed in the
polyphase domain by the UFBF matrix

defined in terms of the analysis polyphase matrix
.

Specializing to the unit circle , we next show
that the polyphase matrix can be used to establish
a matrix representation [44] of the frame operator. Most
of our subsequent discussion of FB’s will be based on this
matrix representation.

Theorem 3.1:Let be the frame operator corresponding to
a UFBF. Then, the matrix

is positive definite for all ; furthermore, it is the matrix
representation of the frame operatorwith respect to the basis

of given by5

, .
Proof: Using , it follows after

straightforward manipulations that

This shows that is the matrix
representation of with respect to the basis . The

4The superscriptH stands for conjugate transposition.
5This basis induces the polyphase representation on the unit circle:

hx; en; �i = Xn(ej2��) =
1

m=�1 x[mM + n]e�j2��m. Equivalently,
hx; en; �i is theZak transformof x[n] [39]–[42].
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positive definiteness of then follows from the positive
definiteness of .

An important consequence of Theorem 3.1 is the identity of
the eigenvalues of the frame operator with the eigenvalues of
its matrix representation: the UFBF matrix.

Corollary 3.1: Let with
denote the eigenvalues of the UFBF matrix

, which are defined by the eigenequation

Any eigenvalue is simultaneously an eigenvalue of
the frame operator . Conversely, any eigenvalue of is
simultaneously an eigenvalue of .

Proof: Using (6), it can easily be shown that
, where :

denotes the polyphase transform
(Zak transform) operator, i.e., the operator mapping a signal
to the polyphase domain with . Since is a
unitary transformation [39], it follows that and
are unitarily equivalent. Therefore, and have the
same eigenvalues [44].

It follows that the eigenanalysis of the frame operator
(a matrix of infinite size) is equivalent to that of the UFBF
matrix [an matrix indexed by a real-valued
parameter ]. Since is a positive definite
matrix, its eigenvalues are positive. These results will be used
for the estimation of frame bounds in Section V-A.

B. Matrix Representation of the Analysis
and Synthesis Operators

According to (1), the analysis operator maps the input
signal into the subband signals . Transforming (1)
into the -transform domain yields

where and
with

. Thus, the analysis polyphase
matrix provides a polyphase domain representation
of the analysis operator . Comparing with

, it is furthermore clear that the adjoint
analysis operator is represented by the paraconjugate .

In a similar manner, transforming (2) into the polyphase
domain yields

where with
. This shows that the synthesis

operator is represented in the polyphase domain by the
synthesis polyphase matrix .

IV. PERFECT RECONSTRUCTION ANDCOMPLETENESS

We will now derive a parameterization of all synthesis
FB’s providing PR for a given oversampled analysis FB.
Furthermore, we will formulate a necessary and sufficient

condition for completeness of the analysis set ,
which is a prerequisite for PR. In this section, we do not
assume that the FB corresponds to a frame, even though close
relations to frame theory will become evident.

A. Parameterization of All Perfect
Reconstruction Synthesis FB’s

In the oversampled case ( ), the synthesis FB pro-
viding PR for a given analysis FB is not uniquely determined.
This nonuniqueness entails a desirable freedom of design that
does not exist in the case of critical sampling. The following
theorem provides a parameterization of all PR synthesis FB’s
corresponding to a given analysis FB.

Theorem 4.1:Let denote the analysis polyphase ma-
trix in an oversampled FB, and assume that has full
rank, i.e., rank , almost everywhere (a.e.). Then,
all synthesis polyphase matrices providing PR can be
written as

(7)

where is any particular PR synthesis polyphase
matrix, i.e., any left inverse of , and is an

matrix with arbitrary elements satisfying
. A special choice for is the

para-pseudoinverse of , which is defined as6

(8)

Proof: It is well known that an oversampled or critically
sampled FB provides PR (with zero delay) if and only if

(9)

In the oversampled case , the matrices and
are rectangular ( and , respectively), and

thus, the solution of (9) [for given ] is not uniquely
determined; in fact, anyleft inverseof is a valid solution.
Specializing results from linear algebra [47, p. 46], it follows
that any left inverse of can be written as in (7), where

is any particular solution of (9). It is straightforward
to verify that the para-pseudoinverse in (8) satisfies (9) and is,
thus, a valid solution.

