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Abstract: We develop an operator-theoretic approach to discrete frame theory on

a separable Hilbert space. We then apply this to an investigation of the structural

properties of systems of unitary operators on Hilbert space which are related to

orthonormal wavelet theory. We also obtain applications of frame theory to group

representations, and of the theory of abstract unitary systems to frames generated

by Gabor type systems.
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Introduction

The purpose of this manuscript is to explore and develop a number of the basic

aspects of a geometric, or operator-theoretic, approach to discrete frame theory on

Hilbert space which arises from the simple observation that a frame sequence is

simply an inner direct summand of a Riesz basis. In other words, frames have a

natural geometric interpretation as sequences of vectors which dilate(geometrically)

to bases. This approach leads to simplified proofs of some of the known results in

frame theory, and also leads to some new results and applications for frames.

A frame is a sequence {xn} of vectors in a Hilbert space H with the property

that there are constants A,B ≥ 0 such that

A||x||2 ≤
∑

j

| < x, xj > |2 ≤ B||x||2

for all x in the Hilbert space. A Riesz basis is a bounded unconditional basis; In

Hilbert space this is equivalent to being the image of an orthonormal basis under

a bounded invertible operator; another equivalence is that it is a Schauder basis

which is also a frame. An inner direct summand of a Riesz basis is a sequence {xn}
in a Hilbert space H for which there is a second sequence {yn} in a second Hilbert

space M such that the orthogonal direct sum {xn ⊕ yn} is a Riesz basis for the

direct sum Hilbert space H ⊕M .

Frame sequences have been used for a number of years by engineers and applied

mathematicians for purposes of signal processing and data compression. There are

papers presently in the literature which concern interpretations of discrete frame

transforms from a functional analysis point of view. However, our approach seems

to be different in an essential way in that the types of questions we address are

somewhat different, and there is a fundamental difference in perspective arising

from a dilation vantage point. This article is concerned mainly with the pure

mathematics underlying frame theory. Most of the new results we present are in

fact built up from basic principles.

This paper began with an idea the second author had on the plane back to College

Station after participating in the stimulating conference on Operator Theory and

Wavelet Theory which took place in July, 1996 in Charlotte, NC. This was the
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observation that a frame could be gotten by compressing a basis in a larger Hilbert

space, together with the observation that this method was reversible. This quickly

led the authors to an understanding of frame theory from a functional analysis

point of view in a form that was very suitable for exploring its relationship to the

earlier study of wandering vectors for unitary systems and orthogonal wavelets [DL]

by the second author together with Xingde Dai.

The basic elements of our approach to frames are contained in Chapters 1 and

2, which contain a number of new results as well as new proofs of some well-known

results. Our original plan was that these two chapters would contain only those

basic results on frames that we needed to carry out our program in the remaining

chapters. However, through seven preliminary versions of this manuscript, these

chapters grew to accomodate some apparently new results for frames that seemed

to belong to the basics of the theory. In many cases we made little or no attempt

to give the most general forms possible of basic results because we felt that doing

so might get in the way of the flow of the rest of the manuscript. So in these two

chapters we tried to give what was needed together with the essentials of some

additional results that we felt might have independent interest. Then, beginning

with Chapter 3, our main thrust concerns applications to unitary systems, group

representations and frame wavelets.

In [DL] the set of all complete wandering vectors for a unitary system was param-

eterized by the set of unitary operators in the local commutant (i. e. commutant

at a point) of the system at a particular fixed complete wandering vector. This was

the starting point for the structural theory in [DL]. In Chapter 3 we generalize this

to frames. In the case where a unitary system has a complete wandering vector, we

parameterize the set of all the normalized frame vectors ( a vector which together

with the unitary system induces a normalized tight frame for a closed subspace of

the underlying Hilbert space) by the set of all the partial isometry operators in the

local commutant of the unitary system at the fixed complete wandering vector. In

particular the set of all complete normalized tight frame vectors for such a unitary

system can be parameterized by the set of all co-isometries in the local commutant

of the unitary system at this point.

Unlike the wandering vector case, we show that the set of all the normalized

tight frame vectors for a unitary group can not be parameterized by the set of all

the unitary operators in the commutant of the unitary group. This means that the

complete normalized tight frame vectors for a representation of a countable group

are not necessarily unitarily equivalent. However, instead, this set can be parame-
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terized by the set of all the unitary operators in the von Neumann algebra generated

by the representation. Several dilation results are given for unitary group systems

and some other general unitary systems including the Gabor unitary systems. A

simple application is that every unitary group representation which admits a com-

plete frame vector is unitarily equivalent to a subrepresentation of the left regular

representation of the group. Regarding classification of the frame vectors for a

group representation, we investigate frame multiplicity for group representations in

Chapter 6.

Frame wavelets have been in the literature for many years. These can be viewed

as the frame vectors for the usual dilation and translation unitary system on L2(R).

In Chapter 5 we focus our attention on strong disjointness of frame wavelets and on

the frame wavelets whose Fourier transforms are normalized characteristic functions
1√
2π

χE for some measurable sets E. These sets are called frame sets. A character-

ization of these frame sets is given. (We note that an equation-characterization of

complete normalized frame wavelets is in the literature, cf. [HW]). The study of

strong disjointness in Chapter 2 leads to the concept of super-wavelets in Chapter

5. The prefix ”super-” is used because they are orthonormal basis generators for

a ”super-space” of L2(R), namely the direct sum of finitely many copies of L2(R).

Super-wavelets can be viewed as vector valued wavelets of a special type. Using

the frame sets, we prove the existence of super-wavelets of any length. No su-

perwavelet can be associated with a single multiresolution analysis (MRA) in the

super-space. However, each component of a super-wavelet can be an MRA frame

in the usual sense. They might have applications to signal processing, data com-

pression and image analysis (see Remark 2.27). We also discuss the interpolation

method introduced by Dai and Larson in [DL] for frame wavelets.

We wish to thank a number of our friends and colleagues for useful comments and

suggestions on preliminary versions of this work. Since we were working between

the two different areas of operator algebra and frame theory on this, we especially

appreciated comments that helped us assess the originality and potential usefulness

of our work and those that helped us improve the coherency and readability of our

write-up. We first wish to thank three of Larson’s research students Qing Gu,

Vishnu Kamat and Shijin Lu for useful conversations and commentary with both

of us throughout the year in which this manuscript was written. The list of those

whose motivational and critical comments inspired us and helped us far more than

they probably realize includes Pete Cazazza, Xingde Dai, Gustavo Garrigos, Bill

Johnson, Michael Frank, John McCarthy, Manos Papadakis, Carl Pearcy, Lizhong
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Peng, Marc Rieffel, Joe Ward, and Guido Weiss.
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Chapter 1

Basic Theory for Frames

We begin by giving an elementary self-contained exposition of frames suitable for

our work in subsequent sections. Some of what we describe in this chapter is known

and is standard in the literature. However, our dilation results and exposition

characterizing tight frames and general frames as precisely the direct summands

of Riesz bases seems to be new and serves to clarify some aspects of frame theory

from a functional analysis point of view. For an operator theorist and also for a

Banach space theorist, dilation may be the most natural point of view to take in

regard to frames.

1.1 A Dilation Viewpoint on Frames

Let H be a separable complex Hilbert space. Let B(H) denote the algebra of

all bounded linear operators on H. Let N denote the natural numbers, and Z the

integers. We will use J to denote a generic countable ( or finite ) index set such as

Z, N, Z(2), N ∪ N etc. The following are standard definitions:

A sequence {xj : j ∈ N} of vectors in H is called a frame if there are constants

A,B > 0 such that

A||x||2 ≤
∑

j

| < x, xj > |2 ≤ B||x||2 (1)

for all x ∈ H. The optimal constants (maximal for A and minimal for B) are

called the frame bounds. The frame {xj} is called a tight frame if A = B, and is

called normalized if A = B = 1. A sequence {xj} is called a Riesz basis if it is a

frame and is also a basis for H in the sense that for each x ∈ H there is a unique

sequence {αj} in C such that x =
∑

αjxj with the convergence being in norm. We

note that a Riesz basis is sometimes defined to be a basis which is obtained from

an orthonormal basis by applying a bounded linear invertible operator (cf. [Yo]).

This is equivalent to our definition (cf. Proposition 1.5). Also, it should be noted

that in Hilbert spaces it is well known that Riesz bases are precisely the bounded

unconditional bases.
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It is clear from the absolute summation in (1) that the concept of frame ( and

Riesz basis) makes sense for any countable subset of H and does not depend on a

sequential order. Thus there will be no confusion in discussing a frame , or Riesz

basis, indexed by a countable set J.

From the definition, a set {xj : j ∈ J} is a normalized tight frame if and only if

||x||2 =
∞∑

j=1

| < x, xj > |2 (2)

for all x ∈ H. An orthonormal basis is obviously a normalized tight frame. More-

over, if {xj} is a normalized tight frame, then (2) implies that ||xj || ≤ 1 for all

j. Also, if some xk happens to be a unit vector then (2) implies that it must be

orthogonal to all other vectors xj in the frame. Thus a normalized tight frame of

unit vectors is an orthonormal basis. On the other hand, some of the vectors in a

tight frame may be the zero vector. If H is the zero Hilbert space, then any count-

able indexed set of zero vectors satisfies the definition of a normalized tight frame

(provided we use the convention that A = B = 1 in this case). Let {xn : j ∈ J} be a

normalized tight frame for H. Suppose that {xi : i ∈ Λ} is a subset of {xj : j ∈ J}
which is also a normalized tight frame for H. We may assume Λ ⊆ J. If j /∈ Λ,

then

||xj ||2 =
∑

k∈J
| < xj , xk > |2 =

∑

i∈Λ

| < xj , xi > |2.

Thus
∑

k/∈Λ | < xj , xk > |2 = 0. So < xj , xj >= 0 which implies that xj = 0. So

the only way to enlarge a normalized tight frame in such a way that it remains a

normalized tight frame is to add zero vectors.

If {xn} is a frame which is not a Riesz basis, and not a sequence of zeros on the

zero Hilbert space, then we will call {xn} a proper frame.

We will say that frames {xj : j ∈ J} and {yj : j ∈ J} on Hilbert spaces H, K,

respectively, are unitarily equivalent if there is a unitary U : H → K such that

Uxj = yj for all j ∈ J. We will say that they are similar ( or isomorphic) if there is

a bounded linear invertible operator T : H → K such that Txj = yj for all j ∈ J.

It is important to note that the two notions of equivalence of frames (unitary

equivalence and isomorphism) in the above paragraph are somewhat restrictive,

and are in fact more restrictive than some theorists would prefer for a notion of

equivalence of frames. In particular, isomorphism of frames is not invariant under

permutations. For example if {e1, e2} is an orthonormal basis for a two-dimensional

Hilbert space H2 then both {e1, e2, 0, 0} and {0, 0, e1, e2} are normalized
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tight frames for H2 indexed by the index set J = {1, 2, 3, 4}. But they are

not isomorphic, because isomorphism would require the existence of an invertible

operator T mapping H2 to H2 such that Te1 = 0, T e2 = 0, T0 = e1, T0 = e2, an

impossibility. For our geometric interpretation and to achieve the strength of the

theorems we prove it is important to distinguish between the equivalence classes of

such frames. Moreover, for a similar reason we will make no attempt to define a

notion of equivalence of two frames that are not indexed by the same index set J.

Suppose that {xn} is a sequence in H such that the equation

x =
∑

n

< x, xn > xn

holds for all x ∈ H (the convergence can be either in the weakly convergent sense

or in the norm convergent sense). Then {xn} is a normalized tight frame for H

since for every x ∈ H, we have

||x||2 = limn→∞ <
n∑

k=1

< x, xk > xk, x >

= limn→∞
n∑

k=1

< x, xk >< xk, x >

= limn→∞
n∑

k=1

| < x, xk > |2 =
∞∑

k=1

| < x, xk > |2.

Example A. Let H and K be Hilbert spaces with H ⊂ K, and let {ei}∞i=1 be an

orthonormal basis for K. Let P denote the orthogonal projection from K onto H,

and let xi = Pei for all i. If x ∈ H is arbitrary, then

||x||2 =
∑

j

| < x, ej > |2 (3)

and

x =
∑

j

< x, ej > ej . (4)

Since x = Px and xj = Pej we have < x, ej > = < x, xj >, so (3) becomes (2)

and hence {xj} is a normalized tight frame for H. Moreover, applying P to (4)

then yields

x =
∑

j

< x, xj > xj (5)

for all x ∈ H. The formula (5) is called the reconstruction formula for {xj}.
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Example A1. For a special case let {e1, e2, e3} be an orthonormal basis for a

3-dimensional Hilbert space K. Another orthonormal basis for K is then

{ 1√
3
(e1 + e2 + e3),

1√
6
(e1 − 2e2 + e3),

1√
2
(e1 − e3)}.

Thus from above,

{ 1√
3
(e1 + e2),

1√
6
(e1 − 2e2),

1√
2
e1}

is a normalized tight frame for H = span{e1, e2}.

Example A2. Let K = L2(T) where T is the unit circle and measure is normalized

Lebesgue measure. Then {eins : n ∈ Z} is a standard orthonormal basis for L2(T).

If E ⊆ T is any measurable subset then {eins|E : n ∈ Z} is a normalized tight frame

for L2(E). This can be viewed as obtained from the single vector χE by applying

all integral powers of the (unitary) multiplication operator Meis . It turns out that

these are all ( for different E) unitarily inequivalent, and moreover every normalized

tight frame that arises in a manner analogous to this is unitarily equivalent to a

member of this class (see Corollary 3.10).

Example A3. Take H = C2, e1 = (0, 1), e2 = (
√

3
2 , 1

2 ), e3 = (
√

3
2 , − 1

2 ).

The elementary computation on page 56 of [Dau] or page 399 of [HW] shows that

{e1, e2, e3} is a tight frame with frame bound 3
2 . An alternate way of seeing this

is by observing that the set

{
√

2
3
(0, 1,

1√
2
),

√
2
3
(
√

3
2

,
1
2
, − 1√

2
),

√
2
3
(
√

3
2

, −1
2
,

1√
2
)}

is an orthonormal basis for C3.

It turns out that Example A is generic and serves as a model for arbitrary

normalized tight frames. One can always dilate such a frame to an orthonormal

basis. One immediate consequence of the dilation is that the reconstruction formula

(5) always holds for a tight frame. This is usually proven in a different way.

Proposition 1.1. Let J be a countable ( or finite) index set. Suppose that {xn :

n ∈ J} is a normalized tight frame for H. Then there exists a Hilbert space K ⊇ H

and an orthonormal basis {en : n ∈ J} for K such that xn = Pen, where P is the

orthogonal projection from K onto H.

Proof. Let K = l2(J) and let θ : H → K be the usual frame transform defined by

θ(x) = (< x, xn >)n∈J (6)
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for all x ∈ H. Since {xn} is a tight frame for H, we have

||θ(x)||2 =
∑

n

| < x, xn > |2 = ||x||2.

Thus θ is well defined and is an isometry. So we can embed H into K by identifying

H with θ(H). Let P be the orthogonal projection from K onto θ(H). Denote the

standard orthonormal basis for K by {ej : j ∈ J}. That is, for each j ∈ J, ej is

defined to be the vector in l2(J) which is 1 in the j-th position and 0 elsewhere.

We claim that Pen = θ(xn). For any m ∈ J, we have

< θ(xm), P en > = < Pθ(xm), en > = < θ(xm), en >

= < xm, xn > = < θ(xm), θ(xn) > . (7)

In the third equality in (7) the fact was used that, by definition of θ, for each

y ∈ H we have < θ(y), en > = < y, xn >. Since the vectors θ(xm) span θ(H) it

follows that Pen − θ(xn) ⊥ θ(H). But ran(P ) = θ(H). Hence Pen − θ(xn) = 0, as

required. ¤

Corollary 1.2.

(i) Let {en : n ∈ J} be an orthonormal basis for H, and let V be a partial

isometry in B(H). Then {V en} is a normalized tight frame for the range of V .

(ii) Suppose that {xn} is a normalized tight frame for a Hilbert space H and

{en} is an orthonormal basis for a Hilbert space K. If T is the isometry defined by

Tx =
∑

n∈J < x, xn > en, then T ∗en = xn, and Txn = Pen for all n ∈ J, where P

is the projection from K onto the range of T . More generally, if {xn} is a general

frame for H, then T defined above is a bounded linear operator and T ∗en = xn for

all n ∈ J.
(iii) Suppose that {xn} is a normalized tight frame for a Hilbert space H. Then∑
n∈J ||xn||2 is equal to the dimension of H.

Proof. Statement (i) follows from the definition or from Proposition 1.1. For (ii),

when {xn} is normalized, then the equality Txn = Pen follows from the proof of

Proposition 1.1. If {xn} is a general frame, boundness of T is clear. Now let x ∈ H

be arbitrary. Then we have

< T ∗en, x > =< en, Tx >

=< en,
∑

k∈J
< x, xk > ek >

=
∑

k∈J
< x, xk > < en, ek >

= < x, xn >

=< xn, x > .
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Hence T ∗en = xn.

To prove (iii), by Proposition 1.1, there is a Hilbert space K and an orthonormal

basis {en} for K such that K ⊇ H and Pen = xn, where P is the orthogonal

projection from K onto H. Thus
∑

n∈J
||xn||2 =

∑

n∈J
< Pen, P en >

=
∑

n∈J
< Pen, en >

= tr(P ) = dimH,

where tr(P ) denotes the trace of P if H has finite dimension and is taken to be

+∞ if H has infinite dimension. ¤

Some further elementary consequences of Proposition 1.2, whose proofs are given

in Chapter 2 because they are used there although they could just as well have

been given at this point, are contained in Proposition 2.6, Corollary 2.7, Corollary

2.8, Lemma 2.17. In particular, two frames are similar if and only if their frame

transforms have the same range. Based on this, there is a one-to-one correspondence

between the closed linear subspaces of l2(J) and the similarity classes of frames with

index set J.

Corollary 1.3. Let J be a countable ( or finite ) index set. A set {xn : n ∈ J} is

a normalized tight frame for a Hilbert space H if and only if there exists a Hilbert

space M and a normalized tight frame {yn : n ∈ J} for M such that

{xn ⊕ yn : n ∈ N} (8)

is an orthonormal basis for H ⊕M . (If {xn} is an orthonormal basis, the under-

standing is that M will be the zero space and each yn will be zero vector.)

Proof. By Proposition 1.1 there is a Hilbert space K ⊇ H and an orthonormal

basis {en} of K such that xn = Pen, where P is the projection from K onto H.

Let M = (I − P )K and yn = (I − P )en, n ∈ J. ¤

Proposition 1.4. The extension of a tight frame to an orthonormal basis described

in the statement of Corollary 1.3 is unique up to unitary equivalence. That is if N is

another Hilbert space and {zn} is a tight frame for N such that {xn⊕zn : n ∈ J} is

an orthonormal basis for H⊕N , then there is a unitary transformation U mapping

M onto N such that Uyn = zn for all n. In particular, dimM = dimN .

Proof. Let en = xn ⊕ yn and fn = xn ⊕ zn. Let Ũ : H ⊕ M → H ⊕ N be the

unitary such that Ũen = fn. Fix x ∈ H. Write 0M , 0N for the zero vector in M, N ,
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respectively. We have

< x, xn > = < x⊕ 0M , en > = < x⊕ 0N , fn > .

So x⊕ 0M =
∑

n < x⊕ 0M , en > =
∑

n < x, xn > en. Similarly x⊕ 0N =
∑

n <

x, xn > fn. Thus

Ũ(x⊕ 0M ) =
∑

n

< x, xn > Ũen = x⊕ 0N .

Identifying H ⊕ 0M and H ⊕ 0N , it follows that Ũ = I ⊕ U , where U is a unitary

in B(M,N). ¤

If {xj} is a normalized tight frame we will call any normalized tight frame {zj}
such that {xj ⊕ zj} is an orthonormal basis for the direct sum space, as in Propo-

sition 1.4, a strong complementary frame (or strong complement ) to {xj}. The

above result says that every normalized tight frame has a strong complement which

is unique up to unitary equivalence. More generally, if {yj} is a general frame we

will call any frame {wj} such that {yj ⊕ wj} is a Riesz basis for the direct sum

space a complementary frame ( or complement ) to {xj}. It turns out that every

frame has a normalized tight frame which is a complement (see Proposition 1.6),

but there is no corresponding uniqueness result for complements as there is for

strong complements (see Example B). These and related matters will be discussed

at length in Chapter 2.

Now consider the technique in the proof of Proposition 1.1 carried out on a

general frame {xn} for H with bounds A,B as in (1). Let K = l2(J) and let

θ : H → K, θ(x) = (< x, xn >) be the frame transform for {xn}. The equation (1)

implies that θ is bounded below and has closed range. Denote the range of θ by H̃.

As earlier, let {en : n ∈ J} be the standard orthonormal basis for l2(J), and let P

be the orthogonal projection of K onto H̃. Then for all n, l ∈ J,

< θ∗Pen, xl > = < Pen, θ(xl) > = < en, Pθ(xl) >

= < en, θ(xl) > = < xn, xl >,

where θ∗ : K → H denotes the Hilbert space adjoint of θ. Since {xl : l ∈ N} is

dense in H, it follows that

θ∗Pen = xn (9)
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for all n ∈ J. Note that θ∗|H̃ is an invertible operator from H̃ to H. It agrees with

the adjoint of θ when θ is regarded as an invertible operator from H to H̃.

Since the set {Pen : n ∈ J} is a normalized tight frame, this shows that an

arbitrary frame is similar to a normalized tight frame. In the special case when

{xj} is a Riesz basis, an elementary argument shows that θ(H) = K, so P = I,

recovering the well known fact that a Riesz basis is similar to an orthonormal basis.

These arguments are each reversible.

If T is a bounded invertible operator and {fn} is a normalized tight frame in H,

then if we set xn = Tfn and let u ∈ H be arbitrary, we compute

∑

j

| < u, xj > |2 =
∑

j

| < u, Tfj > |2 =
∑

j

| < T ∗u, fj > |2 = ||T ∗u||2. (9a)

Since

||T−1||−1||u|| ≤ ||T ∗u|| ≤ ||T || · ||u||,

{xn} is a frame with frame bounds A ≥ ||T−1||−2 and B ≤ ||T ||2. In fact we

have B = ||T ||2 and A = ||T−1||2. To see that B = ||T ||2, simply let {uk}∞1 be a

sequence of unit vectors with ||T ∗uk|| → ||T ∗||, and apply equation (9a). To see that

A = ||T−1||−2, let {vk}∞1 be a sequence of unit vectors such that ||(T ∗)−1vk|| →
||(T ∗)−1||, normalize these to get unit vectors zk = (T ∗)−1vk/||(T ∗)−1vk||, note

that

||T ∗vk|| = ||(T ∗)−1vk||−1 → ||T ∗−1||−1,

and apply (9a). The sequence {xn} is a Riesz basis if and only if {fn} is an

orthonormal basis. We capture these results formally:

Proposition 1.5. A Riesz basis is precisely the image of an orthonormal basis

under a bounded invertible operator. Likewise, a frame is precisely the image of a

normalized tight frame under a bounded invertible operator. If the bounded invertible

operator is denoted by T then the upper and lower frame bounds are precisely ||T ||2
and ||T−1||−2, respectively.

There is a corresponding dilation result.

Proposition 1.6. Let J be a countable (or finite) index set. If {xj : j ∈ J} is a

frame for a Hilbert space H, there exists a Hilbert space M and a normalized tight

frame {yj : j ∈ J} for M such that

{xj ⊕ yj : j ∈ J}



16

is a Riesz basis for H⊕M with the property that the bounds A and B for {xj ⊕ yj}
are the same as those for {xj}.

Proof. By Proposition 1.5 there exists a normalized tight frame {fj} for H and an

invertible operator T in B(H) such that xj = Tfj , ∀j. By Corollary 1.3 there is a

Hilbert space M and a normalized tight frame {yj} for M such that {fj ⊕ yj} is an

orthonormal basis for H ⊕M . Then T ⊕ I is an invertible operator in B(H ⊕K),

and (T⊕I)(fj⊕yj) = xj⊕yj . So {xj⊕yj} is a Riesz basis for H⊕M by Proposition

1.5. The statement regarding bounds is obvious. ¤

One might expect that the strong complementary frame {yj} to the frame {xj}
in Proposition 1.6 can be always chosen to be in H, that is M can be chosen as

a subspace of H. In general this is not true. For example, let H = C and let

{xj} = { 1√
3
, 1√

3
, 1√

3
}. Then {xj} is a normalized tight frame for H. Suppose that

{yj} is a frame in H such that {xj ⊕ yj} is a Riesz basis for H ⊕M , where M is

the subspace of H generated by {yj}. Note that {yj} is non-trivial. Thus M = H.

Therefore we get a Riesz basis

{x1 ⊕ y1, x2 ⊕ y2, x3 ⊕ y3}

for the two dimensional Hilbert space H ⊕ H, which is a contradiction. However

if H is infinite dimensional, we can imbed M into H by an isometry U : M → H.

Thus {Uyj} is an indexed set in H such that {xj ⊕ Uyj} is an Riesz basis for

H ⊕ UM since {xj ⊕ Uyj} = {(I ⊕ U)(xj ⊕ yj)}.

Given sequences of vectors {xn} and {yn} in spaces H and K, respectively, there

are two possible notions of a direct sum for them. One is the so-called outer direct

sum, which is the union of the sets {xn ⊕ 0}n∈J and {0⊕ yn}n∈J. In this case the

outer direct sum of two frames will clearly be a frame, and of two bases will be a

basis. Obviously the outer direct sum of two frames will be a basis if and only if

each is a basis to start with. The other is the so-called inner direct sum, which is

{xn ⊕ yn}n∈J. In this article by the direct sum of two sequences indexed by the

same index set we will always mean the inner direct sum. Likewise, the term direct

summand will mean inner direct summand.