Expression (7) is a parameterization of in terms of
the parameters that can be chosen arbitrarily.
Note that the family of PR synthesis polyphase matrices

corresponds to a family of PR synthesis filters .
The importance of the parameterization (7) lies in the fact
that once we know some left inverse [such as the
para-pseudoinverse ], the optimum
design of the PR synthesis FB for a given oversampled analysis
FB can be performed using anunconstrainedoptimization.
That is, the PR property need no longer be explicitly incor-
porated in the optimization as a side constraint. This leads to
considerable simplifications in optimum FB design.

The particular PR synthesis FB corresponding to the para-
pseudoinverse can be given an

6We note that on the unit circle, the para-pseudoinverse in
(8) becomes the conventional pseudoinverse [46]̂R(ej2��) =
[EH(ej2��)E(ej2��)]�1EH(ej2��).
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interesting frame-theoretic interpretation, which has previously
been described for the important class of oversampled FIR
FB’s in [12]. For given analysis filter impulse responses ,
consider the particular synthesis filter impulse responses
provided by frame theory via (4), i.e.,
with , or in other words, is the
UFBF that is dual to . From ,
it follows with (6) that [simply set

and in (6) for ].
This implies . Thus,
the para-pseudoinverse of corresponds to the particu-
lar PR synthesis FB provided by frame theory. This frame-
theoretic solution hasminimum norm in the sense that it
minimizes among the class of all PR synthesis
FB’s [28], [30]. Using and

, it furthermore follows that the matrix
representation of the inverse frame operator is given

by . We note that the relation between
pseudoinverses and frames has been established in a different
context in [48] and [49].

The parameterization (7) can be reformulated in the time
domain as

where the are the PR synthesis filter impulse responses
corresponding to the polyphase matrix , is
the impulse response of the filter with polyphase compo-
nents , i.e., , and

. In the -transform domain, (7) can
be reformulated as

where . Thus, all PR synthesis filters are
parameterized in terms of the filters that
can be chosen arbitrarily. In the following, we will mainly
use theminimum norm synthesis FB or, equivalently,

, which is obtained by setting and
in (7).

B. Completeness Condition

The next theorem states a condition for thecompletenessof
the analysis set . The completeness of is
a necessary condition for PR, as well as a necessary condition
for the frame property (cf. Section V-B).

Theorem 4.2:The set with
is complete in if and only if the

analysis polyphase matrix has full rank, i.e.,
rank , a.e. on .

Proof: Assuming completeness of , it follows
that for all

and, hence, the eigenvalues of [simultaneously
the eigenvalues of ; see Corollary 3.1] satisfy

a.e. for and . This
shows that has full rank a.e., i.e., rank

a.e. Using rank rank [47], it
follows that rank a.e. on .
The converse statement is shown by reversing this line of
reasoning.

With rank rank [47], it immedi-
ately follows that an equivalent condition for completeness is
rank a.e. on .

It is intuitively obvious that FB’s cannot satisfy the PR
property in the undersampled case since there are
fewer subband samples (per unit of time) than input samples.
Indeed, for , the set is incomplete in .
This is so because for , the rank of the
matrix is maximally . Hence, rank
rank , and using Theorem 4.2, it follows that

is incomplete in .

V. FRAME-THEORETIC PROPERTIES

As mentioned in Section II-B, FB’s providing UFBF ex-
pansions are always PR FB’s. Besides the fact that the frame
property implies the PR property, it is also desirable since
it guarantees a certain degree of numerical stability (see
the stochastic sensitivity analysis in Section V-C). This sec-
tion discusses frame-theoretic aspects of FB’s in terms of
the matrix representations developed in Section III. We will
present a method for estimating the frame bounds and con-
ditions guaranteeing that an FIR or IIR FB corresponds to a
UFBF expansion. Furthermore, a stochastic sensitivity analysis
involving the frame bounds will be provided, and the approx-
imative construction of the PR synthesis FB with minimum
norm will be discussed.

A. Frame Bounds

Since the frame bounds describe important numerical prop-
erties of a FB, their calculation is of interest. The next corollary
states that the frame bounds follow from the eigenvalues of
the UFBF matrix.