A perhaps more convenient way of summing up the above dilation results is:

Theorem 1.7. Frames are precisely the inner direct summands of Riesz bases.

Normalized tight frames are precisely the inner direct summands of orthonormal

bases.
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Proof. In view of Corollary 1.3 and Proposition 1.6, the only thing remaining to

prove is that if {xn} is a Riesz basis for H, and if P ∈ B(H) is an idempotent

(a non-selfadjoint projection) then {Pxn : n ∈ J} is a frame for PH. Write

P = TQT−1 for some invertible operator T ∈ B(H) and selfadjoint projection Q.

Let yn = T−1xn, another Riesz basis for H. For x ∈ QH,

∑
n

| < x, Qyn > |2 =
∑

n

| < Qx, yn > |2 =
∑

n

| < x, yn > |2 >,

so by (1), {Qyn} is a frame for QH. Thus since T |QH is a bounded invertible oper-

ator from QH onto PH, it follows that {TQyn} is a frame for PH, as required. ¤

Theorem 1.7 suggests a natural matrix-completion point of view on frames, which

adds some perspective to the theory. See section 7.3.

Remark 1.8. In view of Theorem 1.7, it would seem most natural to generalize

the concept of frame by defining an abstract frame in a Banach space to be simply a

direct summand of a basis. In this case the index set should be N. A particular type

of basis would then suggest that particular type of frame. For instance, Schauder

frame would be by definition a direct summand of a Schauder basis. And a bounded

unconditional frame would mean a direct summand of a bounded unconditional

basis. This latter might give the best generalization, because on Hilbert spaces

the bounded unconditional bases are precisely the Riesz bases. We will comment

further on this in section 7.2 of the concluding remarks chapter.

Proposition 1.9. (i) If {xn} is a frame and if T is a co-isometry (that is T ∗ is an

isometry), then {Txn} is a frame. Moreover, {Txn} is an normalized tight frame

if {xn} is.

(ii) Suppose that {xn} and {yn} are normalized tight frames, and suppose that

T is a bounded linear operator which satisfies Txn = yn for all n. Then T is a

co-isometry. If T is invertible, then it is unitary.

(iii) If {xn} and {yn} are normalized tight frames such that {xn ⊕ yn} is a

normalized tight frame, and if {zn} is a normalized tight frame which is unitarily

equivalent to {yn}, then {xn ⊕ zn} is also a normalized tight frame.

(iv) If {xn} is a frame which is a Schauder basis, then it is a Riesz basis.

(v) If {xn} is both a Riesz basis and a normalized tight frame, then it must be

an orthonormal basis.

Proof. Let A and B be the frame bounds for {xn}. Then, since T ∗ is an isometry,
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if x ∈ H we have

A||x||2 = A||T ∗x||2 ≤
∑

n

| < T ∗x, xn > |2

≤ B||T ∗x||2 = B||x||2.

Since < T ∗x, xn > equals < x, Txn >, the result (i) follows.

For (ii), let {xn} and {yn} be normalized tight frames for Hilbert spaces H and

K, respectively, and let T be a bounded operator such that Txn = yn for all n.

Then for any y ∈ K,

||T ∗y||2 =
∑

n

| < T ∗y, xn > |2 =
∑

n

| < y, Txn > |2 = ||y||2.

Thus T ∗ is an isometry, and so it is a unitary when T is invertible.

For (iii), let H,K1,K2 be the spaces of {xn}, {yn}, {zn}, respectively. Let

U ∈ B(K1,K2) be a unitary such that Uyn = zn, ∀n. Then V := (I ⊕ U) is a

unitary such that V (xn ⊕ yn) = xn ⊕ zn. Hence {xn ⊕ zn} is a normalized tight

frame.

To prove (iv), by Proposition 1.6, there is a frame {yn} for a Hilbert space M

such that {xn⊕ yn} is a Riesz basis for H ⊕M . We need to show that M = 0. Let

P be the projection from H ⊕M onto H and let z ∈ M . Write

z =
∑

n

cn(xn ⊕ yn)

for cn ∈ C. Then

0 = Pz =
∑

n

cnxn.

Since {xn} is a Schauder basis, cn = 0 for all n. Thus z = 0 , as required.

For (v), by Proposition 1.5, there is an invertible operator A such that {Axn} is

an orthonormal basis. Since {xn} is also a normalized tight frame, it follows from

(ii) that A is a unitary operator. Thus {xn} is an orthonormal basis. ¤

Example B. A direct sum of two normalized tight frames can be a Riesz basis

which is not orthonormal. This shows that the uniqueness part of Proposition 1.4

does not generalize to the setting of Proposition 1.6. Consider Example A1. Let

f1 =
1√
3
(e1 + e2), f2 =

1√
6
(e1 − 2e2), f3 =

1√
2
e1



19

and let g1 = − 1√
2
e3, g2 = 1√

6
e3, g3 = 1√

3
e3. Then {f1, f2, f3} is a normalized tight

frame for span{e1, e2} and {g1, g2, g3} is a normalized tight frame for span{e3}.
Let

h1 = f1 ⊕ g1 =
1√
3
(e1 + e2)− 1√

2
e3,

h2 = f2 ⊕ g2 =
1√
6
(e1 − 2e2) +

1√
6
e3,

h3 = f3 ⊕ g3 =
1√
2
e1 +

1√
3
e3.

Then < h1, h2 > 6= 0, and a computation shows that h1, h2, h3 are linearly

independent. Thus {h1, h2, h3} is a Riesz basis which is not orthonormal. However

if we choose

g̃1 =
1√
3
e3, g̃2 =

1√
6
e3, g̃3 = − 1√

2
e3,

then {f1 ⊕ g̃1, f2 ⊕ g̃2, f3 ⊕ g̃3} is an orthonormal basis. Thus, by Proposition 1.9

(iii), {g1, g2, g3} and {g̃1, g̃2, g̃3} are not unitarily equivalent (as is also evident

by inspection in this case).

1.2 The Canonical Dual Frame

For a tight frame {xj} with frame bound A, the reconstruction formula is

x =
1
A

∑

j∈J
< x, xj > xj .

If a frame is not tight, there is a similar reconstruction formula in terms of dual

frames. The next proposition and the remark following it concerns the usual dual

of a frame which is standard in the wavelet literature. We will call it the canonical

dual because we will have need of alternate duals in this article. Our particular

way of presenting it is different from the usual way (cf. [HW]), and is given to

highlight the uniqueness aspect of the canonical dual that distinguishes it from the

other alternate duals.

Proposition 1.10. Let {xn : n ∈ J} be a frame on a Hilbert space H. Then there

exists a unique operator S ∈ B(H) such that

x =
∑

n∈N
< x, Sxn > xn (10)

for all x ∈ H. An explicit formula for S is given by

S = A∗A
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where A is any invertible operator in B(H,K) for some Hilbert space Kwith the

property that {Axn : n ∈ J} is a normalized tight frame. In particular, S is an

invertible positive operator. (We will denote x∗n := Sxn in the sequel).

Proof. Let A ∈ B(H,K) be any invertible operator in B(H, K) for some Hilbert

space Kwith the property that {Axn : n ∈ J} is a normalized tight frame. The

existence of such an operator follows from Proposition 1.5. Let fn = Axn, and let

S = A∗A ∈ B(H). Then

∑
n

< x, A∗Axn > xn =
∑

n

< Ax, fn > xn =
∑

n

< Ax, fn > A−1fn

= A−1
∑

n

< Ax, fn > fn = A−1Ax = x.

So S = A∗A satisfies (10).

For uniqueness, suppose that T ∈ B(H) satisfies x =
∑

n < x, Txn > xn, ∀x ∈
H. Then

x =
∑

n

< x, Txn > xn =
∑

n

< x, TA−1fn > A−1fn

= A−1
∑

n

< (A∗)−1T ∗x, fn > fn

= A−1(A∗−1T ∗x),

which implies that A−1A∗−1T ∗ = I, hence T = A∗A, as required. ¤

Corollary 1.11. Suppose that {xn} is a frame for Hilbert space H and T : H → K

is a an invertible operator. Then (Txn)∗ = (T−1)∗x∗n. In particular, if T is unitary

then (Txn)∗ = Tx∗n.

Proof. Let S ∈ B(H) such that Sxn = x∗n. Then for any x ∈ H, we have

Tx =
∑

n∈J
< x, x∗n > Txn

=
∑

n∈J
< Tx, ((T−1)∗ST−1)Txn > Txn.

Thus, by Proposition 1.10, (Txn)∗ = ((T−1)∗ST−1)Txn = (T−1x∗n. ¤

Remark 1.12 The frame defined by x∗n := Sxn, n ∈ J in Proposition 1.10 is called

the dual frame of {xn} in the frame literature. Usually it is defined in terms of the

frame operator (see below), but the way it is done in Proposition 1.10 is equivalent
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and points out the particular type of uniqueness property it satisfies. The way to

construct it directly is to note that if we set A = (θ∗|H̃)−1, where θ is the frame

transform for {xn}, then A satisfies the condition of Proposition 1.10. That is,

{Axn} is a normalized tight frame. Then, viewing θ as an invertible operator from

H → H̃ and θ∗ as an invertible operator from H̃ → H, the operator S in (10)

becomes

S = A∗A = θ−1(θ∗)−1 = (θ∗θ)−1.

So x∗n = (θ∗θ)−1xn as one usually defines the dual. The operator (θ∗θ)−1 is a

positive operator in B(H) which is frequently called the frame operator. (Sometimes

(cf. [HW]) θ itself is called the frame operator. We have elected to distinguish

between these by referring to θ as the frame transform and (θ∗θ)−1 as the frame

operator.) Since {Axn} is a normalized tight frame, it follows that {S 1
2 xn} is also a

normalized tight frame because the polar decomposition yields A = US
1
2 , where U

is a unitary operator. As we mentioned above, in this article we will call {x∗n} the

canonical dual of {xn}, as opposed to the alternate duals which we will consider in

the next section, and in the balance of this article. Obviously if {xn} is a normalized

tight frame then S = I and x∗n = xn.

1.3 Alternate Dual Frames

If {xn} is a frame which is not a basis then there are in general many frames

{yn} for which the formula

x =
∑

n

< x, yn > xn, ∀x ∈ H (11)

holds. For the simplest case of this, first note that an arbitrary pair of nonzero

complex numbers {x1, x2} satisfying the relation |x1|2 + |x2|2 = 1 is a tight frame

for the 1-dimensional Hilbert space H = C, and then note that if {y1, y2} is any

pair of numbers in C which satisfies x1y1 + x2y2 = 1, then (11) is satisfied for

all x ∈ H. So the canonical dual frame given by Proposition 1.10 is special. As

mentioned above, usually it is defined in the terms of the frame operator.

If {yn} is a frame satisfying (11) for some frame {xn}, it can still happen that

{yn} is not the canonical dual frame for {xn} even in the special case where {xn} is

a normalized tight frame. For instance, let H = C. Then { 1√
2
, 1√

2
} is a normalized

tight frame for H. However if we let {y1, y2} be either { 1√
2
, 1√

2
} or {√2, 0}, then

(11) is always satisfied.
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We will call a frame {yn} satisfying (11) an alternate dual frame for {xn}. For

convenience we define the class of alternate dual frames for {xn} to include the

canonical dual of {xn}.
It is obvious that if {xn} is a frame, then

x =
∑

n

< x, x∗n > xn =
∑

n

< x, xn > x∗n, ∀x ∈ H.

Using our dilation result (Theorem 1.7), we have the following more general situ-

ation which tells us that if {yn} is an alternate dual of {xn}, then {xn} is is an

alternate dual of {yn}.
Proposition 1.13. Let {xn} and {yn} be frames on a Hilbert space H such that

x =
∑

n

< x, yn > xn

for all x ∈ H. Then x =
∑

n < x, xn > yn for all x ∈ H.

Proof. By Theorem 1.7, there exists a Riesz basis {fn} on a Hilbert space K (K ⊃
H) and a projection P such that yn = Pfn. Since

∑
n | < x, xn > |2 < ∞, we can

define T ∈ B(H, K) by Tx =
∑

n < x, xn > fn, ∀x ∈ H. Then PT ∈ B(H) and

PTx =
∑

n < x, xn > yn. Write S = PT . Then

< Sx, x > = <
∑

n

< x, xn > yn, x >

=
∑

n

< x, xn > < x, yn >

and

< x, x > = <
∑

n

< x, yn > xn, x >

=
∑

n

< x, yn > < x, xn >

=
∑

n

< x, xn > < x, yn >

for all x ∈ H. So < Sx, x >= ||x||2, which implies that S is positive and S
1
2 is an

isometry. Thus S = (S
1
2 )2 = (S

1
2 )∗S

1
2 = I, as required. ¤

Suppose that {xn : n ∈ J} is a frame and {yn : n ∈ J} is simply a set indexed

by J with the property that it satisfies (11). Then {yn} is not necessarily a frame.

For instance let H = C. Choose {xn} and {yn} in C such that
∑

n

|xn|2 = 1,
∑

n

xnyn = 1,
∑

n

|yn|2 = ∞.
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Then {xn} is a normalized tight frame for C and (11) is satisfied. But {yn} is not

a frame because ∑
n

| < x, yn > |2 = |x|
∑

n

|yn|2 = ∞

when 0 6= x ∈ C.

The following elementary observation tells us that distinct alternate duals for a

given frame are never similar.

Proposition 1.14. Suppose that {xn} is a frame and {yn} is an alternate dual for

{xn}. If T ∈ B(H) is an invertible operator such that {Tyn} is also an alternate

dual for {xn}, then T = I.

Proof. This follows from:

T ∗x =
∑

n

< T ∗x, yn > xn =
∑

n

< x, Tyn > xn = x, x ∈ H.

¤

We will show in Chapter 2, Corollary 2.26, that a frame has a unique alternate

dual if and only if it is a Riesz basis.

If {xn} is a frame for H and P is an orthogonal projection, then {Pxn} is a frame

for PH. It is natural to ask whether (Pxn)∗ = Px∗n for all projections P? It turns

out that this is not true in general unless {xn} is a tight frame (see Corollary 1.16).

However {Px∗n} is always an alternate dual for {Pxn}. To see this, let x ∈ PH be

arbitrary and just note that

x = Px =
∑

n

< Px, x∗n > Pxn =
∑

n

< x, Px∗n > Pxn.

Proposition 1.15. Let {xn} be a frame for H and let S be the (unique) positive

operator in B(H) such that Sxn = x∗n. If P is an orthogonal projection in B(H),

then Px∗n = (Pxn)∗ for all n if and only if PS = SP .

Proof. Assume that Px∗n = (Pxn)∗ for all n ∈ J. Let T ∈ B(PH) be the (unique)

positive operator such that TPxn = (Pxn)∗. Then

TPxn = (Pxn)∗ = Px∗n = PSxn

for all n ∈ J. Considering TP as an operator in B(H), we have TP = PS and so

TP = PSP , which implies that PSP = PS. By taking adjoints on both sides, we

get PSP = SP , and hence PS = SP .
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Now suppose that SP = PS. Since x =
∑

n < x, x∗n > xn for all x ∈ H, we have

that for every x ∈ H,

x =
∑

n

< x, Px∗n > Pxn

=
∑

n

< x, PSxn > Pxn

=
∑

n

< x, SP (Pxn) > Pxn.

Thus, by Proposition 1.10, (Pxn)∗ = SPxn = PSxn = Px∗n. ¤

Corollary 1.16. Let {xn} be a frame for H. Then {xn} is a tight frame if and

only if (Pxn)∗ = Px∗n for all orthogonal projections P ∈ B(H).

The following proposition characterizes the alternate duals in terms of their frame

transforms.

Proposition 1.17. Let {xn} and {yn} be frames for a Hilbert space H, and let θ1

and θ2 be the frame transforms for {xn} and {yn}, respectively. Then {yn} is an

alternate dual for {xn} if and only if θ∗2θ1 = I.

Proof. For any x, y ∈ H, we have

< x, θ∗2θ1y > =< θ2(x), θ1(y) >

=<
∑

n∈J
< x, yn > en,

∑

n∈J
< y, xn > en >

=
∑

n∈J
< x, yn >< xn, y > .

It follows that x =
∑

n < x, yn > xn for x ∈ H if and only if θ∗2θ1(y) = y for all

y ∈ H. That is, {yn} is an alternate dual for {xn} if and only if θ∗2θ1 = I. ¤

Remark 1.18. One other thing that is worthwhile to note, regarding Proposition

1.10 and Remark 1.12, is that, while the notion of frame transform makes perfect

sense in a more general Banach space setting (see section 2 of the concluding chap-

ter), the frame operator itself (and likely the canonical dual as well) is necessarily

a Hilbert space concept because the form of Proposition 1.10 forces a similarity (

that is, an isomorphism) between a frame and its canonical dual, forcing in turn

an isomorphism between the underlying space and its dual space, and most Ba-

nach spaces are not isomorphic to their dual spaces. However, in Banach spaces as

in Hilbert spaces there are always plenty of alternate duals, which points out the

essential naturality of the concept of alternate dual frame.
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Chapter 2

Complementary Frames, and Disjointness

In this chapter we develop the topics of disjointness of frames and related prop-

erties as we require them in subsequent chapters. We also include some related

results which we feel have significant independent interest, even though they are

not necessarily used in later chapters.

2.1 Strong Disjointness, Disjointness and Weak Disjointness

Let {xn} be a normalized tight frame in a Hilbert space H. By Corollary 1.3

there is a Hilbert space M and a normalized tight frame {yn} in M such that

{xn ⊕ yn} is an orthonormal basis for H ⊕M . As in Chapter 1, we will call {yn}
a strong complementary frame (or strong complement) to {xn}, and we will call

({xn}, {yn}) a strong complementary pair. Proposition 1.4 says that the strong

complement of a normalized tight frame is unique up to unitary equivalence. For

instance, in Example A1,

{ 1√
3
e3,

1√
6
e3, − 1√

2
e3}

is a strong complement to

{ 1√
3
(e1 + e2),

1√
6
(e1 − 2e2),

1√
2
e1},

and in Example A2, {eins|T\E : n ∈ Z} is a strong complement to {eins|E : n ∈ Z}.

As in Chapter 1, if {xn} is a general frame we will define a complementary frame

(or complement) to be any frame {yn} for which {xn ⊕ yn} is a Riesz basis for the

direct sum of the underlying Hilbert spaces. It is clear that any frame similar to a

complementary frame for {xn} is also a complementary frame for {xn}. Proposition

1.6 shows that every frame has a complement, and in fact that the complement can

be taken to be a normalized tight frame. Example B shows that the complement is

not unique in any good sense ( i.e. up to similarity) without additional hypotheses.

We will give a remedy for this. If {x1n : n ∈ N}, {x2n : n ∈ N}, {y1n : n ∈
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N}, {y2n : n ∈ N} are frames, we say that the frame pairs ({x1n}, {x2n}) and

({y1n}, {y2n}) are similar if there are bounded invertible operators T1 and T2 such

that T1x1n = y1n and T2x2n = y2n for all n. Note that we do not require T1 to be

equal to T2. We will extend similarity to ordered k-tuples in the obvious way that

two k-tuples ({x1n}, ... , {xkn}) and ({y1n}, ... , {ykn}) of frames are said to be

similar if there exist invertible operators Ti such that yin = Tixin for i = 1, ... , k

and all n ∈ J. If {xn} is a general frame, we will define a strong complement to

{xn} to be any frame {zn} such that the pair ({xn}, {zn}) is similar to a strong

complementary pair of normalized tight frames. For example, by this definition,

the complement constructed in the proof of Proposition 1.6 is a strong complement,

but the one constructed in Example B is not. By definition, any frame similar to a

strong complementary frame is also a strong complementary frame. We show that

strong complementary frames to a given frame are similar.

Proposition 2.1. Let {xn} be a frame in H, and let {yn} and {zn} be strong

complementary frames to {xn} in Hilbert spaces M and N , respectively. Then

there exists an invertible operator A ∈ B(M, N) such that zn = Ayn for all n.

Proof. Let T1, T2, S1, S2 be invertible operators such that

{(T1 ⊕ T2)(xn ⊕ yn)}

and

{(S1 ⊕ S2)(xn ⊕ zn)}

are orthonormal basis for H⊕M and H⊕N , respectively. Write T1xn = fn, T2yn =

gn and S1xn = hn, S2zn = kn. Then {fn}, {gn}, {hn}, {kn} are normalized tight

frames. Since

fn = T1xn = T1S
−1
1 (S1xn) = T1S

−1
1 hn,

we have, from Proposition 1.9 (ii), that U := T1S
−1
1 is unitary. Thus {fn ⊕ kn}

(= {(U ⊕ I)(hn ⊕ kn} is an orthonormal basis. By Proposition 1.4 there exists a

unitary operator V ∈ B(M,N) such that kn = V gn for all n. Thus zn = S−1
2 V T2yn,

as required. ¤

Definition 2.2. If {xn} is a frame in H, we define a subframe of {xn} to be a

frame of the form {Pxn : n ∈ N} in the Hilbert space PH, for some projection P

in B(H).

The reader will note that the above definition is analogous to the notion of a

subrepresentation of a group representation. This is not accidental.
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Suppose that {xn} and {yn} is a pair of frames on Hilbert spaces H and K,

respectively. We will say that {xn} and {yn} are disjoint if {xn ⊕ yn} is a frame

for H ⊕ K, and weakly disjoint if span{xn ⊕ yn} is dense in H ⊕ K. Clearly

disjointness implies weak disjointness. Complementary frames are of course disjoint.

We formally give these definition for k-tuples.

Definition 2.3. A k-tuple {{xin}n∈J : i = 1, ..., k} of frames on Hilbert spaces Hi

(1 ≤ i ≤ k, respectively) is called disjoint if

{x1n ⊕ x2n ⊕ . . . ⊕ xkn}n∈J

is a frame for the Hilbert space H1 ⊕H2 ⊕ ...⊕Hk, and weakly disjoint if

span{x1n ⊕ x2n ⊕ . . . ⊕ xkn}n∈J

is dense in H1 ⊕H2 ⊕ ...⊕Hk.

There is also a notion of strong disjointness for a k-tuple of frames, which is a

much stronger notion than disjointness, and which will be extremely important in

this paper. It generalizes the notion of a strong complementary pair. A pair of

normalized tight frames {xn} and {yn} is called strongly disjoint if {xn ⊕ yn} is a

normalized tight frame for H ⊕K, and a pair of general frames {xn} and {yn} is

called strongly disjoint if it is similar to a strongly disjoint pair of normalized tight

frames. We formally give the appropriate definition for k-tuples.

Definition 2.3′. A k-tuple {{xin}n∈J : i = 1, ..., k} of normalized tight frames on

Hilbert spaces Hi (1 ≤ i ≤ k, respectively) is said to be strongly disjoint if

{x1n ⊕ . . .⊕ xkn}n∈J

is a normalized tight frame for H1⊕ . . .⊕Hk. More generally, a k-tuple of general

frames is said to be strongly disjoint if it is similar to a k-tuple of normalized tight

frames.

It is clear that strong disjointness, disjointness and weak disjointness are invari-

ant under similarity. For instance, if ({xj}j∈Z, {yj}j∈Z, {zj}j∈Z) is a disjoint triple

and if T1, T2, T3 are bounded invertible linear operators from H1, H2, H3 onto

Hilbert spaces K1, K2, K3, respectively, then ({T1xj}j∈Z, {T2yj}j∈Z, {T3zj}j∈Z)

is disjoint because the direct sum {T1xi ⊕ T2yi ⊕ T3zi} is the image of the frame

{xi ⊕ yi ⊕ zi} under the bounded linear invertible operator T1 ⊕ T2 ⊕ T3, which
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maps H1 ⊕H2 ⊕H3 onto K1 ⊕K2 ⊕K3, hence is itself a frame. The other cases

are analogous.

Note that the frame pairs (xn, yn) and (x∗n, y∗n) are similar. Thus, by definition,

if {xn} and {yn} are strongly disjoint (resp. disjoint, weakly disjoint), then so are

{x∗n} and {y∗n}.

For a k-tuple of normalized tight frames ({z1n}n∈J, ... , {zkn}n∈J), we call it a

complete strongly disjoint k−tuple if {z1n ⊕ ... ⊕ zkn} is an orthonormal basis for

H1⊕...⊕Hk. Similarly, we call a k-tuple of general frames ({x1n}n∈J, ... , {xkn}n∈J)

a complete strongly disjoint k-tuple if it is similar to a complete strongly disjoint

k-tuple of normalized tight frames, or equivalently, it is a strongly disjoint k-tuple

with the property that {x1n ⊕ ... ⊕ xkn}n∈J is a Riesz basis for the direct sum

space. Complete disjoint k-tuples can be defined in a similar way.

We note that by Proposition 1.1 any strongly disjoint k-tuple of normalized tight

frames can be extended to a complete strongly disjoint (k + 1)-tuple of normalized

tight frames. So any strongly disjoint k-tuple of general frames can be extended to

a complete strongly disjoint (k + 1)-tuple. In addition, a disjoint k-tuple of general

frames can always be extended to a complete disjoint (k + 1)-tuple by including

any complementary frame to the inner direct sum of the k-tuple.

Suppose that {xin : n ∈ J}, i = 1, ..., k, is a strongly disjoint k-tuple of frames.

By applying projections to {x1n ⊕ ... ⊕ xkn}n∈J, it is easy to see that each pair

is also strongly disjoint (resp. disjoint, weakly disjoint). We will see in Corollary

2.12 that the converse is also true for strong disjointness. However this is no longer

true for the disjointness and weakly disjointness cases, but the reason is a technical

reason (see the remark following Corollary 2.12).

By definition, strong disjointness implies disjointness, and disjointness implies

weak disjointness. The inverse implications are false. This will be easily seen from

the characterizations of the different types of disjointness in Theorem 2.9. We will

need the following simple fact:

Lemma 2.4. Let {xn} and {yn} be normalized tight frames on Hilbert spaces H

and K, respectively. If {xn} and {yn} are unitarily equivalent, then span{xn⊕ yn}
is not dense in H ⊕K.

Proof. Let U ∈ B(H, K) be a unitary operator such that Uxn = yn. Then U ⊕ I is

unitary from H⊕K onto K⊕K. Since (I⊕U)(xn⊕yn) = yn⊕yn and span{yn⊕yn}
is not dense in K ⊕K, it follows that span{xn ⊕ yn} is not dense in H ⊕K. ¤
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For convenience we prove:

Proposition 2.5. Suppose that {xin : n ∈ J}, i = 1, ..., k, are normalized tight

frames for Hi, respectively. If

{x1n ⊕ . . .⊕ xkn}n∈J

is a normalized tight frame for span{x1n ⊕ . . .⊕ xkn}, then in fact

span{x1n ⊕ . . .⊕ xkn} = H1 ⊕ . . .⊕Hk.

So {{xin : n ∈ J} : i = 1, ..., k} is in fact a k-tuple of strongly disjoint frames.

Proof. We only consider pairs. The proof for the general case is similar. Fix any

l ∈ J. Since

xl ⊕ yl =
∑

n

< xl ⊕ yl, xn ⊕ yn > xn ⊕ yn

=
∑

n

(< xl, xn > + < yl, yn > xn ⊕ yn,

and xl =
∑

n < xl, xn > xn and yl =
∑

n < yl, yn > yl, it follows that

∑
n

< xl, xn > yn =
∑

n

< yl, yn > xn = 0.

Hence

xl ⊕ 0 =
∑

n

< xl ⊕ o, xn ⊕ yn > xn ⊕ yn

and

0⊕ yl =
∑

n

< 0⊕ yl, xn ⊕ yn > xn ⊕ yn

for all l, which implies that span{xn ⊕ yn} is dense in H ⊕K. ¤

We note that the normalized tight condition of

{x1n ⊕ . . .⊕ xkn}n∈J

is essential in Proposition 2.5. For example if {en} is an orthonormal basis for a

Hilbert space H, then {en ⊕ en} is a frame for span{en ⊕ en}, which is a proper

subspace of H ⊕H.

2.2 Characterizations of Equivalence and Disjointness

To have a better understanding of the different types of disjointness, we prove

the following classification result.
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Proposition 2.6. Let J be a countable (or finite) index set. Let H be a Hilbert

space with dim H = card J, and fix an orthonormal basis {ej : j ∈ J} for H. Let

P and Q be projections in B(H), and let M = PH and N = QH. Suppose that

{xj} and {yj} are the normalized tight frames for M and N defined by xj = Pej

and yj = Qej. Then {xj} and {yj} are unitarily equivalent if and only if P = Q.

Proof. Suppose that {xj} is unitarily equivalent to {yj}. Then there is a unitary

Ṽ ∈ B(M, N) such that Ṽ xj = yj for all j. This determines a partial isometry

V ∈ B(H) with initial and final spaces M and N , respectively, such that V xj = yj

for all j. Then V ∗V = P , V V ∗ = Q and V = QV P = QV = V P . Note that

V Pej = Qej . Thus, from V P = V , we obtain V ej = Qej for all j. So since

{ej : j ∈ J} is an orthonormal basis , this implies that V = Q. Hence P = Q, as

required. ¤

From Proposition 2.6 and Proposition 1.1, we have

Corollary 2.7. Let J be a countable (or finite) index set. Then the set FJ of the

unitary equivalence classes of all normalized tight frames indexed by J is in one to

one correspondence with the set P(H) of all self-adjoint projections on the Hilbert

space H = l2(J). Likewise, the set SJ of similarity equivalence classes of all frames

indexed by J is in 1− 1 correspondence with the set of all P(H) of all self-adjoint

projections on the Hilbert space H.

Another way of describing this is

Corollary 2.8. Let {xj : j ∈ J} and {yj : j ∈ J} be normalized tight frames for

Hilbert spaces H1 and H2, respectively. Let θ1 and θ2 be the frame transforms for

{xj} and {yj}, respectively. Then {xj} is unitarily equivalent to {yj} if and only

if θ1 and θ2 have the same range. Likewise, two frames are similar if and only if

their frame transforms have the same range.

The above result shows that FJ can be parameterized by P(H) together with

any choice of an orthonormal basis {ej : j ∈ J} for H. So we could equip FJ with

the corresponding lattice structure, topological and algebraic properties of P(H).

It can be easily shown that the lattice structure is independent of the choices of

{ej} and H in the unitary equivalence sense. So we can define the meet, join,

essential limit of frames, etc. For instance we could call a normalized tight frame

{xj}j∈J an essential limit of a sequence of normalized tight frames {xn,j}j∈J if the

corresponding projections Pn for {xn,j}j∈J converges in norm to the corresponding
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projection P for {xj}j∈J. Theorem 2.9 tells us that the different types of disjointness

of frames can be characterized by the topological and algebraic properties of P(H).

Theorem 2.9. Let {xj : j ∈ J} and {yj : j ∈ J} be frames for Hilbert spaces

H1 and H2, and let θ1 and θ2 be the frame transforms for {xj} and {yj}, respec-

tively. Let P and Q be the self-adjoint projections from H(= l2(J)) onto θ1(H1)

and θ2(H2), respectively. Then

(i) {xj} and {yj} are strongly disjoint if and only if PQ = QP = 0.

(ii) ({xj}, {yj}) is a strong complementary pair if and only if P = I −Q.

(iii) {xj} and {yj} are disjoint if and only if PH ∩QH = (0) and PH + QH is

closed.

(iv) {xj} and {yj} are weakly disjoint if and only if PH ∩QH = {0}.

(v) ({xj}, {yj}) is a complementary pair if and only if PH ∩ QH = (0) and

PH + QH = H.

Proof. Since the frame transforms of similar frames have the same range, it suffices

to consider the normalized tight frame case.

Let {ej : j ∈ J} be the standard orthonormal basis for l2(J). Then {xj} and

{Pej} (resp. {yj} and {Qej}) are unitarily equivalent. Since unitary equivalence

preserves the different types of disjointness, we can assume that xj = Pej and

yj = Qej . We note that if PH ∩ QH = (0) and PH + QH is closed, then L :

PH ⊕QH → PH + QH defined by L(u⊕ v) = u + v is a linear bijection, and

||L(u⊕ v)||2 = ||u + v||2 ≤ (||u||+ ||v||)2

≤ 2(||u||2 + ||v||2) = 2||u⊕ v||2.

Thus |||u + v||| := (||u||2 + ||v||2)1/2 is an equivalent norm on PH + QH. Hence (i)

- (iii) follow from the definitions and the equalities:

||Px⊕Qy||2 = ||Px||2 + ||Qy||2

and

∑

j

| < Px⊕Qy, xj ⊕ yj > |2 =
∑

j

| < Px, Pej > + < Qy, Qej > |2

=
∑

j

| < Px, ej > + < Qy, ej > |2

=
∑

j

| < Px + Qy, ej > |2

= ||Px + Qy||2.
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For (iv), suppose that {xj} and {yj} are weakly disjoint. As discussed above

we can assume that xj = Pej and yj = Qej for some projections P, Q ∈ B(H). If

PH ∩QH 6= (0), we choose a non-zero element x ∈ PH ∩QH. Then

< x⊕ (−x), P ej ⊕Qej > =< x, Pej > − < x, Qej >

=< Px, ej > − < Qx, ej >= 0

for all j ∈ J. Thus span{Pej ⊕Qej} is not dense in PH ⊕QH, which implies that

{Pxj} and {Qej} are not weakly disjoint. Hence PH ∩QH = (0)

Conversely assume that PH ∩ QH = (0). To show that span{xj ⊕ yj : j ∈ J}
is dense in PH ⊕ QH, let x ∈ PH and y ∈ QH such that x ⊕ y ⊥ xj ⊕ yj for all

j ∈ J. Then

0 = < x, xj > + < y, yj > = < x, Pej > + < y, Qej >

= < Px, ej > + < Qy, ej > = < x + y, ej >

for all j. Hence x = −y, which implies x = y = 0 since PH ∩QH = {0}. Therefore

span{xj ⊕ yj} is dense in PH ⊕QH.

Prat (v) follows from (iii) and the fact that a frame is a Riesz basis if and only

if the range of its frame transform is the whole space l2(J). ¤

Parts (i) and (iii) have straightforward extensions to k-tuples.

Theorem 2.9′. Suppose that ({x1n}n∈J, ... , {xkn}n∈J) is a k- tuple of frames.

Then it is a strongly disjoint (resp. disjoint) k-tuple if and only if the ranges of

their frame transforms give an orthogonal direct sum (resp. Banach direct sum)

decomposition of the closed linear span of these range spaces. In particular, it is a

complete strongly disjoint (resp. complete disjoint) k-tuple if and only if the ranges

of their frame transforms give an orthogonal direct sum (resp. Banach direct sum)

decomposition of l2(J).

Corollary 2.10. Let {xn} and {yn} be frames for Hilbert spaces H and K, respec-

tively. Then {xn} and {yn} are strongly disjoint if and only if one of the equations

∑
n

< x, x∗n > yn = 0 for all x ∈ H

or ∑
n

< y, y∗n > xn = 0 for all y ∈ K
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holds. Moreover, if one holds the other also holds.

Proof. Let θ1 and θ2 be the frame transforms for {xn} and {yn}, respectively.

By Theorem 2.9, {xn} and {yn} are strongly disjoint if and only if θ1(H) and

θ2(K) are orthogonal. If we recall that θ1(x) = (< x, x∗n >)n∈J ∈ l2(J) and

θ2(y) = (< y, y∗n >)n∈J ∈ l2(J), the proposition follows. ¤

Since every frame is similar to its (canonical) dual, their frame transforms have

the same range. Thus, if {xn} and {yn} are strongly disjoint frames for Hilbert

spaces H and K, respectively, then, by Theorem 2.9 (i), {x∗n} and {yn} are also

strongly disjoint. Hence
∑

n

< x, xn > y∗n = 0

for all x ∈ H. Similarly
∑

n

< y, yn > x∗n = 0

for all y ∈ K.

Corollary 2.11. Let {xj} and {yj} be normalized tight frames for H1 and H2.

Then {xj} and {yj} are weakly disjoint if and only if there is no non-zero subframe

of {xj} which is unitarily equivalent to a subframe of {yj}.

Proof. We can assume that xj = Pxj and yj = Qej . Suppose that there is no

non-zero subframe of {xj} which is unitarily equivalent to a subframe of {yj}. To

show that {xj | and {yj} are weakly disjoint, by Theorem 2.9, it suffices to show

PH ∩ QH = {0}. Let R be the projection from H onto PH ∩ QH. Assume that

R 6= 0. From Rxj = RPej = Rej = RQej = Ryj , we have that {Rxj} is a non-zero

subframe pf {xn} unitarily equivalent to a non-zero subframe {Ryj} of {yj}, which

contradicts our assumption. Thus PH ∩QH = {0}.

Conversely, assume that PH ∩ QH = {0}. Suppose that there exist non-zero

projections P1 ∈ B(PH) and Q1 ∈ B(QH) such that {P1xj} and {Q1yj} are

unitarily equivalent. Considering P1 and Q1 as projections in B(H), then, by

Proposition 2.6, P1 = Q1 since {P1ej} and {Q1ej} are unitarily equivalent. So

PH ∩QH ⊃ P1H 6= {0}, which leads to a contradiction. ¤

Corollary 2.12. Suppose that {xin : n ∈ J}(i = 1, ..., k) is a k−tuple of frames

on Hilbert spaces Hi, respectively. Then

({x1n}n∈J, ... , {xkn}n∈J)
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is a strongly disjoint k−tuple if and only if each pair is strongly disjoint.

Proof. By the remark following Definition 2.3′, we only need to prove the sufficiency.

We can assume that each {xin}n∈J is a normalized tight frame.

Assume that each pair in {xin : n ∈ J}(i = 1, ..., k) are strongly disjoint. Let

Pi be the orthogonal projection from l2(J) onto the range of the frame transform

θi for {xin}. Then, by Theorem 2.9 (i), Pi(i = 1, ..., k) are mutually orthogonal.

Hence
∑k

i=1 Pien is a normalized tight frame. This implies that {x1n⊕ ...⊕xkn}n∈J
is a normalized tight frame since

θ1 ⊕ ...θk : H1 ⊕ ...⊕Hk → l2(J)

defined by

(θ1 ⊕ ...θk)(u1 ⊕ ...⊕ uk) = θ1(u1) + ... + θk(uk)

is an isometry and

(θ1 ⊕ ...θk)(x1n ⊕ ...⊕ xkn) = P1en + ... + PkEn.

Thus

{x1n⊕, ..., ⊕xkn}
is a normalized tight frame, as required. ¤

As we mentioned before, the above result is false for disjointness and weak dis-

jointness. For example, let K = H⊕H and let {en} be a fixed orthonormal basis for

K. Let P1, P2 and P3 be the orthogonal projections from K onto M1 = H⊕0, M2 =

0 ⊕H and M3 = {x ⊕ x : x ∈ H}, respectively. Then ({P1en}, {P2en}, {P3en})
are mutually disjoint. It is easy to see that {P1en ⊕ P2en}n∈J is an othonormal

basis for M1 ⊕M2. So the range of its frame transform is the whole space l2(J).
This implies, by Theorem 2.9 (iii), that {P1en ⊕ P2en} and {P3en} are not weakly

disjoint (hence not disjoint). That is, span{P1en ⊕ P2en ⊕ P2en} is not dense in

the direct sum space M1 ⊕M2 ⊕M3. Therefore ({P1en}, {P2en}, {P3en}) is not

a disjoint (resp. weakly disjoint) triple.

Corollary 2.13. Suppose that {xn}, {yn} and {zn} are mutually strongly disjoint

frames for Hilbert spaces H, K and M , respectively. Then {xn⊕ yn} and {zn} are

strongly disjoint.

Definition 2.14. Let {xj} and {yj} be normalized tight frames on H1 and H2,

respectively. We say that they commute if there exist projections P ∈ B(H1) and

Q ∈ B(H2) such that {Pxj} and {Qyj} are unitarily equivalent frames on PH1 and

QH2, respectively, and {P⊥xj} and {Q⊥yj} are strongly disjoint frames on P⊥H1

and Q⊥H2, respectively.
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Corollary 2.15. Let {xj}, {yj}, P and Q be as in Theorem 2.9. Then {xj} and

{yj} commute if and only if PQ = QP .

Proof. This follows immediately from Propositions 2.6 and 2.9. ¤

See section 7.1 for more on commuting frames.

2.3 Cuntz Algebra Generators

Strong disjointness can be also characterized in terms of Cuntz algebra genera-

tors. Recall that a representation of the Cuntz algebra On on a Hilbert space H

is the C∗-algebra generated by an n-tuple of isometries Si (i = 1, ..., n) in B(H)

with the property that they have orthogonal ranges and
∑n

i=1 SiS
∗
i = I. Given two

normalized tight frames {x1n : n ∈ J} and {x2n : n ∈ J} for a Hilbert space H, let

{en} be a fixed orthonormal basis for H. As before we define two isometries on H

by

Vix =
∑

n

< x, xin > en, n ∈ J.

In general if {fn}j∈J is a normalized tight frame for H and {ej}j∈J is an or-

thonormal basis for K, then the formula Tx :=
∑

j∈J < x, fj > ej gives the unique

isometry such that T ∗en = fn (see Corollary 1.2 (ii)).

Proposition 2.16. Let {xin : n ∈ Z} and Vi (i = 1, 2) be as above. Then {x1n}
and {x2n} are strongly disjoint if and only if ran(V1) and ran(V2) are orthogonal.

Moreover they are strongly complementary to each other if and only if (V1, V2) are

generators for a representation of O2.

Proof. Suppose that {x1n} and {x2n} are strongly disjoint. Then, from the proof

of Proposition 2.5,
∑

n < x, x1n > x2n =
∑

n < x, x2n > x1n = 0 for all x ∈ H.

Thus for all x, y ∈ H,

< V1x, V2y > = <
∑

n

< x, x1n > en,
∑

n

< y, x2n > en >

=
∑

n

< x, x1n > < y, x2n >

= <
∑

n

< x, x1n > x2n, y > = 0,

as required.

Conversely, assume that V1H ⊥ V2H. Then the above computation shows that
∑

n < x, x1n > x2n =
∑

n < x, x2n > x1n = 0 for all x ∈ H. So it follows that

x⊕ y =
∑

n

< x⊕ y, x1n ⊕ x2n > x1n ⊕ x2n
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for all x, y ∈ H. Thus {x1n ⊕ x2n} is a normalized tight frame.

If {x1n ⊕ xn} is an orthonormal basis, then

< x1k, x1n > + < x2k, x2n > = δk,n,

where δk,n = 0 if k 6= n and 1 if k = n. So

V1x1k + V2x2k =
∑

n

(< x1k, x1n > + < x2k, x2n >)en = en.

Hence V1V
∗
1 + V2V

∗
2 = I.

Now suppose that V1H ⊥ V2H and V1V
∗
1 + V2V

∗
2 = I. Define W by

W (x⊕ y) = V1x + V2y

Then

||W (x⊕ y)||2 = ||V1x + V2y||2 = ||V1x||2 + ||V2y||2 = ||x||2 + ||y||2.

So W is unitary since V1H + V2H = H. Note that W (x1n ⊕ x2n) = V1x1n =

V1V
∗
1 en + V2V

∗
2 en = en. Thus {x1n ⊕ x2n : n ∈ J}(= {W ∗en : n ∈ J}) is an

orthonormal basis as expected. ¤

We note that if U1 and U2 are isometries which are generators for a representation

of the Cuntz algebra O2 on H, fix an orthonormal basis {en} of H, and let xin =

U∗
i en (i = 1, 2). Then {x1n} and {x2n} are normalized tight frames for H since the

U∗
i are isometries. An elementary computation shows that

Uix =
∑

n

< x, xin > en

for all x ∈ H. Hence every pair of generators of a representation of O2 can be

obtained from a complete pair of strongly disjoint normalized tight frames. This

argument and Proposition 2.16 easily extends to representations of the Cuntz alge-

bra On.

2.4 More on Alternate Duals

Now we turn to more on dual frames.
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Lemma 2.17. If {xn} is frame for H and if C ∈ B(H) is an invertible operator

such that C∗Cxn = x∗n for all n ∈ Z, then {Cxn} is a normalized tight frame.

Proof. Since x =
∑

n < x, x∗n > xn =
∑

n < x, C∗Cxn > xn for all x ∈ H, we

have

C−1x =
∑

n

< C−1x, C∗Cxn > xn =
∑

n

< x, Cxn > xn

for all x ∈ H. Thus x =
∑

n < x, Cxn > Cxn for all x ∈ H, which implies, by the

argument preceding Example A, that {Cxn} is a normalized tight frame. ¤

The following result reinforces the ”correctness” of our definition of strong dis-

jointness. It is the version of disjointness which is compatible with the definition of

canonical dual.

Proposition 2.18. Frames {xn} and {yn} are strongly disjoint if and only if {xn⊕
yn} is a frame and (xn ⊕ yn)∗ = x∗n ⊕ y∗n.

Proof. (⇒). Suppose that {xn} and {yn} are strongly disjoint. Then let A, B be

invertible operators such that Axn = fn, Byn = gn with the property that {fn},
{gn} and {xn⊕yn} are normalized tight frames. We have fn⊕gn = (A⊕B)(xn⊕yn).

Thus, by Proposition 1.10,

(xn ⊕ yn)∗ = (A⊕B)∗(fn ⊕ gn)

= (A∗ ⊕B∗)(fn ⊕ gn)

= A∗fn ⊕B∗gn = x∗n ⊕ y∗n.

(⇐). Assume that x∗n ⊕ y∗n = (xn ⊕ yn)∗. Again let A and B be invertible

operators such that {Axn} and {Byn} are normalized tight frames. Write fn = Axn

and gn = Byn. Then, x∗n = A∗fn and y∗n = B∗gn by proposition 1.9. Thus

(A∗A⊕B∗B)(xn ⊕ yn) = x∗n ⊕ y∗n = (xn ⊕ yn)∗.

So, by Lemma 2.17, (A ⊕ B)(xn ⊕ yn) is a normalized tight frame, which implies

that {xn} and {yn} are strongly disjoint by definition. ¤

With the similar proof as in Proposition 1.18 (or by Corollary 2.13 and Propo-

sition 1.18), we have

Proposition 2.18′. A k-tuple ({x1n}n∈J, ... , {xkn}n∈J) of frames are strongly

disjoint if and only if it is a disjoint k-tuple and the canonical dual of the direct

sum frame is equal to the direct sum of their canonical duals.

Strongly disjoint pairs of frames on the same Hilbert space have some surprising

and useful additional structural properties.
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Proposition 2.19. Suppose that {xn} and {yn} are strongly disjoint frames for

the same Hilbert space H, then {xn + yn} is a frame for H. In particular, if {xn}
and {yn} are strongly disjoint proper normalized tight frames for H, then {xn +yn}
is a tight frame with frame bound 2. More generally, if {xn} and {yn} are strongly

disjoint frames for closed subspaces M and N of H, respectively, then {xn + yn} is

a frame for the closed linear span of M and N .

Proof. Let x ∈ span(M ∪N), and let P and Q be the orthogonal projections onto

M and N , respectively. Then ||Px||2 + ||Qx||2 ≥ ||x||2. Suppose that {xn} has

frame bounds a, b, and {yn} has frame bound c, d. We have

||x||2 =
∑

n

| < x, xn + yn > |2

=
∑

n

| < Px, xn > + < Qx, yn > |2

=
∑

n

| < Px, xn > |2 +
∑

n

| < Qx, yn > |2

+ Re
∑

n

< Px, xn >< yn, Qx > .

Note that, from either Theorem 2.9 (i) or Corollary 2.10,
∑

n < Px, xn ><

yn, Qx >= 0. Therefore

∑
n

| < x, xn + yn > |2 =
∑

n

| < Px, xn > |2 +
∑

n

| < Qx, yn > |2

≥ b||Px||2 + d||Qx||2 ≥ min(b, d)||x||2

and similarly ∑
n

| < x, xn + yn > |2 ≤ 2max(a, c)||x||2.

Thus {xn + yn} is a frame.

In the case that {xn} and {yn} are strongly disjoint proper normalized tight

frames for H, the above argument implies that

∑
n

| < x, xn + yn > |2 = 2||x||2

for all x ∈ H. Hence {xn + yn} is a tight frame with frame bound 2. ¤

Similarly for k-tuples we have:

Theorem 2.19′. Suppose that ({x1n}n∈J, ... , {xkn}n∈J) is strongly disjoint k-

tuple of frames on the same Hilbert space H. Then the sum of these frames is a
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frame for H. In particular when it is a strongly disjoint k-tuple of proper normalized

tight frames, then the sum of these frames is a tight frame for H with frame bound

k.

For the weaker notion of disjointness we also have

Proposition 2.20. If {xn} and {yn} are disjoint frames for H, then {xn + yn} is

also a frame for H.

Proof. Let θ1 and θ2 be the frame transforms for {xn and {yn}, respectively. Then,

by Corollary 1.2 (ii), xn = θ∗1en and yn = θ∗2en for all n ∈ J, where {en} is the

standard orthonormal basis for l2(J). Thus for any x ∈ H, we have
∑

n

| < x, xn + yn > |2 =
∑

n

< x, θ∗1en + θ∗2en > |2

=
∑

n

| < θ1(x) + θ2(x), en > |2

= ||θ1(x) + θ2(x)||2.

By Theorem 2.9 (iii), there exists a positive constant a such that

||θ1(x) + θ2(y)y||2 ≥ a(||θ1(x)||2 + ||θ2(y)||2)

for all x, y ∈ H. Also note that if a1, b1 and a2, b2 are frame bounds for {xn} and

{yn}, respectively, then

a1||x||2 ≤ ||θ1(x)||2 ≤ b1||x||2

and

a2||x||2 ≤ ||θ2(x)||2 ≤ b2||x||2

for all x ∈ H. Thus for all x ∈ H, we get

a(a1 + a2)||x||2 ≤
∑

n

| < x, xn + yn > |2 ≤ (
√

b1 +
√

b2)2||x||2.

Therefore {xn + yn} is also a frame for H. ¤

The second statement of Proposition 2.19 generalizes considerably:

Proposition 2.21. Suppose that {xn} and {yn} are strongly disjoint normalized

tight frames for H and A,B ∈ B(H) are operators such that AA∗+BB∗ = I. Then

{Axn + Byn} is a normalized tight frame for H. In particular {αxn + βyn} is a

normalized tight frame whenever α and β are scalars such that |α|2 + |β|2 = 1.

Proof. Let {en} be the standard orthonormal basis for l2(J), and let θ1 and θ2 be the

frame transforms for {xn} and {yn}, respectively. Then θ1 and θ2 are isometries
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with orthogonal range such that θ∗1en = xn and θ∗2en = yn for all n ∈ J. Let

T = Aθ∗1 + Bθ∗2 . We claim that T ∗ is an isometry. In fact, since θ∗1θ2 = θ∗2θ1 = 0,

we have

TT ∗ = Aθ∗θ1A
∗ + Bθ∗2θ2B

∗

= AA∗ + BB∗ = I

Thus {Axn + Byn} ( = {Ten}) is an normalized tight frame for H by Proposition

1.9 (i). ¤

More generally by an analogous argument we have the following:

Proposition 2.21′. Suppose that ({x1n}n∈J, ... , {xkn}n∈J) is strongly disjoint

k-tuple of normalized tight frames on the same Hilbert space H and Ai ∈ B(H)

such that
∑k

i=1 AiA
∗
i = I. Then {∑k

i=1 Aixin}n∈Z is a normalized tight frame for

H.