Corollary 5.1: The (tightest possible) frame boundsand
of a FB providing a UFBF expansion are given by the essen-

tial infimum and supremum, respectively, of the eigenvalues
of the UFBF matrix :

ess inf

ess sup

Proof: It is well known [28], [30], [33] that the (tightest
possible) frame bounds and are the essential infimum
and the essential supremum, respectively, of the eigenvalues
of the frame operator . Hence, Corollary 5.1 follows using
Corollary 3.1.

Similarly, we have ess inf
and ess sup , where the
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are the eigenvalues of the inverse UFBF matrix
. Note that in practice, the frame bounds

have to be estimated by sampling the matrix on the
unit circle and performing an eigenanalysis of for

. In Section VII, we will discuss situations
where the frame bounds can be calculated without performing
an explicit eigenanalysis.

An interesting consequence of Corollary 5.1 is the following
corollary, which has been formulated for the FIR case in [13]
and is extended below to the IIR case.

Corollary 5.2: Let be a UFBF for with
frame bounds and . Then

(10)

In particular, in the case of a tight UFBF (where ),
we have

Proof: The trace of the UFBF matrix satisfies
tr , and, further-
more, tr so that

(11)

From Corollary 5.1, we conclude that
, and with (11),

. Integrating both sides of this
inequality with respect to the frequency parameterand
using [39], we obtain
(10).

If we normalize the such that for
, then , and (10) yields

the following inequality relating the frame bounds with the
oversampling factor

(12)

In particular, for a tight UFBF (corresponding to a paraunitary
FB; see Section VI), it follows that the frame bounds are equal
to the oversampling factor

(13)

B. Frame Conditions

We shall now derive conditions for an oversampled FB to
provide a UFBF expansion in . The next lemma discusses
the existence of the upper frame bound , which
guarantees that the subband signals have finite energy if the
input signal has finite energy.

Lemma 5.1:The analysis set has an upper frame
bound , i.e.,

if and only if the polyphase components are all
bounded a.e., i.e., a.e. on [0, 1) for

, .
Proof: Let a.e. It fol-

lows that the entries of the UFBF matrix
are bounded a.e., which implies that

the are bounded a.e. Using Corollary 5.1, we
conclude that . We next prove the converse. Let

ess sup . It follows that

is bounded a.e. With (11), this implies that the
are bounded a.e.

We are now ready to formulate a necessary and sufficient
condition for an FB to provide a UFBF expansion. The
following theorem has previously been given for the important
special case of FIR FB’s in [12].

Theorem 5.1:An oversampled FB with bounded-input
bounded-output (BIBO) stable7 analysis filters provides
a UFBF expansion in , i.e., the analysis set is
a UFBF for if and only if the analysis polyphase matrix

has full rank on the unit circle,8 i.e.,

rank for

Proof: From , it follows that the
are bounded, and hence, we conclude from

Lemma 5.1 that an upper frame bound exists. It
remains to be shown that a full rank is necessary
and sufficient for the existence of a lower frame bound

. If has full rank on [0, 1), then
has full rank on [0, 1), which means

that for and .
From , it follows that the are continuous
functions of , and therefore, we can conclude that9

ess inf . We next prove that,
conversely, a full-rank is necessary for the existence
of . Suppose that does not have full rank on
[0, 1). It follows that does not have full rank on
[0, 1). This implies that there is at least one eigenvalue with

on a measurable set with positive measure. Hence,
using Corollary 5.1, we conclude that .

Alternatively, it can be shown that an FB corresponds to
a UFBF for if has full rank for ,
and the are continuous and bounded functions
of . Yet another condition, which is phrased in terms of the
eigenvalues of the UFBF matrix , follows easily from
Corollary 3.1:

7BIBO stability means thathk[n] 2 l1( ), i.e., 1

n=�1
jhk[n]j < 1

for k = 0; 1; � � � ; N � 1.
8We emphasize thatE(z) is here required to have full rankeverywhereon

the unit circle. In contrast, the completeness condition in Theorem 4.2 merely
requiredE(z) to have full ranka.e.on the unit circle.

9For a continuous function, the essential infimum is the infimum (this is,
however, not relevant to this proof).
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Fig. 2. Adding noise to the subband signals.