Given a frame {xn} for H, we sometime want to find a tight alternate dual frame

for {xn}. In general tight alternate duals might not exist. For example if {xn} is a

Riesz basis which is not tight, then it has a unique alternate dual which also fails to

be tight. Thus there is no tight alternate dual in this case. However, the following

result tells us that in many (in fact in most) cases tight alternate duals do exist,

Proposition 2.22. Let {xn} be a frame for a Hilbert space H, and let A ∈ B(H) be

an invertible operator such that {A−1x∗n} is a normalized tight frame. If ||A|| < 1,

then {xn} has a normalized tight alternate dual if and only if the range of the frame

transform for {xn} has co-dimension greater than or equal to the dimension of H.

Proof. Write zn = A−1x∗n. Let θ1 and θ be the frame transforms for {xn} and {zn},
respectively. Then θ1(H) = θ(H) since {zn} and {xn} are similar. Let P be the

projection from l2(J) onto the range of θ, and let {en} be the standard orthonormal

basis for l2(J). Since θ(zn) = Pen, we have that {zn ⊕ P⊥en} is an orthonormal

basis for H ⊕M , where M = P⊥l2(J).
First assume that dim(θ(H)⊥) ≥ dimH. Choose a closed subspace N of θ(H)⊥

such that dimN = dimH. Let W : N → H be a fixed unitary, and let wn = WQen,

where Q is the orthogonal projection from l2(J) onto N . Then {wn} is a normalized

tight frame for H, which is strongly disjoint with {zn}. Let B =
√

I −AA∗. Then

AA∗ + BB∗ = I. Thus, by Proposition 2.21, {zn + Bwn} is a normalized tight

frame for H. Note that B is invertible. Hence {Bwn} is a frame which is strongly

disjoint with {zn}. Therefore {Bwn} and {xn} are also strongly disjoint since {zn}
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and {xn} are similar. This implies
∑

n

< x, Bwn > xn = 0

for all x ∈ H. Note that Azn = x∗n. Then we have

x =
∑

n

< x, x∗n > xn =
∑

n

< x, Azn + Bwn > xn

for all x ∈ H. That is, {Azn + Bwn} is a normalized tight alternate dual for {xn},
as required.

Conversely, assume that {xn} has a normalized tight alternate dual {yn}. Define

T : H → H ⊕M by

Tx =
∑

n

< x, yn > (zn ⊕ P⊥en), x ∈ H.

Then T is an isometry since {zn ⊕ P⊥en} is an orthonormal basis, and T ∗(zn ⊕
P⊥en) = yn. Write T =

(
C
D

)
with C ∈ B(H) and D ∈ B(H, M). Then C∗C +

D∗D = I and yn = C∗zn +D∗P⊥en. We prove that C∗ = A. Let x∗n = Sxn, where

S ∈ B(H) is the frame operator for {xn}. Since {xn} and {P⊥en} are strongly

disjoint, we have
∑

n

< x, D∗P⊥en > xn =
∑

n

< Dx, P⊥en > xn = 0

for all x ∈ H. So for any x ∈ H, we have

x =
∑

n

< x, yn > xn

=
∑

n

< x, C∗zn + D∗P⊥en > xn

=
∑

n

< x, C∗A−1Sxn > xn.

By Proposition 1.10, we have that C∗A−1S = S, which implies that C∗ = A. Hence

D∗D = I −AA∗ is invertible. Therefore dimM ≥ dimH. ¤

Let {xn} be a frame for a Hilbert space H, and let A ∈ B(H) be an invertible

operator such that {A−1x∗n} is a normalized tight frame. Suppose that the range

of the frame transform for {xn} has codimension ≥ dimH. From the proof of

Proposition 2.22, if we let B =
√

1− ||A||−2AA∗, then there is a normalized tight

frame {wn} such that it is strongly disjoint with {xn}, and {xn + Bwn} is a tight

frame with frame bound ||A||2. Although {Bwn} is not necessarily a frame for H,

it is a sequence which is strongly disjoint with {xn} in the sense that
∑

n

< x, xn > Bwn =
∑

n

< x, Bwn > xn = 0

for all x ∈ H. If we require {Byn} to be a frame for H, we have
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Corollary 2.23. Let {xn} be a frame for a Hilbert space H. Suppose that the range

of its frame transform has co-dimension ≥ dimH. Then there is a frame {yn} for

H which is strongly disjoint with {xn} so that {xn +yn} is a tight frame for H with

frame bound arbitrarily close to the upper frame bound of {xn}. Moreover, {xn}
has a tight alternate dual with frame bound equal to the upper frame bound of {x∗n}.

Proof. The second statement follows immediately from the preceding argument by

replacing {xn} by {x∗n}. For the first statement, let A ∈ B(H) such that {A−1xn}
is a normalized tight frame. Scale {xn} by c > 0 such that c||A|| < 1. Then, by the

proof of the above result, there is a frame {un} for H which is strongly disjoint with

{xn} such that {cxn + un} is a normalized tight frame for H. Hence {xn + c−1un}
is a tight frame for H. Note that ||A||2 is the upper frame bound for {xn}, and

thus {xn + 1
cun} has frame bound c−2 which can be arbitrarily close to ||A||2. ¤

The following is an immediate corollary of Proposition 2.19′ and Corollary 2.10.

Corollary 2.24. Suppose that ({x1n}, . . . , {xkn}) is a strongly disjoint k-tuple

of frames acting on the same Hilbert space H. Then these k frames have a common

alternate dual.

Proof. By similarity, we also have that ({x∗1n}, . . . , {xkn}∗) is a strongly disjoint

k-tuple. Hence, by Proposition 2.19′, {∑k
i= x∗in}n∈J is a frame for H. Note that,

by Corollary 2.10,
∑

n < x, x∗ln > xin = 0 when i 6= l. Thus {∑k
i= x∗in}n∈J is a

common alternate dual for all {xin} (i = 1, ... , , k). ¤

We note that if {xn} is a frame for H and P is an orthogonal projection from

H onto a subspace M , then {Pxn} and {P⊥xn} are always disjoint. To see this,

let U : H → M ⊕M⊥ be the unitary operator defined by

Ux = Px⊕ P⊥x.

Then Uxn = Pxn ⊕ P⊥xn. Thus {Pxn ⊕ P⊥xn} is a frame for M ⊕M⊥, which

implies that {Pxn} and {P⊥xn} are disjoint. However they are not always strongly

disjoint. In fact, from Corollary 1.16 and Proposition 2.18, we have the following

characterization.

Corollary 2.25. Let {xn} be a frame for H and suppose that P is an orthogonal

projection in B(H). Let S ∈ B(H) be the operator such that Sxn = x∗n. Then

{Pxn} and {P⊥xn} are strongly disjoint if and only if PS = SP .

The following is a consequence of Proposition 2.19 which we mentioned in Section

1.3.
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Corollary 2.26. Suppose that {xj} is a frame on a Hilbert space H. Then {xj}
has a unique alternate dual if and only if it is a Riesz basis.

Proof. It suffices to prove the necessity. First assume that {xj} is a normalized tight

frame which is not an orthonormal basis. By Proposition 1.1, there is a normalized

tight frame {yj} for a Hilbert space M such that {xj ⊕ yj} is an orthonormal basis

for H ⊕M . Choose yk such that yk 6= 0 and let P be the projection from M onto

the one dimensional subspace generated by yk. Thus {xj} and {Pyj} are strongly

disjoint since

{xj ⊕ Pyj} = {(I ⊕ P )(xj ⊕ yj)},

which is a normalized tight frame for H ⊕ PM . Embed M into H by an isometry

U . Then {xj} and {UPyj} are strongly disjoint. Thus, By Corollary 2.10,

∑

j

< x, UPyj > xj = 0

for all x ∈ UM . However if x ∈ (UM)⊥, we have < x, Uyj >= 0. Thus

∑

j

< x, UPyj > xj = 0

for all x ∈ H. It follows that

x =
∑

j

< x, xj > xj =
∑

j

< x, xj + UPyj > xj , x ∈ H.

By Proposition 2.19, {xj + UPyj} is a frame for H. Therefore it is an alternate

dual for {xj}, which is different from the classical dual since xk 6= xk + UPyk.

Now let {xj} be an arbitrary frame which is not a Riesz basis. By Proposition

1.10, there is an invertible operator A ∈ B(H) such that {Axj} is a normalized

tight frame for H and

x =
∑

j

< x, Sxj > xj

for all x ∈ H, where S = A∗A and {Sxj} is the classical dual frame of {xj}. Note

that {Axj} is not an orthonormal basis. Thus from what we just proved there is an

alternate dual {yj} of {Axj} which is different from {Axj}. Let zj = A∗yj . Then

{zj} is a frame different from the classical dual frame {A∗Axj} and

x = A−1Ax = A−1
∑

j

< Ax, yj > Axj =
∑

j

< x, A∗yj > xj .

Thus {A∗yj} is an alternate dual for {xj}. Hence {xj} has different frame duals

{Sxj} and {A∗yj}, as required. ¤
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In the case that {xn} is a normalized tight frame, then it can the shown that there

is a unique normalized tight alternate dual frame, namely, {xn} itself. However if

{xn} in addition satisfies the codimension condition in Corollary 2.23, then, except

for the canonical dual {xn}, it has another tight alternate dual which has the form

{xn + yn}, where {yn} is a tight frame for H which is strongly disjoint with {xn}.

Remark 2.27. We address some potential application aspects of strongly disjoint

k-tuples. For simplicity we only consider normalized tight frames. However, all the

following discussions carry through if one replaces the frames in all relevant inner

products by its canonical duals. Suppose that {xn : n ∈ N} and {yn} are strongly

disjoint normalized tight frames for Hilbert spaces H and K, respectively. Then

given any pair of vectors x ∈ H, y ∈ K, we have that

x =
∑

n

< x, xn > xn, y =
∑

n

< y, yn > yn.

If we let an =< x, xn > and bn =< y, yn >, and then let cn = an + bn, we have

∑
n

anyn = 0,
∑

n

bnxn = 0,

by the strong disjointness, and therefore we have

x =
∑

n

cnxn, y =
∑

n

cnyn.

This says that, by using one set of data {cn}, we can recover two vectors x and y

(they may even lie in different Hilbert spaces) by applying the respective inverse

transforms corresponding to the two frames {xn} and {yn}. The above argument

obviously extends to the k-tuple case: If {fin : n ∈ J}, i = 1, ..., k, is a strongly

disjoint k-tuple of normalized tight frames for Hilbert spaces H1, ..., Hk, and if

(x1, ..., xk) is an arbitrary k-tuple of vectors with xi ∈ Hi, 1 ≤ i ≤ k, then we

have

xi =
∑

n∈J
< xi, fin > fin

for each 1 ≤ i ≤ k. So if we define a single ”master” sequence of complex numbers

{cn : n ∈ J} by

cn =
k∑

i=1

< xi, fin >,

then the strong disjointness implies that for each individual i we have

xi =
∑

n∈J
cnfin.
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This simple observation might be useful in applications to data compression. We

will discuss this phenomenon for unitary groups and wavelet systems in sections 4

and 5. It leads to our notion of superwavelets.

The concept of Remark 2.27 can be condensed into the following proposition,

which says that the frame transforms corresponding to strongly disjoint normalized

tight frames indexed by the same set J act orthogonally as operators in the sense

that the support of each inverse transform is orthogonal to the ranges of the others.

Proposition 2.28. Let {fin : n ∈ J}, i = 1, ..., k, be a strongly disjoint k-tuple

of normalized tight frames for Hilbert spaces H1, . . . , Hk. Let θi : Hi → l2(J)
be the corresponding frame transforms, and for each i let Γi := θ∗i denote the

inverse transform mapping l2(J) → Hi. Then Γiθj = 0 if i 6= j, and Γiθi = IHi ,

i, j = 1, ..., k.
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Chapter 3

Frame Vectors for Unitary Systems

Following Dai and Larson [DL], a unitary system U is a subset of the unitary

operators acting on a separable Hilbert space H which contains the identity operator

I. So a unitary group ia a special case of unitary system. An element ψ ∈ H is

called a wandering vector for U if Uψ := {Uψ : U ∈ U} is an orthonormal set;

that is < Uψ, V ψ > = 0 if U, V ∈ U and U 6= V . If Uψ is an orthonormal basis

for H, then ψ is called a complete wandering vector for U . The set of all complete

wandering vectors for U is denoted by W(U).

Analogously, a vector x ∈ H is called a normalized tight frame vector (resp.

frame vector with bounds a and b) for a unitary system U if Ux forms a tight frame

(resp. frame with bounds a and b) for span(Ux). It is called a complete normalized

tight frame vector (resp. complete frame vector with bounds a and b) when Ux is a

normalized tight frame (resp. frame with bounds a and b) for H.

If U is a unitary system and ψ ∈ W(U), the local commutant Cψ(U) at ψ is

defined by {T ∈ B(H) : (TU − UT )ψ = 0, U ∈ U}. Clearly Cψ(U) contains the

commutant U ′ of U . When U is a unitary group, it is actually the commutant of U .

A useful result is the one to one correspondence between the complete wandering

vectors and the unitary operators in Cψ(U). In particular, if ψ ∈ W(U), then

W(U) = U(Cψ(U))ψ = {Tψ : T ∈ U(Cψ(U))} (see[DL], Proposition 1.3), where

U(S) denotes the set of all unitary operators in S for any subset S ⊆ B(H). It is

also known that ψ separates Cψ(U) in the sense that the mapping A → Aψ from

Cψ(U) to H is injective. In [La] it was pointed out that an analogous result holds for

complete Riesz vectors (those vectors ψ for which Uψ is a Riesz basis for H). In the

same way, the set of all complete Riesz vectors for U is in one to one correspondence

with the set of all invertible operators in Cψ(U). The following result characterizes

all the normalized tight frame vectors for U in terms of the partial isometries in the

local commutant at a fixed complete wandering vector.
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3.1 The Local Commutant and Frame Vectors

In this section we will characterize frame vectors in terms of operators in the

local commutant at a fixed complete wandering vector. We first prove:

Proposition 3.1. Suppose that ψ is a complete wandering vector for a unitary

system U . Then

(i) a vector η is a normalized tight frame vector for U if and only if there is a

(unique) partial isometry A ∈ Cψ(U) such that Aψ = η.

(ii) a vector η is a complete normalized tight frame vector for U if and only if

there is a (unique) co-isometry A ∈ Cψ(U) such that Aψ = η.

Proof. The uniqueness follows from the fact that ψ separates Cψ(U). The statement

(ii) follows from (i) since if A is a partial isometry in Cψ(U), then {Uη : U ∈ U} =

{AUψ : U ∈ U} generates H if and only if A∗ is an isometry. So we only need to

prove (i).

Suppose that η is a normalized tight frame vector for U . Define a linear operator

B by

Bx =
∑

U∈U
< x, Uη > Uψ

for x ∈ span(Uη), and Bx = 0 when x ⊥ span(Uη). Since η is a normalized

tight frame vector, we have that B is isometric on span(Uη). Thus B is a partial

isometry with closed range BH. Let P be the orthogonal projection onto BH, and

let A = B∗ = B∗P . We will show that A is a partial isometry with the required

property.

We first claim that BUη = PUψ, for all U ∈ U .

In fact, let V ∈ U . We have

< BV η, PUψ > = < PBV η, Uψ > = < BV η, Uψ >

= <
∑

S∈U
< V η, Sη > Sψ, Uψ >

= < V η, Uη > .

Since B is isometric on span(Uη), it follows that

< BV η, PUψ > = < V η, Uη > = < BV η, BUη > .

Thus BUη = PUψ.

Next we claim that A = B∗P ∈ Cψ(U) and Aψ = η.
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From the above paragraph, we have B∗BUη = B∗PUψ for all U ∈ U . Note that

Uη is contained in the initial subspace of the partial isometry B. Thus B∗BUη =

Uη. So Uη = AUψ for each U ∈ U . Thus η = Aψ and A ∈ Cψ(U).

Note that PH(= BH) is the final subspace of B and B∗ is isometric on PH and

takes the value zero on P⊥H. Thus B∗P = B∗, which implies that A is a partial

isometry.

Conversely let A be a partial isometry in Cψ(U) and let η = Aψ. Note that A∗

is isometric on AH. Then for any x ∈ AH, we have

||x||2 = ||A∗x||2 =
∑

U∈U
| < A∗x,Uψ > |2

=
∑

U∈U
| < x, AUψ > |2

=
∑

U∈U
| < x, UAψ > |2

=
∑

U∈U
| < x, Uη > |2.

Thus η is a normalized tight frame vector for U on span(Uη)(= AH). ¤

As in the wandering vector case (cf [DL] Lemma 1.6), we have

Proposition 3.2. Let S be a unital semigroup of unitaries in B(H). If S has a

complete normalized tight frame vector, then S is a group.

Proof. Let U ∈ S. We want to show that US = S. Let η be a complete normalized

tight frame vector for S. Then for any x ∈ H, we have

||U−1x||2 =
∑

S∈S
| < U−1x, Sη > |2 =

∑

S∈S
| < x, USη > |2

and

||U−1x||2 = ||x||2 =
∑

S∈S
| < x, Sη > |2.

If U−1 /∈ S, then I /∈ US. Thus < x, η >= 0 since US ⊂ S. Let x = η. We get

a contradiction. So S is a group. ¤

Suppose that η and ξ are complete normalized tight frame vectors for a unitary

system U . If {Uη}U∈U and {Uξ}U∈U are unitarily equivalent, then there is a unitary

operator W satisfying WUη = Uξ for every U ∈ U . In particular, Wη = ξ. Hence

WUη = UWη for all U ∈ U . So when U is a unitary group, we have that Uη and
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Uξ are unitarily equivalent frames if and only if there is a unitary operator W ∈ U ′
such that Wη = ξ. Thus a frame unitary equivalence determines an equivalence

relation for complete normalized tight frame vectors. For a set S ⊆ B(H), we use

w∗(S) to denote the von Neumann algebra generated by S, and use S ′ to denote

the commutant of S, that is

S ′ = {T ∈ B(H) : ST − TS = 0, ∀S ∈ S}.

An element x ∈ H is call a trace vector for a von Neumann algebra R acting on H

if < ABx, x > = < BAx, x > for all A,B ∈ R. A trace vector x for R is said to

be faithful if the mapping A → Ax (A ∈ R) is injective. The following lemma can

be found in [La], and will be frequently used in this paper.

Lemma 3.3. Let U be a unitary group such that W(U) is nonempty. Then both

w∗(U) and U ′ are finite von Neumann algebras. Moreover each element in W(U)

is a faithful trace vector for both w∗(U) and U ′.

Corollary 3.4. Suppose that U is a unitary group such that W(U) is non-empty.

Then every complete normalized tight frame vector must be a complete wandering

vector.

Proof. Let ψ ∈ W(U) and let η be a complete normalized tight frame vector. Then,

Proposition 3.1 (2), there exists a co-isometry A ∈ Cψ(U) = U ′ such that η = Aψ.

Since U ′ is a finite von Neumann algebra, it follows that A is a unitary operator.

Hence η is a complete wandering vector for U by Proposition 1.3 in [DL]. ¤

By Corollary 3.4, if a unitary group system U has a complete tight frame which

is not a wandering vector, then W(U) is empty.

With a minor modification of the proof for Proposition 3.1, one can easily get

the following more general result. We leave the details to the interested reader.

Proposition 3.5. Let U and ψ be as in Proposition 3.1. Then a vector η is a frame

vector with frame bounds a and b if and only if there exists an (unique) operator

A ∈ Cψ(U) such that η = Aψ and aP ≤ AA∗ ≤ bP for some orthogonal projection

P .

In fact P is the orthogonal projection onto span(Uη). So we have

Corollary 3.6. The vector η is a complete frame vector with frame bounds a and

b if and only if there exists an (unique) operator A ∈ Cψ(U) such that η = Aψ and

aI ≤ AA∗ ≤ bI.
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By a similar argument used in the proof of Proposition 2.1 in [DL], it is easy to

prove that {Uη : U ∈ U} is a Riesz basis if and only if η = Sψ for some invertible

operator S ∈ Cψ(U) (see Proposition 2.1 in [La]).

Corollary 3.7. Let U and ψ be as in Proposition 3.1. Suppose that M is a finite

von Neumann algebra contained in Cψ(U) and η = Aψ for some operator A ∈ M.

Then

(i) η is a complete frame vector if and only if Uη is a Riesz basis for H.

(ii) η is a complete normalized tight frame vector if and only if η is a complete

wandering vector.

Proof. For (i), suppose that η is a complete frame vector for U . Then AA∗ is

invertible by Corollary 3.6. Let A∗ = U(AA∗)
1
2 be the polar decomposition of A.

Then U is a partial isometry with initial space H(= (AA∗)
1
2 H) and U ∈M. Thus U

is unitary sinceM is a finite von Neumann algebra. Therefore A is invertible, which

implies that Uη is a Riesz basis. The other direction is shown in an analogous way.

For (ii), assume that η is a complete normalized tight frame vector, then AA∗ = I

by Proposition 3.1 (ii). Thus A is a unitary operator since M is finite, and both A

and A∗ are in M. The other direction is trivial. ¤

3.2 Dilation Theorems for Frame Vectors

The general dilation result (Proposition 1.1 ) tells us that if η is a complete

normalized tight frame vector for a unitary system U , then {Uη : U ∈ U} can be

dilated to an orthonormal basis. What we expect here is to dilate η to a complete

wandering vector. In this section we show that this can be done for unitary groups

and some other special cases.

Theorem 3.8. Suppose that U is a unitary group on H and η is a complete nor-

malized tight frame vector for U . Then there exist a Hilbert space K ⊇ H and a

unitary group G on K such that G has complete wandering vectors, H is an invari-

ant subspace of G such that G|H = U , and the map g → g|H is a group isomorphism

from G onto U .

Proof. Let K = l2(U), and for each U ∈ U , let λU be the left regular representation

defined by λUχV = χUV , V ∈ U , where χV is the characteristic function at the

single point set {V }. Consider the unitary group G = {λU : U ∈ U}. Then U and

G are group isomorphic , and eV ∈ W(U) for all V ∈ U . Now we define θ : H → K

by

W (x) =
∑

U∈U
< x,Uη > χU .
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Let P be the orthogonal projection onto W (H). Then W is an isometry and

PχU = W (Uη) as discussed in the proof of Proposition 1.1.

We first prove that λUW = WU on H for each U ∈ U . Let V ∈ U be arbitrary.

Then

λUW (V η) = λU (
∑

S∈U
< V η, Sη > χS)

=
∑

S∈U
< V η, Sη > χUS

=
∑

S∈U
< V η, U∗Sη > χS

=
∑

S∈U
< UV η, Sη > χS

= WU(V η).

Thus W ∗λUW = U on WH since {V η : V ∈ U} generates H.

Secondly, we verify that P ∈ G′. In fact, for any U ∈ U , we have

PλUχI = PχU = W (Uη) = WUW ∗Wη = WUW ∗PχI .

Since we just verified that WUW ∗ = λU on PK, we obtain PλUχI = λUPχI .

Hence P ∈ CχI
(G)(= G′). By identifying H with WH, we complete the proof. ¤

Suppose that there exists another unitary group G1 acting on a Hilbert space K1

satisfying all the requirements of Theorem 3.8. Then G1 is unitarily equivalent to its

left regular representation on l2(G1). So we can assume that K1 = l2(G1) = l2(U).

Therefore G and K in Theorem 3.8 are unique in the unitary equivalence sense. For

convenience, Theorem 3.8 can be restated as follows:

Theorem 3.8′. Let G be a group and π be a representation of G on a Hilbert space

H such that π(G) has a complete normalized tight frame vector η. Then there exists

a representation π′ on a Hilbert space K and a complete normalized tight frame

vector ξ for π′(G) such that η ⊕ ξ is a complete wandering vector for (π ⊕ π′)(G)

on H ⊕K. Moreover π′, K and ξ are unique up to unitary equivalence.

So if P is the orthogonal projection from H ⊕K onto H ⊕ 0, then P is in the

commutant of (π ⊕ π′)(G) and η = P (η ⊕ ξ), ξ = P (η ⊕ ξ).
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Corollary 3.9. Suppose that U is a unitary group which has a complete normalized

tight frame vector. Then the von Neumann algebra w∗(U) generated by U is finite.

Proof. Let G, K and P be as in Theorem 3.8. Then, by Lemma 3.3, w∗(G) is a

finite von Neumann algebra. Thus w∗(U)(= w∗(G|PH) is also finite. ¤

Corollary 3.10. Let T ∈ B(H) be a unitary operator and let η ∈ H be a vector

such that {Tnη : n ∈ Z} is a normalized tight frame for H. Then there is a

unique (modulo a null set) measurable set E ⊂ T such that {Tnη : n ∈ Z} and

{eins|E : n ∈ Z} are unitarily equivalent frames.

Proof. First note that the powers Tn, n ∈ Z, are distinct, so H must be infinite

dimensional and {Tn : n ∈ Z} is group-isomorphic to Z. Indeed, if T k = I for

some k 6= 0, then in the equation

||η||2 =
∑

n∈Z
| < η, Tnη > |2,

infinitely many terms in the right hand side reduce to | < η, η > |2 = ||η||4,
contradicting the fact that η 6= 0.

Let λ be the left regular representation of Z on l2(Z) . Write ψ = e0. Then,

by Theorem 3. 8, there is a projection P ∈ l∞(Z) such that {Tnη : n ∈ Z} and

{λ(n)Pψ : n ∈ Z} are unitarily equivalent. Note that {λ(n) : n ∈ Z} and {Meins :

n ∈ Z} are unitarily equivalent, where Mf denotes the multiplication operator on

L2(T) with symbol f . Let W : l2(Z) → L2(T) be the unitary operator inducing the

equivalence and satisfying Wψ = 1. Then Q = WPW ∗ is a projection in L∞(T).

Write Q = χE for some E ⊂ T. Then {λ(n)Pψ : n ∈ Z} and {MeinsχE : n ∈ Z}
are unitarily equivalent, as required. The uniqueness of E follows from Proposition

2.6. ¤

For a unitary system U on a Hilbert space H, we recall that a closed subspace M

of H is called a complete wandering subspace for U if span{UM : U ∈ U} is dense in

H, and UM ⊥ V M when U 6= V . Let {ei : i ∈ I} be an orthonormal basis for M .

Then M is a complete wandering subspace for U if and only if {Uei : U ∈ U , i ∈ I}
is an orthonormal basis for H. We call {ei} a complete multi-wandering vector.

Analogously, an n-tuple (η1, ..., ηn) of non-zero vectors ( here n can be ∞) is called

a complete normalized tight multi-frame vector for U if {Uηi : U ∈ U , i = 1, ..., n}
forms a complete normalized tight frame for H. Equivalently, if

||x||2 =
n∑

i=1

∑

U∈U
| < x, Uηi > |2
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for every x ∈ H.

Let G be a group and let λ be the left regular representation of G. Then {λg ⊗
In : g ∈ G} has a complete multi-wandering vector (f1, ..., fn), where f1 =

(χe, 0, ..., 0), ..., fn = (0, 0, ..., χe). Let P be any projection in the commutant

of (λ ⊗ In)(G). Then (Pf1, ..., Pfn) is a complete normalized multi-tight farme

vector for the subrepresentation (λ ⊗ In)|P . As in Theorem 3.8, it turns out that

every representation with a complete normalized multi-tight frame vector arises in

this way.

Theorem 3.11. Let G be a countable group and let π be a representation of G on a

Hilbert space H such that π(G) has a complete normalized tight multi-frame vector

{η1, ..., ηn}. Then π is unitarily equivalent to a subrepresentation of λ⊗ In

Proof. (This is similar to the proof of Theorem 3.8. We give it for completeness.)

Write σ = λ⊗ In. Define W : H → l2(G)⊕ ...⊕ l2(G) by

W (x) =
n∑

i=1

∑

g∈}
< x, π(g)ηi > σ(g)fi

for all x ∈ H. Then W is an isometry from H to W (H). Let P be the projection

from l2(G) ⊕ ... ⊕ l2(G) onto W (H). It follows from the proof of Proposition 1.1

that Pσ(g)fi = Wπ(g)ηi.

Next we claim that σ(g)W = Wπ(g) on H for every g ∈ G. This follows from

the computation

σ(g)W (x) = σ(g)
n∑

i=1

∑

h∈G
< x, π(h)ηi > σ(h)fi

=
n∑

i=1

∑

h∈G
< x, π(h)ηi > σ(gh)fi

=
n∑

i=1

∑

h∈G
< x, π(g−1h)ηi > σ(h)fi

=
n∑

i=1

∑

h∈G
< π(g)x, π(h)ηi > σ(h)fi

= Wπ(g)x

for all x ∈ H.

Finally, for any g, h ∈ G and any i, the above results imply

Pσ(g)σ(h)fi = Pσ(gh)fi = Wπ(gh)ηi

= Wπ(g)π(h)ηi = σ(g)Wπ(h)ηi

= σ(g)Pσhfi.
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Hence P ∈ σ(G)′ ¤

We will call two unitary systems U and Ũ isomorphic if there is a bijection

σ : U → Ũ such that σ(UV ) = σ(U)σ(V ) whenever U, V, UV ∈ U . Given a unitary

system U on a Hilbert space H. We say that U has the dilation property if for

every complete normalized tight frame vector η for U , there exists a Hilbert space

K and a unitary system Ũ on K such that there is a complete wandering vector

ψ for Ũ , and there is isomorphism σ : U → Ũ and a projection P ∈ Cψ(Ũ) with

the property that {Uη : U ∈ U} and {σ(U)Pψ : U ∈ U} are unitarily equivalent

frames. Roughly speaking, {Uη : U ∈ U} can be dilated to an orthonormal basis

induced by an isomorphic unitary system and a complete wandering vector. We

have shown that unitary groups always have this dilation property, and in Chapter

4 we will point out that Gabor type unitary systems (see the definition in Chapter

4) also have this property. In general, we ask

Problem A: Does every unitary system have the dilation property?

Let U be a unitary system of the form

U = U1U0 := {V1V0 : V1 ∈ U1, V0 ∈ U0},

where U1 and U2 are unitary groups such that U1 ∩ U0 = {I}. Suppose that W(U)

is not empty. Then for some special complete normalized tight frame vector η,

we have the following dilation result, which will be use in section 4. For a vector

x ∈ H, we use [U0x] to denote the closure of span(U0x).

Proposition 3.12. Let U be as above. Suppose that η is a complete normalized

tight frame vector such that [U0η] is a wandering subspace for U1. Then there is a

vector ξ ∈ H such that

{Uη ⊕ Uξ : U ∈ U}

is an orthonormal basis for H ⊕ [Uξ].

proof. Fix ψ ∈ W(U). As before we define θ : H → H by

θ(x) =
∑

U∈U
< x, Uη > Uψ

for all U ∈ U . Then θ is a unitary operator from H onto θ(H) and PUψ = θ(Uη)

for every U ∈ U , where P is the projection from H onto θ(H). Let Ũ = θUθ∗. We

claim that Ũθ(η) = Uθ(η).
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In fact, let U = U1U0 with U1 ∈ U1 and U0 ∈ U0. Note that, by hypothesis,

< U0η, V1U0η >= 0 when V1 ∈ U1 and V1 6= I. Thus

Ũ0θ(η) =
∑

V1∈U1,V0∈U0

< U0η, V1V0η > V1V0ψ

=
∑

V0∈U0

< U0η, V0η > V0ψ

= U0

∑

V0∈U0

< η, U−1
0 V0η > U−1

0 V0ψ

= Uθ(η).

In the last equality we use the fact that U−1
0 U0 = U0. Therefore we have

Ũθ(η) =
∑

V1∈U1,V0∈U0

< U1U0η, V1V0η > V1V0ψ

=
∑

V0∈U0

< U1U0η, U1V0η > U1V0ψ

= U1

∑

V0∈U0

< η, V0η > V0ψ

= U1U0θ(η) = Uθ(η).

Since Pψ = θ(η), we get PUψ = Ũθ(η) = Uθ(η) = UPψ, which implies that

P ∈ Cψ(U). So P⊥ ∈ Cψ(U). Let ξ = P⊥η. Then

{Ũθ(η)⊕ Uξ : U ∈ U} = {UPψ ⊕ UP⊥ψ : U ∈ U}
= {PUψ ⊕ P⊥Uψ : U ∈ U}.

So {Ũθ(η)⊕ Uξ : U ∈ U} is a an orthonormal set. Since

{Uη ⊕ Uξ : U ∈ U} = (θ∗ ⊕ I){Ũθ(η)⊕ Uξ : U ∈ U}(θ ⊕ I),

it follows that {Uη ⊕ Uξ : U ∈ U} is an orthonormal set, and thus it is an

orthonormal basis for H ⊕ [Uξ] by Proposition 2.5. ¤

We note that if U is a unitary group such that W(U) is not empty, then, by

Corollary 3.4, every complete normalized tight frame vector must be a wandering

vector. Thus Theorem 3.8 can not be considered as a special case of Proposition

3.12.

3.3 Equivalent Classes of Frame Vectors

For an arbitrary unitary system U and a complete wandering vector ψ ∈ W(U),

as we mentioned before that for every complete wandering vector φ ∈ W(U) there
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is an invertible (in fact unitary) operator V ∈ Cψ(U) such that φ = V ψ. The reader

would expect that an analogous result when replacing ψ, φ by frame vectors should

be true. Unfortunately this is no longer true even for the unitary group case. We

have the following characterization:

Proposition 3.13. Let G, π, π′, η, ξ, P, H and K be as in Theorem 3.8′. Let

M be the von Neumann algebra generated by {π(g) ⊕ π′(g) : g ∈ G}. Then the

following are equivalent

(i) P is in the center of M, i. e. P ∈M∩M′.

(ii) For every complete normalized tight frame vector x for π(G), there is an

(unique) unitary operator V ∈ π(G)′ such that x = V η.

(iii) For every complete frame vector x for π(G), there is an (unique) invertible

operator V ∈ π(G)′ such that x = V η.

Proof. Let ψ = η ⊕ ξ. For (i) ⇒ (iii), by Proposition 3.5 there is an operator

A ∈ M′ such that Aψ = x and aP ≤ AA∗ ≤ bP , where a and b are frame bounds

for {π(G)x}. Let V = PAP . Then V ∈ π(G)′ is invertible and V η = PAPη =

PAP (Pψ) = PAψ = Px = x, as required.

Suppose (iii) holds. Then, by Proposition 1.9 (ii), V is unitary if x is a a

normalized tight frame vector, and hence (ii) follows.

Now prove (ii) ⇒ (i). To show that P is in the center of M, it suffices to prove

that P ∈ M. Let A ∈ M′ be an arbitrary unitary operator. Then PAψ is a

complete normalized tight frame vector for π(G) on H. Thus there is a unitary

operator V ∈ π(U)′ such that V η = PAψ. That is

V Pψ = PAψ.

Note that π(G)′ = PM′P (see Proposition 1 on page 17 of [Di]). We write V =

PBP for some operator B ∈ M′. Then PBP, PA ∈ M′ and PBPψ = PAψ.

Hence PBP = PA since ψ separates M′. This implies that A∗P = PB∗P and

so that P is an invariant projection for A∗. Since all the unitary operators in M′

generates M′, we have that P ∈M , as expected.

The uniqueness of the operator in (ii) and (iii) follows from the fact that η

separates π(G)′. ¤

Corollary 3.14. Let G be an abelian group and let π be a representation of G
on a Hilbert space H. Suppose that η is a complete normalized tight frame vector
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for π(G). Then for every complete frame vector ξ , there is an (unique) invertible

operator V ∈ π(G)′ such that ξ = V η.

From Proposition 3.13, one can easily construct a unitary group which does

not satisfy (ii) or equivalently (iii). For instance, let G be any non-abelian group

and let π be the regular left representation on l2(G). Then ψ := eI (where eI is

the characteristic function at the singleton point set {I}) is a complete wandering

vector for π(G). Let P be a projection in π(G)′ such that P is not in the von

Neumann algebra generated by π(G) (the existence of such a P follows from the

fact that π(G) is non-abelian). Let U := π(G)|ranP . Then η := Pψ is a complete

normalized tight frame vector for U and U does not have property (ii) and (iii) in

Proposition 1.9.
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Chapter 4

Gabor Type Unitary Systems

The study of Gabor frames was initiated by D. Gabor in 1946 ([Gab]) with a

proposed use for communication purpose, and in recent years is has been one of the

major subjects in the study of frame theory and wavelet theory (cf. [BW], [Dau1],

[DGM]). We recall that if a, b > 0 and g ∈ L2(R), then we call {gm,n : m,n ∈ Z}
a Gabor system associated with g and a, b, where

gm,n(ξ) = e2πimbξg(ξ − na), n,m ∈ Z.

When {gm,n : m,n ∈ Z} is a frame for L2(R), then we call {gm,n : m,n ∈ Z} a

Gabor frame associated with g and a, b. If we define operators U, V ∈ B(L2(R)) by

(Uf)(ξ) = e2πibξf(ξ)

and

(V f)(ξ) = f(ξ − a)

for all f ∈ ÃL2(R), then U and V are unitary operators. An elementary computation

shows that

UV = e−2πiabV U.

In particular UV = V U if and only if ab is an integer. It is clear that gm,n =

{UmV ng : m,n ∈ Z}. Therefore {gm,n} is a Gabor frame if and only if g is a

complete frame vector for the unitary system {UmV n : m,n ∈ Z}. In general,

suppose that U and V are unitary operators on a Hilbert space H and satisfy the

relation

UV = λV U

for some unimodular scalar λ, then we call the unitary system

U = {UmV n : n,m ∈ Z}

a Gabor type unitary system. Note that UmV n = λmnV nUm for all n,m ∈ Z.

In the case λ = e2πiθ for some irrational number θ, then U is called an irrational

rotation unitary system which is closely related to the important C∗ - algebra
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class-irrational rotation C∗-algebras, and has been studied in [Han]. For a vector

η ∈ H, we call {UmV nη : m,n ∈ Z} a Gabor type frame if {UmV nη : m,n ∈ Z}
is a frame for H. Note that if λ 6= 1, then U can not be a group. The main

purpose of this chapter is to show that Gabor type unitary systems share most of

the important properties with unitary group systems. Some of these results have

been studied in [Han] for irrational rotation unitary systems. We first prove the

following uniqueness result.

Proposition 4.1. Suppose that {Um
1 V n

1 : m,n ∈ Z} and {Um
2 V n

2 : m,n ∈ Z} are

two Gabor type unitary systems with respect to the same scalar λ, and suppose that

both of them have complete wandering vectors. Then there is a unitary operator W

such that WU1W
∗ = U2 and WV1W

∗ = V2.

Proof. Assume that {Um
1 V n

1 : m,n ∈ Z} and {Um
2 V n

2 : m, n ∈ Z} are acting on

Hilbert spaces H1 and H2 with complete wandering vectors ψ1 and ψ2, respectively.

Write ψ
(i)
m,n = Um

i V n
i ψi for i = 1, 2 and m, n ∈ Z. Then {ψ(i)

m,n : m,n ∈ Z} is an

orthonormal basis for Hi. Define W : H1 −→ H2 by Wψ
(1)
m,n = ψ

(2)
m,n for all n and

m. Then W is a unitary operator and we have

WU1ψ
(1)
m,n = WU1U

m
1 V n

1 ψ1

= U2U
m
2 V n

2 ψ2

= U2Wψ(1)
m,n

and

WV1ψ
(1)
m,n = WV1U

m
1 V n

1 ψ1

= λ−mWUm
1 V n+1

1 ψ1

= λ−mUm
2 V n+1

2 ψ2.

= V2U
m
2 V n

2 ψ2

= V2Wψ(1)
m,n

Thus WU1W
∗ = U2 and WV1W

∗ = V2 since these relations hold on an orthonormal

basis for H1. ¤

Remark 4.2. For any unimodular scalar λ, there exists a Gabor type unitary

system U with respect to λ such that W(U) is non empty. For instance, let H be

the Hilbert space l2(Z×Z), and let en,m be the standard orthonormal basis for H.
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Define unitary operators U , V on H by Uem,n = em+1,n and V em,n = λ−mem,n+1.

Then UV = λV U follows from

UV em,n = U(λ−mem,n+1) = λ−mem+1,n+1

= λλ−(m+1)em+1,n+1 = λV Uem,n.

Thus UU,V is a Gabor type unitary system. Since

UmV ne0,0 = em,n

for any n,m ∈ Z, e0,0 is a complete wandering vector for U .

Theorem 4.3. Suppose that U is a Gabor type unitary system with respect to λ

with a complete wandering vector ψ. Then

(i) Cψ(U) = U ′,
(ii) the vector ψ is a faithful trace vector for both w∗(U) and U ′,
(iii) both w∗(U) and U ′ are finite von Neumann algebras,

(iv) W(U) = U(w∗(U))ψ,

(v) W(U) is a connected, closed subset in H and spanW(U) is dense in H.

Proof. The proof is similar to that of Theorem 1 in [Han]. For completeness we

include the proof of (ii) and (iii).

Let ψ ∈ W(U) be arbitrary. First we show that < ABψ, ψ >=< BAψ, ψ > for

all A,B ∈ w∗(U). It is enough to verify that this holds for A = UnV m, B = UkV l

with n,m, k, l ∈ Z since the linear span of U is an algebra. In fact, this follows from

< UnV mUkV lψ, ψ > = λ−mk < Un+kV m+lψ, ψ >

=

{
0 (n + k, m + l) 6= (0, 0)

λ−mk (n + k, m + l) = (0, 0)

and

< UkV lUnV mψ, ψ > = λ−ln < Uk+nV l+mψ,ψ >

=

{
0 (n + k, m + l) 6= (0, 0)

λ−ln (n + k, m + l) = (0, 0)
.

Thus ψ is a trace vector of w∗(U). Note that ψ is also a cyclic vector for w∗(U)

since Uψ is an orthonormal basis for H. Thus, by Lemma 7.2.14 in [KR], ψ is a

joint cyclic trace vector for w∗(U) and U ′. By Theorem 7.2.15 in [KR], this implies

that both w∗(U) and U ′ are finite von Neumann algebras. ¤



61

Corollary 4.4. Suppose that U is a Gabor type unitary system such that W(U) is

nonempty. Then

(i) Every complete normalized tight frame vector for U must be a complete wan-

dering vector.

(ii) Every wandering vector must be complete.

Proof. The statement (i) follows from (i) and (iii) in Theorem 4.3 and the proof

of Corollary 3.4. For (ii), let ψ ∈ W(U) and let η be a wandering vector. Then

WUmV nψ = UmV nη defines an isometry in U ′(= Cψ(U). Thus W is a unitary

since U ′ is finite. Therefore η(= Wψ) is a complete wandering vector for U . ¤

Corollary 4.5. Suppose that U is a Gabor type unitary system such that W(U) is

non empty. If {UmV nη : n,m ∈ Z} is a frame for H, then it is a Riesz basis for

H.

Proof. Take ψ ∈ W(U). By Corollary 3.6, there is an operator A ∈ U ′ such that

η = Aψ. Thus the result follows from Theorem 4.3 (iii) and Corollary 3.7. ¤

Let g ∈ L2(R) and let

gm,n = e2πimbξg(ξ − na)

for all n,m ∈ Z. If ab = 1 and g = 1√
a
χ[0,a], then {gm,n} is an orthonormal basis.

Thus from Corollary 4.5, we obtain

Corollary 4.6. Suppose that ab = 1. Then following are equivalent:

(i) The set {gm,n} is a frame for L2(R).

(ii) The set {gm,n} is a Riesz basis for L2(R).

Corollary 4.7. (For case a = b = 1, see Proposition 2.1, [HW], Page 403) Suppose

that {gm,n} is a frame for L2(R). Then the dual frame of {gm,n} is also a Gabor

frame.

Proof. By Corollary 4.6, {gm,n} is a Riesz basis for L2(R). Thus, by the Remark

following Corollary 3.6, there is an invertible operator A in U ′ such that g =

A( 1√
a
χ[0,a). Hence {(A−1)∗UmV n( 1√

a
χ[0,a]}) is the dual frame of {gm,n}. Note

that (A−1)∗ is also in U ′. Let h = (A−1)∗( 1√
a
χ[0,a]). Then the dual frame of

{gm,n} is {hm,n}, as required. ¤

Now we prove that the any Gabor type unitary system has the dilation property.

Theorem 4.8. Let U1(= {Um
1 V n

1 : m,n ∈ Z}) be a Gabor type unitary system on

a Hilbert space H1 associated with λ. Then for any complete normalized tight frame
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vector η for U1, there is a Gabor type unitary system U2(= {Um
2 V n

2 : m,n ∈ Z})

on a Hilbert space H2 associated with λ and a normalized tight frame vector ξ for

U2 such that

{Um
1 V n

1 η ⊕ Um
2 V n

2 ξ : m,n ∈ Z}

is an orthonormal basis for H1 ⊕H2.

Proof. Let H, U and ψ be as in the remark following Proposition 4.1. Define an

operator W : H1 → H by

Wx =
∑

m,n∈Z
< x, Um

1 V n
1 η > UmV nψ

for all x ∈ H. Then W is an isometry from H1 onto WH1. Let P be the orthogonal

projection from H onto WH1. We need to show that P ∈ U ′. Since Cψ(U) = U ′,
similar to the proof of Theorem 3.8, it suffices to show that W ∗(UmV n)W = Um

1 V n
1

on the H1 for all m,n ∈ Z. However this follows from the following calculation:

UmV n(Wx) = UmV n
∑

k,l∈Z
< x, Uk

1 V l
1η > UkV lψ

=
∑

k,l∈Z
< x, Uk

1 V l
1η > UmV nUkV lψ

=
∑

k,l∈Z
λ−nk < x, Uk

1 V l
1η > Uk+mV l+nψ

=
∑

k,l∈Z
λ−nk < Um

1 V n
1 x, Um

1 V n
1 Uk

1 V l
1η > Uk+mV l+nψ

=
∑

k,l∈Z
< Um

1 V n
1 x, Uk+m

1 V l+n
1 η > Uk+mV l+nψ

= W (Um
1 V n

1 x)

for all x ∈ H1 and all m,n ∈ Z. Let U2 = P⊥UP⊥ , V2 = P⊥V P⊥, H2 = P⊥H

and let ξ = P⊥ψ. Then U2 and ξ satisfy our requirement. ¤

The following result tells us that to study a Gabor type unitary system (resp.

unitary group system ) which has a complete frame vector is equivalent to studying

the unitary system which has a complete normalized tight frame vector.

Proposition 4.9. If a Gabor type unitary system (resp. unitary group system) has

a complete frame vector, then it has a complete normalized tight frame vector. In

particular, if a Gabor unitary system U has a vector η such that {UmV nη : n,m ∈
Z} is a Riesz basis, then U has a complete wandering vector.

Proof. Let U be a Gabor unitary system on a Hilbert space space H. Suppose that

it has a complete frame vector η. Then, by Proposition 1.10, there is a positive
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invertible operator S ∈ B(H) such that

x =
∑

m,n∈Z
< x, SUmV nη > UmV nη

for all x ∈ H. Replacing x by S−1x, we obtain

S−1x =
∑

m,n∈Z
< S−1x, SUmV nη > UmV nη

=
∑

m,n∈Z
< x, UmV nη > UmV nη

since S is positive. The same argument as in the proof of Theorem 4.8 shows that

S−1UkV lx = UkV lS−1x for all x ∈ H. Thus S−1 ∈ U ′, and hence S ∈ U ′ since U ′
is a von Neumann algebra. Let A = S

1
2 . Then A is also U ′. From

x =
∑

m,n∈Z
< Ax, AUmV nη > UmV nη

for all x ∈ H, we have (replace x by A−1x)

A−1x =
∑

m,n∈Z
< x, AUmV nη > UmV nη.

Hence

x =
∑

m,n∈Z
< x, UmV nAη > UmV nAη

for all x ∈ H. By Lemma 2.17, {UmV nAη : m,n ∈ Z} is a normalized tight frame

for H, which implies that Aη is a complete normalized tight frame vector for U , as

required. The same argument applies to the unitary group system case.

If in addition {UmV nη : m,n ∈ Z} is a Riesz basis for H. Let A be as above

such that {AUmV nη : m,n ∈ Z} is a complete normalized frame. Note that it is

also a Riesz basis. Thus, by Proposition 1.9 (v), it is an orthonormal basis for H.

Therefore Aη is a complete wandering vector for U . ¤

From Theorem 4.8 and Proposition 4.9, we immediately obtain

Corollary 4.10. If a Gabor type unitary system (resp. unitary group system) has

a complete frame vector, then both w∗(U) and U ′ are finite von Neumann algebras.

Remarks 4.11. (i) For a Gabor unitary system U with a complete normalized

tight frame vector η, if λ = 1, then U is an abelian group. Thus, by Corollary 3.14,

for any complete frame vector ξ for U , there is an (unique) invertible operator A

in the von Neumann algebra w∗(U)(= U ′) such that ξ = Aη. When λ 6= 1, this
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is not true in general. For instance, let U and ψ be as in the Remark following

Proposition 4.1. Choose a projection P ∈ U ′ but P /∈ w∗(U) ( this can be done

since w∗(U) is not an abelian von Neumann algebra in this case). Let U1 = PUP

on the Hilbert space PH. Then Pψ is a complete normalized tight frame vector

for U1. But the same argument as in the proof of Proposition 3.13 shows that there

exists complete normalized tight frames which can not be expressed as the form of

Aη for some A ∈ U ′. However, as in the group case (Theorem 6.17 in Chapter 6,

we can show that the set of all the complete normalized tight frame vectors for U
is equal to the set {Aη : A ∈ U(w∗(U)), where U(w∗(U)) denotes the set of all the

unitary operators in w∗(U).

(ii) For a Gabor system {gm,n} associated with a, b, if ab > 1, it was proven by

I. Daubechies and M. Rieffel (cf [Dau1], [Dau2], [Dau3], [Ri]) that the linear span

of {gm,n} can not be dense in L2(R) for all g ∈ L2(R). Thus {gm,n} can not be a

frame, whatever the choice of g. In the case ab ≤ 1, there exists g such that {gm,n}
is a complete normalized frame. For example 9 =

√
bχ[0,a] generates a complete

normalized tight frame. It is also easy to see that {gm,n} can be an orthonormal

basis only when ab = 1.

(iii) We use Ub and Va to denote the multiplication unitary operator by e2πbs

and the translation operator by a, respectively. If ab = c, then the unitary systems

{Um
b V n

a : m,n ∈ Z} and {Um
1 V n

c : m,n ∈ Z} are unitarily equivalent by the

unitary operator W ∈ B(L2(R)) defined by

(Wf)(s) =
1√
a
f(

1
a
s), f ∈ L2(R).

Thus ab determines a unique class of concrete Gabor unitary systems.