Corollary 5.3: An oversampled FB provides a UFBF ex-
pansion in if and only if the eigenvalues of the
UFBF matrix satisfy

ess inf

and

ess sup

Proof: It is known [28], [30], [33] that is a
frame if and only if ess inf and ess sup , where

is the set of all eigenvalues of the frame operator. Due
to Corollary 3.1, the eigenvalues of equal the eigenvalues

of , which completes the proof.
Using the fact that FIR filters are inherently BIBO stable

and, thus, one of the conditions of Theorem 5.1 is here always
satisfied, it follows that an oversampled FB with FIR analysis
filters provides a UFBF expansion in if and only if the
analysis polyphase matrix has full rank on the unit circle,
i.e., rank for . This result has been
previously reported by Cvetković and Vetterli [12].

C. Sensitivity Analysis

Important numerical properties of the UFBF and,
thus, of the associated FB as well, are determined by its frame
bounds and [28]. Let us investigate the sensitivity of
oversampled FB’s to (quantization) noise added to the
subband signals ( ).
We collect the noise signals in the -dimensional vector
noise process that is assumed to be wide-sense stationary
and zero-mean. The power spectral matrix of is
defined as with the autocorrelation
matrix , where denotes the
expectation operator [1].

It is convenient to redraw the FB in the “polyphase do-
main,” as shown in Fig. 2 [1]. Here, the polyphase vectors

and are defined as in Section III-B, and
is the -transform of the noise .

Assuming a PR FB, we have (see Fig. 2)
so that the reconstruction error

is given by

The reconstruction error is again wide-sense stationary
and zero-mean, with power spectral matrix [1]

and variance

tr

where tr denotes the trace. With the idealizing assumption
that the noise signals are uncorrelated and white with
identical variances , i.e.,
and [1], the error variance becomes

tr (14)

We will now restrict our attention to the PR synthesis
FB corresponding to the dual frame, i.e., .
With tr , where

denotes the eigenvalues of the inverse UFBF matrix
, and using (see Corollary

5.1) or equivalently , we obtain
tr . Inserting this

in (14), we further obtain

(15)

i.e., the reconstruction error variance is bounded in terms
of the frame bounds , . Let us assume normalized analysis
filters, i.e., for . Then,
(12) yields , where is
the oversampling factor. Hence, for or equivalently

(snug frame), (15) implies

with

which means that small perturbations of the subband signals
yield small reconstruction error. We note that the design of
FB’s with (and additional desirable properties such
as good frequency selectivity) is easier for larger oversampling
factor (see Section VIII).

For a paraunitary FB with , we have
[see (13)], and hence, (15) becomes

Thus, in the paraunitary case, the reconstruction error variance
is inversely proportional to the oversampling factor, which
means that more oversampling entails more noise reduction.
Such a “ behavior” of the reconstruction error variance
has previously been observed for oversampled A/D conversion
[50], for tight frames in finite dimensional spaces [28], [51],
and for reconstruction from a finite set of Weyl–Heisenberg
(Gabor) or wavelet coefficients [28], [37]. Recently, under
additional conditions, a behavior has been demonstrated
for Weyl–Heisenberg frames [20], [37], [52].

D. Approximative Construction of the Synthesis Filter Bank

The calculation of the minimum norm, PR synthesis FB
(para-pseudoinverse) requires the
inversion of the matrix , which is a cumbersome
task in general. If the FB corresponds to a UFBF, then an
approximative calculation of the minimum norm synthesis
FB (which is analogous to the approximation of dual frames
described in [33]) can be based on a series expansion of
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. Indeed, applying the Neumann se-
ries expansion [44] to the matrix , the minimum
norm synthesis FB is expressed as

(16)
The convergence of this series expansion follows from frame
theory [28] using the correspondence between the frame
operator and the UFBF matrix ; it will be
faster for snugger frames, i.e., for closer frame bounds .

By truncating the expansion (16), the synthesis FB can
be approximated with arbitrary accuracy. Estimates of the
resulting reconstruction error are available [28]. We shall here
restrict our attention to the zero-order approximation of
obtained by retaining only the term in (16)

which corresponds to an approximation of the minimum norm
synthesis filters as

(17)

The reconstruction error resulting from this approximation can
be bounded in terms of the frame boundsand . With
denoting the signal reconstructed using the above “zero-order
synthesis FB” , we have the error bound [33]

(18)

We see that the reconstruction error is small for , i.e.,
when the underlying UFBF issnug. Thus, in the snug case, the
synthesis impulse responses are a good approximation
to the true minimum norm, PR impulse responses , in
the sense that the resulting reconstruction error is
small. In the tight case where , the reconstruction
error becomes zero altogether, and indeed, the approximation
is here exact as .