(iv) If ab < 1, it is possible to construct two frame vectors f and g such that

{fm,n} and {gm,n} are strongly disjoint frames. For example when ab ≤ 1
2 . Let

f =
√

bχ[0,a] and g =
√

bχ[a,2a]. Then {fm,n} and {gm,n} are complete normalized

tight frames for L2(R). To see that they are strongly disjoint, suppose ka ≤ 1
b <

(k + 1)a. For simplicity, assume that k = 2 and let h =
√

bχ[2a, 1
b ]. Then

{fm,n ⊕ gm,n ⊕ hm,n : m, n ∈ Z}

is an orthonormal set. Note that {hm,n} is also a normalized tight frame for M :=

span{hm,n : m,n ∈ Z}. Thus, by the proof of Proposition 2.5, we have that

{fm,n ⊕ gm,n ⊕ hm,n : m, n ∈ Z}
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is an orthonormal basis for L2(R)⊕L2(R)⊕M . Hence {fm,n⊕gm,n} is a normalized

tight frame for L2(R)⊕ L2(R), as required. When ab = 1
2 , {fm,n} and {gm,n} are

complementary normalized tight frames. Even in the ab ≤ 1
2 case, we don’t know if

it is always possible that for an arbitrary complete normalized tight frame {fm,n},
there exists another complete normalized tight frame {gm,n} for L2(R) such that

{fm,n ⊕ gm,n} is an orthonormal basis for L2(R) ⊕ L2(R). The same question

remains for the 1
2 < ab < 1 case.
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Chapter 5

Frame Wavelets, Super-wavelets and Frame Sets

In this chapter we study the frame wavelets. For simplicity, we only consider the

one-dimensional dyadic wavelet system case. Practically, however, the reader will

note that by use of the appropriate abstract techniques of Chapter 3 many aspects

of the material we present in this Chapter carry over to Rn theory.

We recall that (cf [HW]) that a function ψ ∈ L2(R) is an orthonormal wavelet (

resp. frame wavelet) if {ψj,k : j, k ∈ Z} is an orthonormal basis (resp. frame) for

L2(R), where

ψj,k(s) = 2
j
2 ψ(2js− k)

for all j, k ∈ Z. Let T and D be the translation and dilation unitary operators,

respectively, on L2(R) defined by (Tf)(t) = f(t−1) and (Df)(t) =
√

2f(2t). Then

ψ is a wavelet if and only if {DjT kψ : j, k ∈ Z} is an orthonormal basis for L2(R).

The Fourier transform, f̂ , of f ∈ L1(R) ∩ L2(R) is defined by

f̂(ξ) =
1√
2π

∫

R
f(s)e−isξds.

This transformation can be uniquely extended to a unitary operator F on L2(R).

We write D̂ =: FDF−1 and T̂ =: FTF−1. For convenience, if A and B are unitary

operators on a Hilbert space H, we will use UA,B to denote the set {AnBm; n,m ∈
Z}. A function is called a tight frame wavelet (resp. normalized tight frame wavelet)

if it is a complete tight frame vector (resp. complete normalized tight frame vector)

for UD,T in L2(R). The following is Proposition 2.1 for the frame wavelet case.

Proposition 5.1. Let ψ be a fixed wavelet. Then f ∈ L2(R) is a normalized tight

frame wavelet if and only if there is a co-isometry A ∈ Cψ(UD,T ) such that f = Aψ.

5.1 Frame Sets

In [HWW1], [HWW2], [FW], the Minimally-Supported-Frequencies wavelets are

extensively studied. These are the wavelets whose Fourier transforms have minimal

support of measure 2π. X. Dai and D. Larson in [DL] independently studied the

same class of wavelets and introduced the concept of wavelet set. Recall from
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[DL] that a measurable set E ⊂ R is called a wavelet set if 1√
2π

χE , where χE

is the characteristic function of E, is the Fourier transform of a wavelet. The

corresponding wavelet is called an s-elementary wavelet. It is quite easy to check

that E is a wavelet set if and only if it is the support set of the Fourier transform

of an MSF wavelet.

Two measurable sets E and F are translation congruent modulo 2π if there exists

a measurable bijection φ : E → F such that φ(s) − s is an integral multiple of 2π

for each s ∈ E. Analogously, two measurable sets G and H are dilation congruent

modulo 2 if there exists a measurable bijection τ : G → H such that for any s ∈ G

there is n ∈ Z satisfying τ(s) = 2nS. Lemma 5.3 in [DL] tells us that a measurable

set E is a wavelet set if and only if E is both a 2-dilation generator of a partitionn

(modulo null sets) of R and a 2π-translation generator of a partitionn (modulo null

sets) of R in the sense that both {E + 2kπ : k ∈ Z} and {2nE : n ∈ Z} form

partitionns of R modulo null sets. Equivalently, E is a wavelet set if and only if

E is both translation congruent to [0, 2π) modulo 2π and dilation congruent to

[−2π,−π) ∪ [π, 2π) modulo 2. We note in passing that 1√
2π

χ[−2π,−π)∪[π,2π) is the

Fourier transform of the Shannon wavelet, and [−2π,−π) ∪ [π, 2π) is the simplest

wavelet set.

Definition 5.2. A measurable subset E of R is called a frame set if 1√
2π

χE is

a complete normalized tight frame vector for UD̂,T̂ , where χE is the characteristic

function of E.

We will give a complete characterization for frame sets.

Lemma 5.3. Let f ∈ L2(R) and E = supp(f). Then the following are equivalent:

(1) {T̂nf : n ∈ Z} is a normalized tight frame for L2(E),

(2) |f | = 1√
2π

χE, and E is 2π-translation congruent to a subset F of [0, 2π].

Proof. For (2) ⇒ (1), write f(t) = θ(t)|f(t)| such that θ is a unimodular measurable

function. Let K = E ∪ ([0, 2π]\F ). Then K is 2π-translation congruent to [0, 2π].

Thus

{T̂nθ(t)
1√
2π

χK(t) : n ∈ Z}

is an orthonormal basis for L2(K).

Let P be the orthogonal projection from L2(K) to L2(E). Then

P (eintθ(t)
1√
2π

χK(t)) = eintθ(t)
1√
2π

χE(t).

Therefore {eintθ(t) 1√
2π

χE(t) :∈ Z} is a normalized tight frame for L2(E).
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For (1) ⇒ (2), we first show that E is 2π-translation congruent to a subset F of

[0, 2π].

Suppose that E is not 2π-translation congruent to any subset of [0, 2π]. Then

there exist a subset F of E and some integer k ∈ Z with the property that F ∩
(F + 2kπ) is empty, F + 2kπ ⊂ E and f is bounded on F ∪ (F + 2kπ). Write

G = F ∪ (F + 2kπ). Then χGf ∈ L2(E). Thus

χGf2 =
∑

n∈Z
< χGf2, eintf > eintf

and

||χGf2||2 =
∑

n∈Z
| < χGf2, eintf > |2.

Let g =
∑

n∈Z < χGf2, eintf > eint defined on [0, 2π] and extend it to R by

2π-periodical property. Then

χG(t)f2(t) = g(t)f(t), a.e. t ∈ R.

This implies that χGf = g a.e. on E. Therefore f(t + 2π) = f(s) on F . Let

h = χF − χF+2kπ. Then h ∈ L2(E) and h 6= 0 and

< h, eintf >=< χF (t), f intf(t) > − < χE+2kπ(t), eintf >= 0,

which contradicts the fact that {eistf : n ∈ Z} is a normalized tight frame for

L2(E). So we conclude that E is 2π-translation congruent to some subset F of

[0, 2π].

Now we show that |f | = 1√
2π

χE . Let Ω = E∪([0, 2π]\F ) and ψ = 1√
2π

χΩ. Then

Ω is 2π-translation congruent to [0, 2π]. Thus

{T̂nψ : n ∈ Z}
is an orthormal basis for L2(Ω). Therefore, by Proposition 3.1, there is a partial

isometry V ∈ Cψ({T̂n|L2(Ω) : n ∈ Z}) such that f = V ψ and V L2(Ω) = L2(E).

Let A be the von Neumann algebra generated by {T̂n|L2(Ω) : n ∈ Z}. Then A is

abelian with a cyclic vector ψ. Thus

Cψ({T̂n|L2(Ω) : n ∈ Z}) = A′ = A = L∞(Ω).

So we can write V = Mh for some function h ∈ L∞(Ω), where Mhg = hg for all

g ∈ L2(Ω). Since MhM∗
h = M|h|2 is a projection and MhM∗

hL2(Ω) = L2(E), we

have that |h|2 = χE . Write h(t) = θ(t)χE(t) for some unimodular function θ. Then

we have

f(t) = V ψ(t) = h(t)ψ(t) =
1√
2π

θ(t)χE(t).

Hence |f | = 1√
2π

χE as required. ¤
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Theorem 5.4. Let E be a measurable subset of R. Then E is a frame set if and

only if E is both 2π-translation congruent to a subset F of [0, 2π] and 2-dilation

congruent to [−2π, π] ∪ [π, 2π].

Proof. Suppose that E is 2π-translation congruent to a subset F of [0, 2π] and 2-

dilation congruent to [−2π, π]∪ [π, 2π]. Then, by Lemma 5.3, 1√
2π

χE is a complete

normalized tight frame vector for {T̂n|L2(E) : n ∈ Z}. The condition that E is 2-

dilation congruent to [−2π, π]∪ [π, 2π] implies that L2(E) is a complete wandering

subspace for {D̂n : n ∈ Z}. Thus 1√
2π

χE is a complete normalized tight frame

vector for UD̂,T̂ . So E is a frame set.

Conversely, suppose that E is a frame set and let ψ = 1√
2π

χE . Then

∪n∈Z2nE = R.

Then there exists a measurable subset K of E such that K is 2-dilation congruent

to F := [−2π,−π]∪ [π, 2π]. In fact, let En = E ∩ 2nF , n ∈ Z. For any set A ⊂ R,

write Ã = ∪n∈Z2nA. Let

K0 = E0, K1 = E1\K̃0, K−1 = E−1\(K̃0 ∪ K̃1),

K2 = E2\(K̃0 ∪ K̃1 ∪ K̃−1), . . . etc.

Then K = ∪n∈ZKn will satisfy our requirement. We claim that K = E (modulo a

null set). Let K+ = {x ∈ K : x > 0} and K− = {x ∈ K : x < 0}. Then
∫

K+

1
t
dt =

∫

[π,2π]

1
t
dt = ln2 (a)

and ∫

K−

1
t
dt =

∫

[−2π,−π]

1
t
dt = ln2 (b)

However, from Theorem 5.3.1 in [Dau2], we know that

∫ ∞

0

|ψ(t)|2
t

dt =
ln2
2π

(c)

and ∫ o

−∞

|ψ(t)|2
|t| dt =

ln2
2π

(d)

Combining (a), (b) with (c), (d), we have

µ(E+\K+) = 0, µ(E−\K−) = 0,
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where µ is Lebesgue measure. Hence K = K+ ∪ K− = E+ ∪ E− = E. So E is

2-dilation congruent to a subset of [−2π,−π] ∪ [π, 2π]. Therefore {T̂nψ : n ∈ Z}
generates L2(E). This implies that ψ is a complete frame vector for {T̂n|L2(E) :

n ∈ Z}. So, by Lemma 5.3, E is 2π-translation congruent to a subset of [0, 2π]. ¤

5.2 Super-wavelets

In this section we discuss super-wavelets and the disjointness of frame wavelets.

Definition 5.5. Suppose that η1, ..., ηn are normalized tight frame wavelets. We

will call the n-tuple (η1, ..., ηn) a super-wavelet of length n if {DkT lη1 ⊕ ... ⊕
DkT lηn : k, l ∈ Z} is an orthonormal basis for L2(R) ⊕ ... ⊕ L2(R). If E and F

are frame sets, then E and F are called strongly disjoint if {D̂kT̂ l 1√
2π

χE : k, l ∈
Z} and {D̂kT̂ l 1√

2π
χF : k, l ∈ Z} are strongly disjoint. We call (E,F ) a strong

complementary pair if (F−1( 1√
2π

χE), F−1( 1√
2π

χF )) is a super-wavelet.

As we mentioned in the last remark of Chapter 2, the concept of super-wavelet

might have applications in signal processing, data compression and image analysis.

The prefix ”super-” is used because they are orthonormal basis generators for a

”super-space” of L2(R), namely the direct sum of finitely many copies of L2(R).

We first prove the existence of super-wavelets of any length. These can be viewed

as vector valued wavelets of a special type. We need the following Lemma which is

a special case of Theorem 1 in [DLS].

Lemma 5.6. Let E and F be bounded measurable sets in R such that E contains

a neighborhood of 0, and F has nonempty interior and is bounded away from θ.

Then there is a measurable set G ⊂ R, which is 2-dilation congruent to F and

2π-translation congruent to E.

For n ≥ 2, let

E1 = [−π,−1
2
π) ∪ [

1
2
π, π), E2 = [−1

2
π,−1

4
π) ∪ [

1
4
π,

1
2
π),

. . . . . .

En−1 = [− 1
2n−2

π, − 1
2n−1

π) ∪ [
1

2n−1
π,

1
2n−2

π).

Then, by Theorem 5.4, Ei is a frame set for i = 1, 2, ..., n− 1. Let

E = [− 1
2n−1

π,
1

2n−1
π)

and F = [−π,− 1
2π)∪ [ 12π, π). Then, from Lemma 5.6, there exists a measurable set

G such that G is 2-dilation congruent to F and 2π-translation congruent to E, and
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hence G is a frame set. We claim that (η1, ... , ηn) is a super-wavelet for UD̂,T̂ , where

ηi = 1√
2π

χEi for i = 1, ..., n−1 and ηn = 1√
2π

χG. Since < D̂kT̂ lψi, T̂ jψi >= 0 for

all j, l ∈ Z and all n 6= 0 (i = 1, ..., n). We only need to check the orthonormality of

{T̂ lη1⊕ ...⊕ T̂ lηn : k, l ∈ Z}. In fact, the orthonormality follows from the following

equality immediately,

< T̂ lψ1 ⊕ ...⊕ T̂ lψn, ψ1 ⊕ ...⊕ ψn >=
n∑

k=1

< eilsψk, ψk >

=
1
2π

n−1∑

k=1

∫

Ek

eilsχEk
(s)ds +

1
2π

∫

G

eilsχG(s)ds

=
1
2π

∫ π

−π

eilsds.

For n = ∞, we let Ek = Ek−1 = [− 1
2k−2 π, − 1

2k−1 π) ∪ [ 1
2k−1 π, 1

2k−2 π) for all k,

and let ψk = 1√
2π

χEk
. Then, the similar argument shows that (ψ1, ψ2, ... ) is a

super-wavelet. Thus we have

Proposition 5.7. For any n (n can be ∞), there is a super-wavelet of length n.

Example C. Let E = [−π,− 1
2π) ∪ [ 12π, π). The argument before Proposition 5.7

gives us the existence of the strong complement frame set of E. Now we construct

a concrete one. Consider a set of type [a, π
2 ) ∪ [2π, a + 2π). This set is a 2-

dilation generator of a partitionn [0,∞) if 1
4 (a+2π) = 2a. So we get a = 2π

7 . Thus

[ 2π
7 , π

2 )∪[2π, 16π
7 ) is a 2-dilation generator of a partitionn of [0, ∞). Symmetrically,

[− 16π
7 , −2π)∪[−π

2 , − 2π
7 ) is a 2-dilation generator of a partitionn of (−∞, 0]. Write

A = [−16π

7
, −2π), B = [−π

2
, −2π

7
),

C = [
2π

7
,

π

2
), C = [2π,

16π

7
),

and let L = A ∪B ∪ C ∪D. Then

(A + 2π) ∪B ∪ C ∪ (D − 2π) = [−π

2
,

π

2
)

and
1
4
A ∪B ∪ C ∪ 1

4
D = [−4π

7
, −2π

7
) ∪ [

2π

7
,

4π

7
).

Thus L is a frame set which is a strong complement of E. Similarily one can verify

that for a = 2nπ
8n−1 ,

[−(2nπ + a), −2nπ) ∪ [−π

2
, −a) ∪ [a,

π

2
) ∪ [2nπ, 2nπ + a)

is also a strong complementary frame set of E.

Let E be a frame set. Then E is 2π-translation congruent to a subset, denoted

by τ(E), of [0, 2π).
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Proposition 5.8. Let E and F be frame sets. Then

(i) E and F are strongly disjoint if and only if τ(E) ∩ τ(F ) has measure zero.

(ii) (E, F ) is a strong complementary pair if and only if both τ(E) ∪ τ(F ) =

[0, 2π) and τ(E) ∩ τ(F ) has measure zero.

(iii) {D̂nT̂m( 1√
2π

χE) : n, m ∈ Z} and {D̂nT̂m( 1√
2π

χF ) : n,m ∈ Z} are unitarily

equivalent if and only if τ(E) = τ(F ).

Proof. We write ψ = 1√
2π

χE , η = 1√
2π

χF and G = τ(E) ∩ τ(F ).

(i) Assume that E and F are strongly disjoint. Then for any function f ∈ L2(R),

by Corollary 2.10, ∑

k,l

< f, D̂kT̂ lψ > D̂kT̂ lη = 0.

Let E1 ⊂ E and F1 ⊂ F such that E1 ∼τ G and F1 ∼τ G. Then

∑

k,l

< χE1 , D̂
kT̂ lψ > D̂kT̂ lη = 0.

Hence ∑

k,l

< χE1 , D̂
kT̂ lψ >< D̂kT̂ lη, χF1 >= 0.

Note that, by Theorem 5.4, < χE1 , D̂
kT̂ lψ >= 0 and < D̂kT̂ lη, χF1 >= 0 when

k 6= 0. Thus

0 =
∑

k,l

< χE1 , D̂
kT̂ lψ >< D̂kT̂ lη, χF1 >

=
∑

l

< χE1 , T̂ lψ >< T̂ lη, χF1 >

=
1
2π

∑

l

∫

E1

eilsds ·
∫

F1

e−ilsds

=
∑

L

∫

G

eilsds ·
∫

G

e−ilsds

=
∑

l

|
∫

G

eilsds|2.

Hence G has measure zero.

Conversely assume that G has measure zero. Then E ∪ F is 2π-translation

congruent to τ(E)∪τ(F ), which is a subset of [0, 2π). This also implies that E∩F

has measure zero. Let f ∈ L2(E) and g ∈ L2(F ). Then, by Theorem 5.4, we have

< f ⊕ g, D̂kT̂ψ ⊕ D̂kT̂ η >= 0
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if k 6= 0. Let h ∈ L2(E ∪ F ) be defined by

h(s) =

{
f(s), s ∈ E

g(s), s ∈ F

Then, by Lemma 5.3,

||h||2 =
∑

l∈Z
| < h, T̂ l(ψ + η) > |2.

However

| < h, T̂ l(ψ + η) > |2 =
1
2π
|
∫

E∪F

h(s)e−ilsds|2

=
1
2π
|
∫

E

f(s)e−ilsds +
∫

F

g(s)e−ilsds|2

= | < f ⊕ g, T̂ lψ ⊕ T̂ lη > |2.

Thus we have

||f ⊕ g||2 =
∑

l∈Z
| < f ⊕ g, T̂ lψ ⊕ T̂ lη > |2

=
∑

k,l∈Z
| < f ⊕ g, D̂kT̂ lψ ⊕ D̂kT̂ lη > |2.

Now let g, f ∈ L2(R) be arbitrary. Since E and F are frame sets, we have de-

composition f = ⊕n∈Zfn and g = ⊕n∈Zgn with fn ∈ D̂nL2(E) and gn ∈ D̂nL2(F )

for all n. Thus

||f ⊕ g||2 = ||f ||2 + ||g||2

=
∑

n∈Z
||fn||2 +

∑

n∈Z
||gn||2

=
∑

n∈Z
(||fn||2 + ||gn||2)

=
∑

n∈Z
(
∑

k,l∈Z
| < fn ⊕ gn, D̂kT̂ lψ ⊕ D̂kT̂ lη > |2)

=
∑

k,l∈Z
| < fk ⊕ gk, D̂kT̂ lψ ⊕ D̂kT̂ lη > |2.

On the other hand, we have
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∑

k,l∈Z
| < f ⊕ g, D̂kT̂ lψ ⊕ D̂kT̂ lη > |2

=
∑

k,l∈Z
(|

∑

n∈Z
< fn, D̂kT̂ lψ > +

∑

n∈Z
< gn, D̂kT̂ lη > |2)

=
∑

k,l∈Z
| < fk, D̂kT̂ lψ > + < gn, D̂kT̂ lη > |2

Thus

||f ⊕ g||2 =
∑

k,l∈Z
| < f ⊕ g, D̂kT̂ lψ ⊕ D̂kT̂ lη > |2

for all f, g ∈ L2(R). Therefore E and F are strongly disjoint.

(ii) Suppose that (E,F ) is a strong complementary pair. Then, by (i), τ(E) ∩
τ(F ) has measure zero. Since {D̂kT̂ lψ⊕D̂kT̂ lη : k, l ∈ Z} is an orthonormal basis,

||ψ ⊕ η|| = 1. This implies that

2π =
∫

E

ds +
∫

F

ds =
∫

τ(E)

ds +
∫

τ(F )

ds = µ(τ(E) ∪ τ(F )).

Hence τ(E) ∪ τ(F ) = [0, 2π), as required.

Conversely if {τ(E), τ(F )} is a partitionn of [0, 2π), then ||ψ ⊕ η|| = 1. Thus

||D̂kT̂ lψ⊕D̂kT̂ lη|| = 1 for all k, l ∈ Z. However, by (i), {D̂kT̂ lψ⊕D̂kT̂ lη : k, l ∈ Z}
is a normalized tight frame. Thus it is an orthonormal basis. So (E,F ) is a strong

complementary pair.

(iii) First assume that {D̂nT̂m( 1√
2π

χE) : n,m ∈ Z} and {D̂nT̂m( 1√
2π

χF ) :

n,m ∈ Z} are unitarily equivalent. Then there is a unitary operator W ∈ B(L2(R))

such that

WD̂nT̂m(
1√
2π

χE) = D̂nT̂m(
1√
2π

χF )

for all n,m ∈ Z. In particular, we have

WT̂m(
1√
2π

χE) = T̂m(
1√
2π

χF )

for all n,m ∈ Z. Hence {T̂m( 1√
2π

χE) : m ∈ Z} and {T̂m( 1√
2π

χF ) : m ∈ Z} are

unitarily equivalent. Note that {T̂m( 1√
2π

χE)}m∈Z and {T̂m( 1√
2π

χτ(E))}m∈Z are

unitarily equivalent, and so are {T̂m( 1√
2π

χF )}m∈Z and {T̂m( 1√
2π

χτ(F )}m∈Z. Thus

{T̂m( 1√
2π

χτ(E)) : m ∈ Z} and {T̂m( 1√
2π

χτ(F )) : m ∈ Z} are unitarily equivalent.

By Corollary 3.10, we have that τ(E) = τ(F ).
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Now suppose that τ(E) = τ(F ). Then

{T̂m(
1√
2π

χE) : m ∈ Z} and {T̂m(
1√
2π

χF ) : m ∈ Z}

are unitarily equivalent. Let

W : L2(E) → L2(F )

be the unitary opeartor inducing the unitary equivalence. Since DnL2(E) ⊥
DmL2(E) and DnL2(F ) ⊥ DmL2(F ) when n 6= m, we can extend W to a uni-

tary operator in B(L2(R)), which induces a unitary equivalence between

{D̂nT̂m(
1√
2π

χE) : n,m ∈ Z} and {D̂nT̂m(
1√
2π

χF ) : n,m ∈ Z}.

¤

Proposition 5.8 can be extended to the n-tuple frame sets (E1, E2, . . . , En)

case in an obvious way. It is known that (cf [HKLS]) each two-interval wavelet set

has the form:

[2a− 4π, a− 2π] ∪ [a, 2a],

where 0 < a < 2π. These are special two-interval frame sets. The other two-interval

frame sets can be characterized as following:

Proposition 5.9. Suppose that E is a two-interval set which is not a wavelet set.

Then

(i) E is a frame set if and only if it has the form [−2a, −a] ∪ [b, 2b] with the

property that a, b > 0 and a + b ≤ π.

(ii) If F is another two-interval frame set, then E and F are unitarily equivalent

if and only if E = F .

Proof. (i) Suppose that E is a two-interval frame set. Then, by Theorem 5.4, there

exist a, b > 0 such that E = [−2a, −a] ∪ [b, 2b]. Because E is not a wavelet set,

we have a + b < 2π. We first claim that a, b < π. Assume, to the contrary, that

a ≥ π. Then −2π ∈ [−2π, −a] ⊂ [−2a, −a] and [−2π, −a] + 2π = [0, 2π − a].

Since b < 2π−a, we get [b, π]∩ [b, 2π−a] has non-zero measure, which contradicts

the assumption that E is 2π-translation congruent to [−π, π]. Hence a ≤ π and

similarily b < π. Now we show that a + b ≤ π. Assume that π > a ≥ π/2. Note

that [−2a, −π]+2π = [2(π−a), π], b ≤ π and [−2a, −a]∪ [b, 2b] is 2π-translation

congruent to a subset of [−π, π]. We have 2b ≤ 2(π − a). Hence a + b < leqπ.

Similarly a + b ≤ π when b ≥ π/2.
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Conversely, suppose that a + b ≤ π. Then either a ≤ π/2 or b ≤ π/2. So we

can assume that a ≤ π/2. This implies that [−2a, −a] ⊂ [−π, 0] If b ≤ π/2. Then,

by Theorem 5.4, [−2a, −a] ∪ [b, 2b] is frame set, as required. If b > π/2, then

(π, 2b]− 2π] = [−π, −(2π− b)] does not intersect with (−2a, −a] since a + b ≤ π.

Hence E is 2π-translation congruent to a subset of [−π, π]. And so E is a frame

set.

(ii) Suppose that F = [−2c, −c] ∪ [d, 2d] is a two-interval frame set such that

E and F are 2π-translation congruent.

If both a ≥ π/2 and c ≥ π/2, then [−π, −a] = [−π, −c]. Hence a = c. Note

that a + b = c + d. we get b = d. Then other cases are similar. ¤

Example D. By Lemma 5.6, there is a frame set E which is 2π-translation con-

gruent to [−π, 1
2π). We claim that there is no frame set F such that (E, F ) is a

strong complementary pair. In fact assume, to the contrary, that there is a frame

set F with the property that (E, F ) is a strong complementary pair. Then, by

Proposition 5.8, τ(F ) = [π
2 , π). Let F+ = F ∩ [0, ∞) and F− = F ∩ (−∞, 0].

Then F+ is 2-dilation congruent [π
2 , π). Thus

∫

F+

1
x

dx =
∫ π

π
2

1
x

dx = ln2.

Since F+ is 2π-translation congruent to a proper subset of [π
2 , π), we must have

F+ ⊂ [π
2 ,∞). Let G = F+ ∩ [π

2 , π) and K = F+ ∩ [π,∞). Then K is 2π-

translation congruent to a proper subset, say L , of [π
2 , π)\G since, otherewise,

F+ is 2π-translation congruent to [π
2 , π), which contradicts the assumption that F−

has positive measure. Hence
∫

F+

1
x

dx =
∫

G

1
x

dx +
∫

K

1
x

dx

≤
∫

G

1
x

dx +
∫

L

1
x

dx

<

∫

F+

1
x

dx = ln2

Therefore F can not be a frame set. We do not know whether there is a normalized

tight frame function η such that ( 1√
2π

χE , η) is a super-wavelet. Thus we ask:

Problem B: Let η1 be a complete frame vector for UD,T which is not a wavelet.

Is there a super-wavelet (η1, η2, ...ηn) for some n ? for all n ≥ 2 ?

However from Proposition 3.12, we have
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Proposition 5.10. Let f be a normalized tight frame wavelet such that for all

j, l, n, m ∈ Z, DnT lf and DmT jf are orthogonal when n 6= m. Then there exits a

function g ∈ ÃL2(R) so that

{DnTmf ⊕DnTmg : n,m ∈ Z}

is an orthonormal set.

If we let f̂ = 1√
2π

χE for some frame set E. Then the condition in Proposition

5.10 is always satisfied. In this case we can choose ĝ = 1√
2π

χF for some measurable

set F . In fact, by Theorem 5.4, E is 2π-translation congruent to a subset G of

[−2π, −π) ∪ [π, 2π). Let F = ([−2π, −π) ∪ [π, 2π))\G. Then F will satisfy our

requirement. In view of Problem B and Proposition 5.10, we ask

Problem C: Suppose that {DnTmf : n,m ∈ Z} is a normalized tight frame for

[UD,T f ] (f 6= 0). Is there a normalized tight frame wavelet g such that {DnTmf :

n,m ∈ Z} and {DnTmg : n,m ∈ Z} are unitarily equivalent? In other words, is

there a unitary transformation W from the Hilbert space [UD,tf ] onto the Hilbert

space L2(R) such that WDnTmf = DnTmWf for all n,m ∈ Z?

From Proposition 2.19, the sum of a finite number of strongly disjoint nor-

malized tight frame wavelets is a complete tight frame vector. For example, let

E = [−π,− 1
4π) ∪ [ 14π, π). Then 1√

2π
χE is the Fourier transform of a complete

tight frame vector with frame bound 2. the set E is not a frame set according to

our definition because the frame bound is not 1. This shows that sets exist whose

normalized characteristic functions are Fourier transforms of complete tight frame

vectors with frame bounds different than 1. This raises a number of problems.

Problem D: Characterize all the measurable sets E for which {D̂nT̂m 1√
2π

χE :

n,m ∈ Z} is a frame for L2(R). (Let us call these general frame sets. If the frame is

tight call the set a general tight frame set. According to our Definition 5.2, when the

frame is a normalized tight frame we call the set simply a frame set. We feel that

these are the most important ones. Theorem 5.4 is a characterization of these. A

characterization of the general frame sets along these lines seems elusive, however.)

Two subproblems are the following:

Problem D1: Characterize all general tight frame sets.

Problem D2: Characterize all numbers A, B for which there exists a general

frame set with frame bounds A and B.



78

5.3 A Characterization of Super-wavelets

In [HW], E. Hernadez and G. Weiss characterized all the normalized tight frame

wavelets in terms of two simple equations.

Theorem 5.11. (Theorem 1.6, [HW]) A function ψ ∈ L2(R) is a normalized tight

frame wavelet if and only if

∑

j∈Z
|ψ̂(2js)|2 =

1
2π

, for a.e. s ∈ R

and
∞∑

j=0

ψ̂(2js)ψ̂(2j(s + 2mπ)) = 0 for a.e. s ∈ R, m ∈ 2Z+ 1.

In order to characterize all the super-wavelets, we need the following lemma.

Lemma 5.12. Let ψ1, ψ2, . . . , ψm ∈ L2(R). Then

{D̂nT̂ lψ1 ⊕ D̂nT̂ lψ2 ⊕ ...⊕ D̂nT̂ lψm : n, l ∈ Z}

is an orthonormal set if and only if

∑

k∈Z

m∑

i=1

|ψi(s + 2kπ)|2 =
1
2π

, a.e. s ∈ R

and
∑

k∈Z

m∑

i=1

ψi(2j(s + 2kπ))ψi(s + 2kπ) = 0, a.e. s ∈ R, j ≥ 1.

Proof. For simplicity we only check the m = 2 case. Since

< T̂ lψ1 ⊕ T̂ lψ2, ψ1 ⊕ ψ2 > =
∫

R
eils|ψ1(s)|2ds +

∫

R
eils|ψ2(s)|2ds

=
∫ 2π

0

eils
∑

k∈Z
(|ψ1(s + 2kπ)|2 + |ψ2(s + 2kπ)|2),

it follows that {T̂ lψ1 ⊕ T̂ lψ2 : l ∈ Z} is an orthonormal set if and only if

∑

k∈Z
(|ψ1(s + 2kπ)|2 + |ψ2(s + 2kπ)|2) =

1
2π

, a.e. s ∈ R.

If we note that T lDn = DnT 2nl when n ≥ 0, it is easy to see that the orthogo-

nality between D̂nT̂ lψ1 ⊕ D̂nT̂ lψ1 and D̂j T̂ kψ1 ⊕ D̂j T̂ kψ1 for j > n and k, l ∈ Z,
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can be reduced to the orthogonality between D̂j T̂ kψ1 ⊕ D̂j T̂ kψ1 and ψ1 ⊕ ψ2 for

j > 0 and k ∈ Z. Let j > 0 and k ∈ Z. Then

< ψ1 ⊕Ψ2, D̂j T̂ kψ1 ⊕ D̂j T̂ kψ2 >=< D̂−jψ1 ⊕ D̂−jψ2, T̂
kψ1 ⊕ T̂ kψ2 >

=
∫

R
2j/2ψ1(s)ψ1(2js)eiksds +

∫

R
2j/2ψ2ψ2(2js)eiksds

= 2j

∫ 2π

0

∑

l∈Z
(

2∑
m=1

ψm(2j(s + 2lπ)ψm(s + 2lπ))eiksds.

Thus the orthogonality of between D̂j T̂ kψ1 ⊕ D̂j T̂ kψ1 and ψ1 ⊕ ψ2 for j > 0 and

k ∈ Z is equivalent to the condition

∑

k∈Z

2∑
m=1

ψm(2j(s + 2kπ))ψm(s + 2kπ) = 0, a.e. s ∈ R, j ≥ 1.

Thus the lemma follows. ¤

Theorem 5.13. Let ψ1, . . . , ψm ∈ ÃL2(R). Then (ψ1, . . . , ψm) is a super-

wavelet if and only if the following equations hold

(1)
∑

j∈Z |ψ̂i(2js)|2 = 1
2π , for a.e. s ∈ R, i = 1, . . . , m,

(2)
∑∞

j=0 ψ̂i(2js)ψ̂i(2j(s + 2kπ)) = 0 for a.e. s ∈ R, k ∈ 2Z+ 1, i = 1, . . . , m,

(3)
∑

k∈Z
∑m

i=1 |ψ̂i(s + 2kπ)|2 = 1
2π , a.e. s ∈ R,

(4)
∑

k∈Z
∑m

i=1 ψ̂i(2j(s + 2kπ))ψ̂i(s + 2kπ) = 0, a.e. s ∈ R, j ≥ 1.

Proof. The necessity follows from Theorem 5.11 and Lemma 5.12. Suppose that

(1)−−− (4) hold. Then, by Theorem 5.11 and Lemma 5.12, we get that

{DnDlψ1 ⊕DnT lψ2 ⊕ ...⊕DnT lψm : n, l ∈ Z}

is an orthonormal set, and for each i, {DnT lψi : k, l ∈ Z} is a normalized tight

frame for L2(R). Thus, by Proposition 2.5, we have that

span{DnDlψ1 ⊕DnT lψ2 ⊕ ...⊕DnT lψm : n, l ∈ Z}

is dense in L2(R) ⊕ ... ⊕ L2(R). Hence (ψ1, . . . , ψm) is a super-wavelet, as

required. ¤

5.4 Some Frazier-Jawerth Frames

M. Frazier and B. Jawerth studied (cf. [FJ]) the following frame wavelets:
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Let ψ ∈ L2(R) be such that supp(ψ̂) is contained in {s ∈ R : 1
2 ≤ |s| ≤ 2} and

∑

j∈Z
|ψ̂(2js)|2 =

1
2π

for all s 6= 0.

Then the second equation in Theorem 5.11 is automatically satisfied. Thus ψ is a

normalized tight frame wavelet. We call this type of frame wavelets the Frazier-

Jawerth type frame wavelets.

We can use Theorem 5.13 to construct super-wavelets of length n (n ≥ 3)starting

from a Frazier-Jawerth frame wavelet. Fix a Frazier-Jawerth type frame wavelet

ψ1. We define ψ2 ∈ L2(R) by

ψ̂2(s) =





ψ̂1(2s) s ∈ [−1,−1
2
] ∪ [

1
2
, 1]

β(s)ψ̂1(
s

2
) s ∈ [−2,−1) ∪ (1, 2]

0 elsewhere

where |β(s)| = 1 and

β(s) = − ψ̂1(s)ψ̂1(2s)

ψ̂1(s)ψ̂1(2s)

whenever ψ̂1(s)ψ̂1(2s) 6= 0.

For every s 6= 0. Let k ∈ Z such that 2ks ∈ [−1,− 1
2 ] ∪ [ 12 , 1]. Then

∑

j∈Z
|ψ̂2(2js)|2 = |ψ̂2(2ks)|2 + |ψ̂2(2k+1s)|2

= |ψ̂(2k+1s)|2 + |β(2k+1s)ψ̂1(2ks)|2

= |ψ̂(2k+1s)|2 + |ψ̂1(2ks)|2

=
1
2π

.

Since supp(ψ̂2) is also contained in {s ∈ R : 1
2 ≤ |s| ≤ 2}, we get from Theorem

5.11 that ψ2 is a Frazier-Jawerth type frame wavelet. We claim that ψ1 and ψ2

are strongly disjoint frame wavelets. This can be deduced from the following more

general result:

Proposition 5.14. Let ψ be a fixed Frazier-Jawerth type frame wavelet. Then

for each m ≥ 3, there exist ψ2, ...ψm ∈ L2(R) such that (ψ1, . . . , ψm) is a

super-wavelet. Moreover ψ2 can be chosen as a Frazier-Jawerth type frame wavelet.

Proof. Let ψ2 be defined as above. Then it is a Frazier-Jawerth type frame wavelet.

Let

E3 = (−1
2
, −1

4
] ∪ [

1
4
,

1
2
), . . . , Em−1 = (− 1

2m−2
, − 1

2m−1
] ∪ [

1
2m−1

,
1

2m−2
).
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Then, by Theorem 5.4, E3, . . . , Em−1 are frame sets. By Lemma 5.6, there is

measurable set, say Em, which is 2-dilation congruent to [−2, −1) ∪ [1, 2) and

2π-translation conguent to the complement of {s : 1
2m−1 ≤ |s| ≤ 2} in [−π, π]. So,

again by Theorem 5.4, Em is also a frame set. Now let ψ̂j = 1√
2π

χEj
for 3 ≤ j ≤ m.

We claim that (ψ1, . . . , ψm) is a super-wavelet. For simplicity, we only check the

case m = 3. Since ψj is frame wavelet for each j, it sufficies to check the equations

(3) and (4) in Theorem 5.13.

Let s 6= 0 be arbitary and let G = {s : 1
2 ≤ |s| ≤ 2}. Note that ∪k∈Z(G + 2kπ)

and ∪k∈Z(E3 +2kπ) are disjoint sets, and their union is R\{0}. First suppose that

s = t+2lπ for some l ∈ Z and some t ∈ G. Then s+2kπ /∈ E3 for all k ∈ Z. Hence

∑

k∈Z

3∑

i=1

|ψ̂i(s + 2kπ)|2 =
∑

k∈Z

2∑

i=1

|ψ̂i(s + 2kπ)|2

= |ψ̂1(t + 2lπ)|2 + |ψ̂2(t + 2lπ)|2

=




|ψ̂1(t + 2lπ)|2 + |ψ̂1(2(t + 2lπ))|2, 1

2
≤ |t + 2lπ| ≤ 1

|ψ̂1(t + 2lπ)|2 + |ψ̂1(
1
2
(t + 2lπ))|2, 1 < |t + 2lπ| ≤ 2

=
1
2π

When s + 2lπ ∈ E3 for some l ∈ Z, then s + 2kπ /∈ G for all k ∈ Z. Hence

∑

k∈Z

3∑

i=1

|ψ̂i(s + 2kπ)|2 =
∑

k∈Z
|ψ̂3(s + 2kπ)|2

= |ψ̂3(s + 2lπ)|2 =
1
2π

.

Thus (3) in Theorem 5.13 holds.

To check (4), since E3 is a frame set we always have

∑

k∈Z
ψ̂3(2j(s + 2kπ))ψ̂3(s + 2kπ) = 0, a.e. s ∈ R, j ≥ 1.

Thus it suffices to check

∑

k∈Z

2∑

i=1

ψ̂i(2j(s + 2kπ))ψ̂i(s + 2kπ) = 0, a.e. s ∈ R, j ≥ 1.

Let s ∈ R. If either S ∈ ∪k∈Z(E3 + 2kπ) or s + 2lπ ∈ {s : 1 < |s| ≤ 2} for some

l ∈ Z, then

ψ̂i(2j(s + 2kπ))ψ̂i(s + 2kπ) = 0

for all j ≥ 1 and all k ∈ Z. Hence (4) holds in this case.
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If s + 2lπ ∈ {s : 1
2 ≤ |s| ≤ 1} for some (unique) l ∈ Z, then

∑

k∈Z

2∑

i=1

ψ̂i(2j(s + 2kπ))ψ̂i(s + 2kπ)

= ψ̂1(2(s + 2lπ))ψ̂1(s + 2lπ) + ψ̂2(2(s + 2lπ))ψ̂2(s + 2lπ)

= ψ̂1(2(s + 2lπ))ψ̂1(s + 2lπ) + β(s + 2lπ)ψ̂1(s + 2lπ)ψ̂1(2(s + 2lπ))

= 0

by the definition of β(s). The proof is complete. ¤

Note that if ψ̂1 is continuous, then ψ̂2 constructed above is not continuous. How-

ever we can find another normalized tight frame wavelet η which has the required

regularity. Define η1 ∈ L2(R) such that supp(η̂1) is contained in {s : 1
8 ≤ |s| ≤ 1

2}
and ∑

j∈Z
|η̂1(2js)|2 = 1, s 6= 0.

Then η is a normalized tight frame wavelet. Let ψ2 be as in Proposition 5.14 and

define η2 in a similar way. Using Lemma 5.6, we can find a frame set E which is

2π-translation congruent to [−π, π] \ {s : 1
8 ≤ |s| ≤ 2}. Let ψ̂3 = 1√

2π
χE . Then,

by a similar argument as in the proof of Proposition 5.14, {ψ1, ψ2, η1, η2, ψ3}
is a super-wavelet of length 5. Hence ψ1 and η1 are strongly disjoint normalized

tight frame wavelets. We can choose ψ1 and η2 with any required regularity. For

instance, let ν be a Ck or C∞ function such that

ν(s) =

{
0, s ≥ 1

1, s ≤ 0

Then define ψ1 and η1 by

ψ̂1(s) =





1√
2π

eis/2sin[
π

2
ν(2|s| − 1)], 1/2 ≤ |s| ≤ 1

1√
2π

eis/2cos
π

2
ν(|s| − 1)], 1 ≤ |s| ≤ 2

0, otherwise

and

η̂1(s) =





1√
2π

eis/2sin[
π

2
ν(8|s| − 1)], 1/8 ≤ |s| ≤ 1/4

1√
2π

eis/2cos[
π

2
ν(4|s| − 1)], 1/4 ≤ |s| ≤ 1/2

0, otherwise
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It is not hard to check that ψ1 and η1 are normalized tight frame wavelets with the

same regularity as ν.

For some of the Frazier-Jawerth frame wavelets, they can be extended to a length-

2 super-wavelets. For instance, let η̂(s) = 1√
2π

χ[−2,−1]∪[1,2](s). Then Lemma 5.6

implies that η can be extended to a length-2 super-wavelet. We ask the following

question which is a subproblem of Problem B.

Problem B1: Can we extend every Frazier-Jawerth frame wavelet to a length-2

super-wavelet?

The following proposition characterizes all the unitary equivalent classes for the

Frazier-Jawerth frame wavelets. A function f on R is called 2-dilation periodic if

f(2s) = f(s) for a.e. s ∈ R.

Proposition 5.15. Let ψ1 and ψ2 be Frazier-Jawerth frame wavelets. Then ψ1 and

ψ2 are unitarily equivalent if and only if ψ̂2(s) = α(s)ψ̂1(s) for some unimodular

2-dilation periodic function α.

Proof. Note that ψ1 and ψ2 are unitarily equivalent if and only if

< D̂nT̂ lψ̂1, T̂ jψ̂1 > = < D̂nT̂ lψ̂2, T̂ jψ̂2 >

for all l, j ∈ Z and all n ≥ 0.

If α is a unimodule 2-dilation periodic function, then Mα is a unitary operator

in the commutant of {D̂, T̂}. Thus

< D̂nT̂ lψ̂2, T̂ jψ̂2 > = < MαD̂nT̂ lψ̂1, MαT̂ jψ̂1 >

= < D̂nT̂ lψ̂1, T̂ jψ̂1 >,

which implies that ψ1 and ψ2 are unitarily equivalent.

Conversely, suppose that ψ1 and ψ2 are unitarily equivalent. Then from

< T̂ lψ̂1, ψ̂1 > = < T̂ lψ̂2, ψ̂2 >

for all l ∈ Z, we have
∫

1
2≤|s|≤2

eils(|ψ̂1(s)|2 − |ψ̂2(s)|2)ds = 0, l ∈ Z.

Hence |ψ̂1(s)| = |ψ̂2(s)| for a.e. s ∈ R. Similarly from

< T̂ lψ̂1, D̂−lψ̂1 > = < T̂ lψ̂2, D̂−lψ̂2 >
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for all l ∈ Z, we get

ψ̂1(s)ψ̂1(2s) = ψ̂2(s)ψ̂2(2s),
1
2
≤ |s| < 1.

Define α(s) on {s : 1
2 ≤ |s| < 1} by

α(s) =





ψ̂2(2s)/ψ̂1(2s), ψ̂1(2s) 6= 0

ψ̂2(s)/ψ̂1(s), ψ̂1(2s) = 0

Then extend α to R \ {0} by 2-dilation periodic property. Clearly when s ∈
(−1, − 1

2 ] ∪ [ 12 , 1), ψ̂2(s) = α(s)ψ̂1(s). Let s ∈ (−2, −1] ∪ [1, 2) and assume

that ψ̂1(s) 6= 0. Then, since |ψ̂1(s)| = |ψ̂2(s)|, we have

φ̂2(s) = (ψ̂2(s)/ψ̂1(s))ψ̂1(s)

= α(
s

2
)ψ̂1(s)

= α(s)ψ̂1(s).

Hence we have ψ̂2(s) = α(s)ψ̂1(s) for all s. ¤

5.5 MRA Super-wavelets

An importamt concept in wavelet theory is multiresolution analysis which is

used to derive wavelets. We recal that A multiresolution analysis (MRA) for L2(R)

consists of a sequence {Vj : j ∈ Z} of closed subspaces of L2(R) satisfying

(1) Vj ⊂ Vj+1, j ∈ Z,

(2) ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R),

(3) f ∈ Vj if and only if Df ∈ Vj+1, j ∈ Z,

(4) there exists φ ∈ V0 such that {T kφ : k ∈ Z} is an orthonormal basis for V0.

The function φ in (4) is called a scaling function for the multiresolution analysis.

It is well known (cf. [HW]) that if φ is a scaling function for an MRA, then there

is a 2π-periodic measurable function m such that

φ̂(2ξ) = m(ξ)φ̂(ξ)

for a.e. ξ ∈ R. The function m is called the low-pass filter for φ, and is uniquely

determined by φ. It is known that the function ψ given by

ψ̂(ξ) = e
iξ
2 m(

1
2
ξ + π)φ̂(

1
2
ξ) (∗)
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is a wavelet, and moreover, it is known that every function of the form

ψ̂(ξ) = e
iξ
2 k(s)m(

1
2
ξ + π)φ̂(

1
2
ξ) (∗∗)

where k is any measurable unimodular 2π-periodic function, is a wavelet. These

are all contained in the difference space W0 = V1ªV0, and moreover, every wavelet

contained in W has the form (∗∗). By definition, a wavelet which has this form for

some some MRA is called an MRA wavelet.

Let ψ be a wavelet (resp. normalized tight frame wavelet). Let Wj be the

subspace generated by {DjT lψ : l ∈ Z} and let

Vj = ⊕k<jVk.

Then {Vj : j ∈ Z} satisfies (1) − − − (3). If (4) is satisfied, then ψ is an MRA

wavelet. If ψ is a normalized tight frame wavelet and if there is a function φ in V0

such that {T lφ : l ∈ Z} is a normalized tight frame for V0, then we call ψ an MRA

frame wavelet.

Let φ1, φ2 ∈ L2(R) and let V0 be the closed subspace generated by {T lψ1⊕T lψ2 :

l ∈ Z}. The following result tells us that there is no MRA super-wavelet in the

usual sense.

Proposition 5.16. Suppose that V0 ⊂ (D⊕D)V0 and that {T lψ1⊕T lψ2 : l ∈ Z} is

an orthonormal basis for V0. Then ∪j∈Z(Dj⊕Dj)V0 is not dense in L2(R)⊕L2(R).

Proof. Since φ1( s
2 )⊕ φ2( s

2 ) is in V0 and {T lψ1 ⊕ T lψ2 : l ∈ Z} is an orthonormal

basis for V0, there is sequence {αk} of complex numbers such that
∑

k∈Z |αk|2 < ∞
and

φ1(
s

2
)⊕ φ2(

s

2
) =

∑

k∈Z
αk(T kφ1(s)⊕ T kφ2(s)).

Taking Fourier transforms, we obtain

φ̂1(2s) = m(s)φ̂1(s)

and

φ̂2(2s) = m(s)φ̂2(s),

where m(s) =
∑

k∈Z αkeiks is a 2π-periodic function.

The orthonormality of {T lψ1 ⊕ T lψ2 : l ∈ Z} also implies that

∑

k∈Z
(|φ̂1(s + 2kπ)|2 + |φ̂2(s + 2kπ)|2) =

1
2π

, a.e. s ∈ R.
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This condition together with the relation between m and φ̂i (i = 1, 2) implies that

|m(s)|2 + |m(s + π)|2 = 1, a.e. s ∈ R.

In particular we have |m(s)| ≤ 1. Hence |φ̂i(2−js)| (i = 1, 2) is non-decreasing for

almost every s ∈ R as j →∞. Let

gi(s) = limj→∞|φ̂i(2−js)| (i = 1, 2).

Assume, to the contrary, that ∪j∈Z(Dj ⊕Dj)V0 is dense in L2(R) ⊕ L2(R). we

will prove that gi(s) = 1√
2π

, a.e. s ∈ R (i = 1, 2). The techiques we used here can

be found in the proofs of Theorem 1.7 (page 48) and Theorem 5.2 (page 382) in

[HW]. Let Pj be the orthogonal projection from L2(R)⊕L2(R) onto (D̂j ⊕ D̂j)V0.

Then Pj → I(j → ∞) in the strong operator topology. Let f = χ[−1,1] ⊕ 0. We

have ||f ||2 = 2 and ||Pjf || → ||f ||. On the other hand we have

||Pjf ||2 = ||
∑

k∈Z
< Pjf, D̂j T̂ kφ̂1 ⊕ D̂j T̂ kφ̂2 > D̂j T̂ kφ̂1 ⊕ D̂j T̂ kφ̂2||2

=
∑

k∈Z
| < f, D̂j T̂ kφ̂1 ⊕ D̂j T̂ kφ̂2 > |2

=
∑

k∈Z
| < χ[−1,1], D̂j T̂ kφ̂1 > |2

=
∑

k∈Z
|
∫

R
2−j/2χ[−1,1](s)φ̂1(2−js)e−i2−jksds|2

= 2π · 2j
∑

k∈Z
|
∫ 2−j

−2−j

φ̂1(ξ)
1√
2π

e−ikξdξ|2.

Note that { 1√
2π

eikξ : k ∈ Z} is an orthonormal basis for L2([−π, π]) and that

[−2−j , 2−j ] ⊂ [−π, π] when j large enough. Thus

||Pjf ||2 = 2j+1π

∫ 2−j

−2−j

|φ̂1(ξ)|2dξ

= 2π

∫ 1

−1

|φ̂1(2−js)|2ds → 2.

Hence
1
2

∫ 1

−1

|φ̂1(2−js)|2ds → 1
2π

which implies that
1
2

∫ 1

−1

|g1(s)|2ds → 1
2π

.
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Thus g1(s) = 1√
2π

, a.e. s ∈ R since g1(s) ≤ 1√
2π

, a.e. s ∈ R. Similarly, g2(s) =
1√
2π

, a.e. s ∈ R.