Besides the trivial zero-order approximation discussed
above, the series expansion (16) also allows the iterative
calculation of the minimum norm synthesis filters .
Sophisticated algorithms for this iteration have been proposed
in [53] in a frame-theoretic setting. Using the correspon-
dences established further above, the reformulation of these
algorithms in the present FB framework is straightforward.

VI. OVERSAMPLED PARAUNITARY

FILTER BANKS AND TIGHT FRAMES

In this section, we show that oversampled paraunitary FB’s
provide tight UFBF expansions in , and we discuss a
frame-theoretic method for constructing paraunitary FB’s from
given nonparaunitary FB’s.

A. Equivalence of Oversampled Paraunitary
Filter Banks and Tight Frames

The analysis UFBF is tight if . From
frame theory, we know that here, [28]. With (4), this
implies that the frame-theoretic (i.e., minimum norm) solution
for the PR synthesis FB is

or equivalently . This is precisely the rela-
tion between the synthesis and analysis filters in a paraunitary
FB [1]. In fact, we can formulate the following theorem that
extends a result previously reported in [12] for the FIR case
and in [54] for the case of complex modulated (DFT) FB’s.

Theorem 6.1:An oversampled FB provides atight UFBF
expansion in if and only if it is paraunitary, i.e.,

The frame bound is given by
.

Proof: From , it follows with (6) that
, which implies . Hence, com-

paring with , we conclude that , i.e.,
is a tight UFBF with frame bound . The converse

statement is proven by reversing this line of reasoning. Com-
bining and ,
it follows that .

Paraunitary FB’s are also known as orthogonal FB’s. How-
ever, the name “orthogonal” is justified only in the critical
case since critically sampled paraunitary FB’s provide decom-
positions into orthogonal UFBF’s. In the oversampled case,
paraunitary FB’s correspond to UFBF’s that are tight but not
orthogonal.

B. Construction of Paraunitary FB’s

We next describe a procedure for the derivation of a parau-
nitary FB from a given nonparaunitary FB. From frame theory,
we know that application of the positive definite operator
square root to each of the frame functions
produces a tight frame [28], [30]. Using the correspondence
between the frame operator and the UFBF matrix

, the following result is obtained.
Theorem 6.2:Consider an FB corresponding to a UFBF

expansion, and let be an invertible, para-Hermitian,10

matrix such that , where is
the FB’s analysis polyphase matrix. Then, the FB with analysis
polyphase matrix

is paraunitary with frame bound , i.e.,
. If, moreover, in the case of critical

sampling the original FB is biorthogonal, then the FB with
analysis polyphase matrix is orthogonal.

10A matrix P(z) is said to be para-Hermitian if~P(z) = P(z) [55].
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Proof: We have
. Inserting

in the right-hand side and using , it follows
that , which shows that the FB with
polyphase matrix is paraunitary with frame bound

.
From frame theory [28], [30], we know that by applying the

procedure described above to an exact frame (corresponding to
a biorthogonal FB), an orthogonal function set (corresponding
to an orthogonal FB) is obtained. Note that a UFBF can be
exact only in the case of critical sampling.

The matrix can be calculated by performing a

factorization of . A detailed study of
such a factorization problem for both polynomial and rational
matrices is given in [56]. Alternatively, the approximative
calculation of can be based on a series expansion
similar to (16): Using the correspondence between the frame
operator and the UFBF matrix , we have
[57]

VII. SPECIAL CASES

In this section, we discuss FB’s whose frame operator
becomes a simple multiplication operator in the polyphase
domain or in the frequency domain, i.e., the polyphase rep-
resentation or the Fourier transform “diagonalizes” the frame
operator. This class of FB’s comprises integer oversampled
or critically sampled DFT FB’s, nondecimated FB’s, and
bandlimited FB’s. We shall see that the calculation of the
synthesis FB, of the frame bounds, and of paraunitary FB’s
is drastically simplified in these cases.

A. Diagonality in the Polyphase Domain

According to Lemma 3.1, the frame operatoris repre-
sented in the polyphase domain by the UFBF matrix .
Consequently, a FB corresponding to a UFBF is “diagonal in
the polyphase domain” if the UFBF matrix is a diagonal matrix

diag

with

It follows from (8) that the polyphase matrix of the minimum
norm synthesis FB is given by

diag

(19)

We can see that the calculation of the minimum norm synthesis
FB, which in general requires the inversion of the UFBF

matrix , reduces to simple divisions in the
polyphase domain.

Using the fact that the eigenvalues of the diagonal matrix
are given by

it follows from Corollary 5.3 that the FB corresponds to a
UFBF if and only if

ess inf

and

ess sup

and according to Corollary 5.1, the frame bounds are given by

ess inf

ess sup

In particular, the FB is paraunitary with frame boundif and
only if

for

The construction of paraunitary FB’s from nonparaunitary
FB’s (see Theorem 6.2) simplifies as well. Consider an FB
with analysis polyphase components , and define

by with . Then, the
FB with analysis polyphase components

is paraunitary with , i.e., . Thus,
the matrix factorization reduces to a
factorization of polynomials in (in the FIR case) or rational
functions in (in the IIR case).

Integer oversampled or critically sampled DFT FB’s [4],
[6], [7], [11], [16], [24], [39], [54], [58] are an important
example of FB’s that are diagonal in the polyphase do-
main. The corresponding UFBF type is the important class
of Weyl–Heisenberg frames[16], [25], [28], [30], [33], [34],
[39], [59], [60]. In a DFT FB, the analysis filters are mod-
ulated versions of a single analysis prototype filter , i.e.,

with . The minimum norm
synthesis FB has the same structure, i.e.,
[16]. The polyphase components are

with



BÖLCSKEI et al.: FRAME-THEORETIC ANALYSIS OF OVERSAMPLED FILTER BANKS 3265

and

with

In the important cases of integer oversampling (
with IN, ) and critical sampling ( , i.e.,

), the DFT FB is diagonal in the polyphase domain with

and

Hence, all results presented further above for diagonal FB’s
apply to integer oversampled or critically sampled DFT FB’s.
In particular, (19) simplifies to

In [5] and [6], it has been shown that for critical sampling,
a DFT FB with PR and FIR filters in both the analysis and the
synthesis section is possible only if all the polyphase filters
are pure delays. This leads to filters with poor frequency
selectivity. In the oversampled case, this restriction is relaxed.
For , for example, a paraunitary DFT FB with FIR filters
can be constructed by using polyphase filters that satisfy the
power symmetry conditions [1]

for

It is well known that this can be achieved with FIR filters
corresponding to nontrivial polyphase filters [1]. Oversampled
DFT FB’s with good frequency localization have also been
constructed in [11].

B. Diagonality in the Frequency Domain

An FB corresponding to a UFBF is “diagonal in the fre-
quency domain” if its frame operator is a simple multiplication
operator in the frequency domain (-transform domain). With

, this means

with

(20)
where , , and denote the -transforms of ,

, and , respectively. The eigenvalues of the UFBF
matrix are here given by

(21)

Two important classes of FB’s that are diagonal in the fre-
quency domain arenondecimatedFB’s, i.e., FB’s with no
decimation in the subbands11 or , andbandlimitedFB’s,
i.e., FB’s whose analysis filters have bandwidth . We
note that nondecimated FIR FB’s have been studied previously
by Cvetkovíc and Vetterli in [12].

With (20), it follows that the -transforms of the minimum
norm synthesis filters are obtained as

Furthermore, (21) implies that the frame condition can be
reformulated as

ess inf and ess sup

With , the lower
bound means that the set of analysis filters has to “cover”
the entire frequency interval [0, 1). This condition is
satisfied if and only if the analysis filters have no zeros in
common on the unit circle. The upper bound is automatically
satisfied for BIBO stable filters, i.e., for

. The frame bounds are given by

ess inf ess sup

Paraunitarity with frame bound implies

which means that the analysis filters arepower comple-
mentary[1]. Paraunitary FB’s with frame bound can be
constructed by solving the factorization with

; the paraunitary analysis filters are then given by

VIII. SIMULATION RESULTS

We now present simulation results demonstrating the im-
portance of snug frames ( ) and the benefits of
oversampling. We consider a DFT FB (see Section VII-A)
with channels and a 192-tap lowpass analysis
prototype filter . The simulation results were obtained
by performing all calculations within the framework of cyclic
DFT FB’s (cyclic Weyl–Heisenberg frames) [39] with period
192. The dual windows and the frame bounds we obtained
are, hence, approximations to the true (i.e., noncyclic) dual
windows and frame bounds.

The analysis prototype filter is depicted in Fig. 3(a).
Fig. 3(b)–(d) shows the minimum norm synthesis prototype
filters for oversampling by the factors 2, 4, and 8, respectively.
The frame bound ratio was estimated as 33.258, 2.260,

11We note that nondecimated FB’s are also trivially diagonal in the
polyphase domain.
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(a) (b)

(c) (d)

Fig. 3. Comparison of analysis and minimum norm synthesis prototype
filters for various frame bound ratios and oversampling factors. (a) Analysis
prototype h[n]. (b)–(d) Minimum norm synthesis prototypef [n] for (b)
oversampling by 2 (resulting inB=A = 33:258), (c) oversampling by 4
(B=A = 2:260), and (d) oversampling by 8 (B=A = 1:107).

TABLE I
FRAME BOUND RATIO B=A AS A FUNCTION

OF THE OVERSAMPLING FACTOR N=M

and 1.107, respectively. Thus, more oversampling is seen to
result in snugger frames.

It is furthermore seen that for snugger frames (i.e., more
oversampling), the minimum norm synthesis prototype is
increasingly similar to the analysis prototype. Approximating
the synthesis FB using the zero-order approximation in (17)
(i.e., essentially using the analysis FB as synthesis FB) resulted
in the following upper bounds on
the normalized reconstruction error [see (18)]:

• for oversampling by 2;
• for oversampling by 4;
• for oversampling by 8.

Thus, the reconstruction error can be expected to be negligible
if the oversampling factor is sufficiently large.

For the DFT FB analysis prototype in Fig. 3(a), Table I
shows the frame bound ratio as a function of the
oversampling factor (note that means critical

sampling). We see that is closer to 1 (i.e., the frame is
snugger) for increasing oversampling factor; for ,
the FB is nearly paraunitary.

We caution, however, that if the prototype does not
“match” the time–frequency grid determined by the parameters

and , it is not guaranteed that the frame bound ratio will
improve for increasing oversampling factor [61]. Furthermore,
we note that paraunitary FB’s (corresponding to tight frames,
i.e., ) can, of course, also be constructed in the case of
critical sampling. However, in the oversampled case, the filters
of a paraunitary FB tend to have desirable properties (such as
improved frequency selectivity). This is due to the fact that
in the design of an oversampled PR FB, there are fewer side
constraints to be satisfied than in the case of critical sampling.

IX. CONCLUSION

We have shown that the theory of frames is a powerful
vehicle for the analysis and design of oversampled filter
banks (FB’s). A key result on which most of our theory was
based is the fact that the polyphase matrices provide matrix
representations of the frame operator. We demonstrated that
the frame bounds characterize important numerical properties
of FB’s and that they can be obtained by an eigenanalysis of
the polyphase matrices. For a given oversampled analysis FB,
we provided a compact and useful parameterization of all syn-
thesis FB’s providing perfect reconstruction, and we discussed
the perfect reconstruction synthesis FB with minimum norm
(i.e., the particular synthesis FB obtained from frame theory)
and its approximative construction. We formulated conditions
for an oversampled FB to provide a frame decomposition.
We also proposed a new method for constructing paraunitary
FB’s from given nonparaunitary FB’s. Finally, we presented
simulation results demonstrating the benefits of snug frames
and oversampling.
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N. V. Hurck, “Signal processing method for improving the dynamic
range of A/D and D/A converters,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. ASSP-28, pp. 529–538, 1980.

[51] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete
expansions inIRN : Analysis, synthesis and algorithms,”IEEE Trans.
Inform. Theory,vol. 44, pp. 16–31, Jan. 1998.

[52] Z. Cvetkovíc and M. Vetterli, “Overcomplete expansions and robust-
ness,” inProc. IEEE TFTS,Paris, France, June 1996, pp. 325–328.
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