From

φ̂1(s) = φ̂1(2−js)πj
k=1m(2ks)

and

φ̂2(s) = φ̂2(2−js)πj
k=1m(2ks)

for all j ∈ N, we obtain |φ̂1(s)| = φ̂2(s)|, a.e. s ∈ R. Therefore

∑

k∈Z
|φ̂1(s + 2kπ)|2 =

∑

k∈Z
|φ̂2(s + 2kπ)|2 =

1
π

.

This implies that {T k
√

2φ1 : k ∈ Z} is an orthonormal set. Let V0,1 be the closed

subspace generated by this set and let Vj,1 = DjV0,1. Then our assumption implies

that Vj,1 ⊂ Vj+1,1 and ∪jV0,j is dense in L2(R). Thus the above argument also

implies that

limj→∞|
√

2φ̂1(2−js)| = 1√
2π

, a.e. s ∈ R

which contradicts the following equality

limj→∞|φ̂1(2−js)| = 1√
2π

, a.e. s ∈ R.

Therefore ∪j∈Z(Dj ⊕Dj)V0 is not dense in L2(R)⊕ L2(R). ¤

In view of the above proposition we call a super-wavelet (η1, . . . , ηk) an MRA

super-wavelet if every ηi(i = 1, ..., k) is an MRA frame wavelet. For example, let E

and L be as in Example C and let

Es = ∪∞j=12
−jE, Ls = ∪∞j=12

−jL.

Then Es = [−π
2 , 0) ∪ (0, π

2 ) and

Ls = [−8π

7
, −π) ∪ [−4π

7
, −π

2
) ∪ [−2π

7
, 0) ∪ [o,

2π

7
) ∪ [

π

2
,

4π

7
) ∪ [π,

8π

7
).

It is easy to check that Lsis 2π-translation congruent to the set

[−π, −6π

7
) ∪ [−4π

7
, −π

2
) ∪ [−2π

7
, 0) ∪ [0,

2π

7
) ∪ [

π

2
,

4π

7
) ∪ [

6π

7
, π),

which is a subset of [−π, π]. For a frame set G, an elementary computation shows

that F−1( 1√
2π

χG) is an MRA frame if and only if Gs is 2π-congruent to a subset
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of [−π, π]. Thus both F−1( 1√
2π

χE) and F−1( 1√
2π

χL) are MRA frame wavelets.

Therefore

(F−1(
1√
2π

χE), F−1(
1√
2π

χL))

is an MRA super-wavelets.

It is known (cf. [HW]) that a wavelet ψ is an MRA wavelet if and only if

∞∑

j=1

∑

l∈Z
|ψ̂(2j(s + 2lπ))|2 =

1
2π

, a.e. s ∈ R.

So we ask the following problems

Problem E: Characterize all the MRA super-wavelets.

In particular we ask:

Problem E1: Suppose that (η1, . . . , ηk) is a super-wavelet and suppose that

one of the ηi’s is an MRA frame wavelet. Does this imply that (η1, . . . , ηk) is an

MRA super-wavelet?

5.6 Interpolation Theory

Von Neumann algebras play an important role in the operator-theoretic approach

to wavelet theory in [DL]. If ψ is an orthonormal wavelet then the local commutant

Cψ(D, T ) contains many von Neumann algebras as subsets which yield families of

wavelets. This led to a new aspect of wavelet analysis – operator theoretic interpo-

lation theory, which will be discussed below.

Let η, ψ be wavelets and let V η
ψ be the unique unitary operator in Cψ(D, T )

such that V η
ψ ψ = η. If F is a family of wavelets such that V η

ψ (η ∈ F) normalizes

{D, T}′ and

Group{V η
ψ : η ∈ F} ⊂ Cψ(D, T ),

then the von Neumann algebra M generated by {D,T}′ and {V η
ψ : η ∈ F} is

contained in the local commutant Cψ(D, T ). In this case, for every unitary operator

U in this von Neumann algebra, the wavelet Uψ is interpolated from (ψ,F) and we

say that (ψ,F) admits operator-interpolation. The most interesting and relatively

well-investigated case in [DL] is that when Group{V η
ψ : η ∈ F} is a finite cyclic

group and when ψ, η are s-elementary wavelets.

Given wavelet sets E and F . Let σ : E → F be the 1-1, onto map implementing

the 2π-translation congruence. Since E and F both generate partitionns of R
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under dilation by power of 2, we can extend σ to a 1-1 map of R onto R by defining

σ(0) = 0 and

σ(s) = 2nσ(2−ns)

for s ∈ 2nE, n ∈ Z. We adopt the notation σF
E from [DL] for this and call it the

interpolation map for the ordered pair (E, F ). This is a measure-preserving map

and induces a unitary operator UF
E by

(UF
E f)(s) = f(σE

F (s))

for all f ∈ L2(R). It was proved in [DL] that

UF
E ∈ CE(D̂, T̂ ).

It was proved by Q. Gu (Interpolation groups of wavelet sets, preprint) that for

any finite group G, there exists a family E of wavelet sets such that

{UF
E : E, F ∈ E}

forms a group which is isomorphic to G and admits operator-interpolation. In this

case the von Nemann algebra generated by this group and {D̂, T̂}′ is finite. Thus

Corollary 3.7 applies to this case.

Let U = UF
E and σ = σF

E . Assume that U has order k and

{Un : n = 0, 1, ... k − 1}

forms an interpolation family, i.e. Un ∈ Cψ(D̂, T̂ ) for all n, where ψ = 1√
2π

χE . Then

each element in the von Neumann algebra generated by {D̂, T̂}′ has an expression

k−1∑
n=0

MhnUn,

where hn ∈ L∞(R) with the property that hn(2s) = hn(s), a.e. s ∈ R. There

exists an *-isomorphism θ from M to the k × k function matrix algebra such that

θ(
∑k−1

n=0 MhnUn) = M with

M(s) = ( hij(s) )

where hij(s) = hα(i,j)(σ−i(s)) and α(i, j) = (j − i) modulo k. So, for instance, if

k = 2, then

M(s) =




h0(s) h1(s) h2(s)
h2(σ−1(s)) h0(σ−1(s)) h1(σ−1(s))
h1(σ−2(s)) h2(σ−2(s)) h0(σ−2(s))


 .
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Lemma 5.17. Let η ∈ L2(R) such that η̂ ∈ L∞(R) and the support of η̂ is con-

tained in the union of {(σF
E)n(E) : n = 0, 1, ..., k − 1}. Then there exists an

operator A ∈M such that η̂ = Aψ, where ψ = χE.

Proof. Write σ = σF
E and U = UF

E . By Proposition 2.4 in [GHLL], we know that

σn(E) is wavelet set for all n. We define hn on

Kn := σn(E)\(E ∪ .. ∪ σn−1(E))

to be η̂ and zero on σn(E)\Kn. Since σn(E) is a wavelet set, we can extend hn

uniquely to R by the relation hn(2s) = hn(s). Let

A =
k∑

n=0

MhnUn.

Then A ∈M and Aψ = η̂ by the construction of hn. ¤

Proposition 5.18. Suppose that U , M, η, A and hn be as above. Then the

following are equivalent.

(i) η is a frame wavelet.

(ii) {DnTmη : n, m ∈ Z} is a Riesz basis for L2(R).

(iii) The matrix function M(s) satisfies the condition

aI ≤ M(s)M(s)∗ ≤ bI

for some constants a, b > 0.

Proof. The equivalence of (i) and (ii) follows from Corollary 3.7 since M is finite

and A ∈ M. The equivalence of (i) and (iii) follows from Corollary 3.6 and the

fact that θ from M to the k × k function matrix algebra is an *-isomorphism. ¤

We remark that if E and F are two frame set such that they are 2π-translation

congruent. Then, like the wavelet sets case, we can similarly define σF
E and UF

E .

The unitary operator UF
E is the unique operator in CχE (D̂, T̂ ) such that UF

E χE =

χF . Therefore the interpolation theory also works for frame sets. The following

observation might be useful in constructing super-wavelets.

Proposition 5.19. Suppose that (E1, F1) is an interpolation pair of frame sets.

If both (E1, E2) and (F1, F2) are strong complementary pairs of frame sets, then

(η, ψ) is a super-wavelet for any normalized tight frame wavelets η and φ with the

property that supp(η̂) ⊆ E1 ∪ E2 and supp(ψ̂) ⊆ F1 ∪ F2.

Proof. By the argument in the proof of Lemma 5.17, there exist unitary operators

U and V such that η̂ = U 1√
2π

χE1 and ψ̂ = V 1√
2π

χF1 . Hence the proposition

follows. ¤
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Even though we know that for any wavelet ψ the local commutant Cψ(D, T )

contains many von Neumann algebras, it is still open whether it can contain a von

Neumann algebra which is not finite. (See [La] Problem C. A von Neumann algebra

is called finite if it does not contain any proper isometry, that is an isometry which

is not unitary). This is an interesting problem from an operator-algebraic point of

view. As an application of the results in section 2 and 3, we conclude this section by

giving an example to illustrate that for certain ψ, Cψ(D, T ) contains an isometry

V , which is not a unitary, for which V ∗ ∈ Cψ(D, T ). It is unknown, in fact, whether

this example is actually a solution to [La] Problem C.

Example E. Let E = [−2π,−π] ∪ [π, 2π] and F = [−π,−π
2 ∪ [π

2 , π]. Then E is a

wavelet set and F is frame set by Theorem 5.4. Let ψ̂ = 1√
2π

χE and η̂ = 1√
2π

χF .

We define V by

V f =
∑

n,m∈Z
< f, D̂nT̂mη̂ > D̂nT̂mψ̂, f ∈ ÃL2(R).

Then V is an isometry. Also, by the proof of Proposition 2.1, V ∗ ∈ Cψ̂(D̂, T̂ ).

Moreover we have:

Proposition 5.20. The operators V ∗, V V ∗, V k are contained in Cψ̂(D̂, T̂ ) for all

k ∈ N.

We will prove this in three lemmas.

Lemma 5.21. The inclusions

V nL2(2mE) ⊆ L2(2m+nE) and (V ∗)nL2(2mE) ⊆ L2(2m−nE)

hold for all m ∈ Z and all n ≥ 0.

Proof. Note that supp(D̂kT̂ lη̂) ⊂ 2k−1E. Then for any f ∈ L2(2mE), we have

< V f, D̂kT̂ lψ̂ > = < f, D̂kT̂ lV ∗ψ̂ >

= < f, D̂kT̂ lη̂ > = 0

when k − 1 6= m. Thus V L2(2mE) ⊆ L2(2m+1E) and hence V nL2(2mE) ⊆
L2(2m+nE) for all n ≥ 0.

For the second inclusion, without loss of generality, we take f = D̂mT̂ lψ. Then

V ∗f = D̂mT̂ lV ∗ψ̂ = D̂mT̂ lη̂ ⊆ L2(2m−1E).

So the inclusion follows. ¤
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Since V ∗ ∈ Cψ̂(D̂, T̂ ) and {D̂}′ contains Cψ̂(D̂, T̂ ), we have that p(V, V ∗) ∈ {D̂}′
for all polynomials p(z, w). Thus to show that some particular p(V, V ∗) is contained

in Cψ̂(D̂, T̂ ), it suffices to show that p(V, V ∗)T̂ lψ̂ = T̂ lp(V, V ∗)ψ̂ for all l ∈ Z. In the

proof of the following lemmas we will frequently use the relation: TnDm = DnT 2mn

for all n,m ∈ Z, where Tα is defined by

(Tαf)(t) = f(t− α)

for all f ∈ L2(R).

Lemma 5.22. The operator V k is contained in Cψ̂(D̂, T̂ ) for all k ∈ N.

Proof. By Lemma 2.20, we have

(I) : = < V T̂ lψ̂, D̂nT̂ jψ̂ > = < T̂ lψ̂, D̂nT̂ j η̂ >

=

{
0, n 6= 1

< T̂ lψ̂, D̂T̂ j η̂ >, n = 1

and

(II) : = < T̂ lV ψ̂, D̂nT̂ jψ̂ >

=

{
0, n 6= 1

< T̂ lV ψ̂, D̂T̂ jψ̂ >, n = 1

When n = 1, we get

(II) = < V ψ̂, D̂T̂−2l+jψ̂ > = < ψ̂, D̂T̂−2l+j η̂ >

= < T̂ lψ̂, D̂T̂ j η̂ > = (I).

Hence we have T̂ lV ψ̂ = V T̂ lψ̂ as required.

Assume that V k ∈ Cψ(D̂, T̂ ). We will show that V k+1 ∈ Cψ̂(D̂, T̂ ).

Again by Lemma 2.20, we have

< V k+1T̂ lψ̂, D̂nT̂ jψ̂ > =

{
0, n 6= k + 1

< V 2T̂ lψ̂, D̂nT̂ jψ̂ >, n = k + 1

and

< T̂ lV k+1ψ̂, D̂nT̂ jψ̂ >=

{
0, n 6= k + 1

< T̂ lV k+1ψ̂, D̂nT̂ jψ̂ >, n = k + 1
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When n = k + 1, using the assumption V k ∈ Cψ̂(D̂, T̂ ), we get

< T̂ lV k+1ψ̂, D̂k+1T̂ jψ̂ > = < V kψ̂, V ∗D̂k+1T̂−2k+1l+jψ̂ >

= < V kψ̂, D̂k+1T̂−2k+1l+jV ∗ψ̂ >

= < T̂ lV kψ̂, D̂k+1T̂ jV ∗ψ̂ >

= < V kT̂ lψ̂, V ∗D̂k+1T̂ jψ̂ >

= < V k+1T̂ lψ̂, D̂k+1T̂ jψ̂ > .

Hence we have T̂ lV k+1ψ̂ = V k+1T̂ lψ̂, as required. ¤

Lemma 5.23. The operator V V ∗ is contained in Cψ̂(D̂, T̂ ).

Proof. . By Lemma 2.20, we have

< V V ∗T̂ lψ̂, D̂nT̂ jψ̂ >=< T̂ lV V ∗ψ̂, D̂nT̂ jψ̂ >= 0

for all n 6= 0. If n = 0, then

< V V ∗T̂ lψ̂, T̂ jψ̂ > = < V ∗T̂ lψ̂, V ∗T̂ jψ̂ >

= < T̂ lV ∗ψ̂, T̂ jV ∗ψ̂ >]

= < V ∗ψ̂, T̂ j−lV ∗ψ̂ >

= < V ∗ψ, V ∗T̂ j−lψ >

= < V V ∗ψ̂, T̂ j−lψ̂ >

= < T̂ lV V ∗ψ̂, T̂ jψ̂ > .

Hence V V ∗T lψ̂ = T̂ lV V ∗ψ̂, as required. ¤

Problem F: In the above notation, is p(V, V ∗) contained in Cψ̂(D̂, T̂ ) for all

polynomials in 2 variables p(z, w)? Equivalently, is the von Neumann algebra w∗(V )

generated by V contained in Cψ̂(D̂, T̂ ) ? Note that w∗(V ) is the closure of the set

of all polynomials p(V, V ∗) in the weak operator topology, and is not finite because

V is a proper isometry. So a positive answer would answer Problem C in [La].
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Chapter 6

Frame Representations for Groups

Let G be a group. A representation (π,G,H) of G is called a frame representation

if π(G) has a complete normalized tight frame vector. Two complete normalized

tight frame vectors η, ξ ∈ H for π(G) are said to be equivalent if the frames

{π(g)η}g∈G and {π(g)ξ}g∈G are unitarily equivalent, or equivalently, if there is a

unitary operator U ∈ π(G)′ such that Uη = ξ. We will use [η]π to denote the equiv-

alent class of complete normalized tight frame vectors represented by η. We say

that the frame vector classes [η1]π, . . . , [ηk]π are strongly disjoint if {π(g)η1}g∈G , .

. . , {π(g)ηk}g∈G are strongly disjoint. It is clear that this definition is independent

of the choices of η1, . . . , ηk. In most cases there are many inequivalent classes

of normalized tight frame vectors for one frame representation. The main purpose

of this chapter is to study the strongly disjoint classes and their relations with the

representations. We also prove that all the complete normalized tight frame vectors

for a frame representation can be parameterized by a fixed normalized tight frame

vector and the set of all unitary operators in the von Neumann algebra generated

by the range of the representation.

6.1 Basics

We recall from ([KR]) that two representations (π,G,H) and (σ,G, K) are said

to be equivalent if there is a unitary operator U : H → K such that

Wπ(g)W ∗ = σ(g), g ∈ G.

We should keep in mind the following simple observation:

Proposition 6.1. Let (π1, G, H1) and (π2, G, H2) be two frame representations.

Suppose that η1 and η2 are complete normalized tight frame vectors for π1 and π2,

respectively, such that {π1(g)η1 : g ∈ G} and {π2(g)η2 : g ∈ G} are unitarily

equivalent as frames with index set G.. Then π1 and π2 are unitarily equivalent

representations.

Proof. Assume that there is a unitary transform W : H1 → H2 such that

Wπ1(g)η1 = π2(g)η2, g ∈ G.
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Then for any g, h ∈ G, we have

Wπ1(g)π1(h)η1 = Wπ1(gh)η1

= π2(gh)η2 = π2(g)π2(h)η2

= π2(g)Wπ1(h)η1.

Since {π1(h)η1 : h ∈ G} generates H1, we have

Wπ1(g)x = π2(g)Wx

for all x ∈ H1. So π1 and π2 are unitarily equivalent representations of G. ¤

Let K = l2(G), and let λ be the left regular representation of G. Let M be

the von Neumann algebra generated by {λ(g) : g ∈ G}. If P ∈ M′, then the

subrepresentation λP is defined by λP (g) = λ(g)P for all g ∈ G. By Theorem 3.8

or Theorem 3.8′, we have

Proposition 6.2. Every frame representation of G is unitarily equivalent to a

subrepresentation of the left regular representation.

We also recall that two orthonormal projections P1, P2 in a von Neumann algebra

R are called equivalent , denoted by P1 ∼ P2, if there is a partial isometry V ∈ R
such that V V ∗ = P1 and V ∗V = P2. If P1 is equivalent to a subprojection of P2,

we write P1 ¹ P2. A projection P in a von Neumann algebra R is called finite if

there is no proper subprojection of P equivalent to P .

For convenience, we use H(n) to denote the Hilbert space H ⊕ H ⊕ ... ⊕ H (n

copies of H) and we use π(n) to denote the n-direct sum representation of π. A

frame representation (π, H) of G is said to have frame-multiplicity n if n is the

supremum of all the natural numbers k with the property that there exist frame

vectors ηi(i = 1, 2, ..., k) such that

{π(g)η1 : g ∈ G}, . . . , {π(g)ηk : g ∈ G}

are strongly disjoint. We will show ( Proposition 6.6) that the frame multiplicity

is always finite. Thus a frame representation (π,G,H) has frame-multiplicity n if

and only if n is the largest number such that the representation (π(n),H(n)) of G
has a complete normalized tight frame vector. Hence the frame multiplicity is the

maximal number of strongly disjoint frame vector classses. Therefore the frame

multiplicity for a frame representation π is great than or equal to the cardinal

number of the set of all equivalence classes of frame vectors for π. In general these
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two numbers are not equal (see the remark after Proposition 6.9). It is obvious

that frame multiplicity and the cardinal number of the inequivalent frame vector

classes are invariant under unitary equivalence.

Proposition 3.13 characterizes all the frame representations that have only one

equivalent class of normalized tight frame vectors, which can be restated as follows:

Theorem 6.3. A frame representation (π, G, H) has a unique unitary equivalence

class of frame vectors if and only if π is unitarily equivalent to a subrepresentation

λP of λ such that P is in the center of M.

6.2 Frame Multiplicity

To prove that the frame multiplicity is always finite for frame representations,

we need the following:

Lemma 6.4. Let (π,G,H) be a frame representation. Then (π(n),G, H(n)) has a

complete normalized tight frame vector if and only if there exist self-adjoint projec-

tions Pi(i = 1, ..., n) in M′ such that Pi ∼ P and PiK ⊥ PjK when i 6= j.

Proof. Note that if (π(n),G,H(n)) has a complete normalized tight frame vector,

then so does (π(m),G,H(m)) for all m < n. Thus we only need to consider the n = 2

case. Assume that η1, η2 ∈ H such that {π(g)η1 : g ∈ G} and {π(g)η2 : g ∈ G} are

strongly disjoint. Define V1 and V2 by

Vix =
∑

g

< x, π(g)ηi > χg

when x ∈ H and Vix = 0 when x ∈ K ªH, where χg is the characteristic function

at point g. Then, by the proof of Proposition 2.16, V1K ⊥ V2K. From Proposition

3.1 (i), V1 and V2 are partial isometries in M′. Let Pi = ViV
∗
i . Then Pi ∼ P , as

required.

Conversely, suppose that Vi ∈ M′ (i = 1, 2) are partial isometries in M′ such

that V ∗
i Vi = P , V1K ⊥ V2K. Let ηi = V ∗

i χe, where e is the identity of G. Then,

by Proposition 3.1 (i) and Proposition 2.16, {π(g)η1 : g ∈ G} and {π(g)η2 : g ∈ G}
are strongly disjoint. ¤

The proof of Lemma 6.4 also implies that

Corollary 6.5. Let p and q be two projections in M′, and let πp and πq be the

subrepresentations of λ restricted to p and q, respectively. Suppose that ηp and ηq
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are complete normalized frame vectors for πp and πq, respectively. Then

{πp(g)ηp : g ∈ G} and {πq(g)ηq : g ∈ G}

are strongly disjoint if and only if there exist partial isometries VP and Vq in M′

with the property that Vpχe = ηp, Vqχe = ηq, ran(V ∗
p ) ⊥ ran(V ∗

q ), VpV
∗
p = p and

VqV
∗
q = q.

Proposition 6.6. Let (π,G,H) be a frame representation. Then the frame multi-

plicity of π is finite. In particular the representation

(π(∞),G,H(∞))

does not have any complete normalized tight frame vector.

Proof. Let ψ = χe be the characteristic function of {e}. Then ψ is a faithful trace

vector for M′ in the sense that

< ABψ, ψ > = < BAψ, ψ >

for all operators A,B ∈ M′ and if < Sψ, ψ > = 0 and S ≥ 0 with S ∈ M′, then

S = 0. Let t =< Pψ, ψ > = ||Pψ||2 > 0.

Assume, to the contrary, that the frame-multiplicity of π is infinity. Then for

any natural number k, (π(k),G,H(k)) has a complete normalized tight frame vector.

Thus, from Lemma 6.4, we can find projections {Pi}k
i=1 in M′ with orthogonal

ranges such that Pi ∼ P for all i. Let

Q =
k∑

i

Pi.

Then Q ≤ I and hence < Qψ, ψ > ≤ ||ψ||2 = 1. Since Pi ∼ P , we have

t = < Pψ, ψ > = < Piψ,ψ >

for all i. Thus

1 ≥ < Qψ, Ψ > =
k∑

i

< Piψ, ψ > = kt,

which leads to a contradiction if we let k →∞. ¤
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Corollary 6.7. Let π, G, H, P and M be as in Lemma 6.4. Then (π(n),G,H(n))

has a complete normalized tight frame vector if and only if there exist self-adjoint

projections Pi(i = 2, ..., n) in M′ such that Pi ∼ P and PiK ⊥ PjK when i 6= j,

where we write P = P1.

Proof. Let {Ea}a∈A be an orthogonal family of projections in M′ such that P ∈
{Ea}a∈A and which is maximal with respect to the property that Ea ∼ P for all

a ∈ A. Suppose that π has frame multiplicity n, then, by Proposition 6.6 and

Lemma 6.4, there is an orthogonal family {Fk}n
k=1 of projections in M′ maximal

with respect to the property that Fk ∼ P for k = 1, 2, ..., n. So, by Theorem 6.3.11

in [KR], A has cardinal number n. Thus we complete the proof. ¤

Let M be as in Lemma 6.4. For any projection P ∈ M′. We write πP = λ|P .

Let ψ = χe and let tr(A) =< Aψ,ψ > for every A ∈M′. So tr(·) is a trace for M′.

Corollary 6.8.

(i) If (πP ,G, PH) has frame multiplicity one, then so does πQ for any projection

Q ∈M′ with the property P ¹ Q.

(ii) Suppose that M is a factor von Neumann algebra. Then πP has frame

multiplicity one if and only if tr(P ) > 1
2 .

Proof. (i) Let Q ∈ M′ such that P ¹ Q. Note that if P ∼ R for some projection

in M′, then πP and πR are unitarily equivalent. So we can assume that P < Q.

Suppose that πQ does not have frame multiplicity one. Then, by Corollary 6.7, we

can find a projection R ≤ (I −Q) such that R ∼ Q. Thus, there is a subprojection

R0 of R such that R0 ∼ P . Also note that R0 ≤ Q⊥ ≤ P⊥. Hence, by Lemma 6.4,

πP can not have frame multiplicity one, which leads to a contradiction. Therefore

πQ must have frame multiplicity one.

(ii) First assume that tr(P ) ≤ 1
2 . Since M is a factor, we have that either

P ¹ P⊥ or P⊥ ¹ P . If there is a proper projection R of P such that R ∼ P⊥,

then 1 ≥ tr(P⊥+R) = tr(P⊥)+ tr(R) = 2tr(P⊥) ≥ 1. Thus tr(P −R) = 0, which

implies that P = R, which is a contradiction. So P ¹ P⊥, and thus, by Lemma

6.4, πP has frame multiplicity at least 2.

Conversely, assume that πP has frame multiplicity at least 2. Then, by Corollary

6.7, there is a subprojection R of P⊥ such that R ∼ P . Thus

2tr(P ) = tr(P ) + tr(R) = tr(P + R) ≤ 1.

So tr(P ) ≤ 1/2. ¤
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Proposition 6.9. Suppose that (π,G,H) is a frame representation and P ∈ M∩
M′. Then π has frame-multiplicity one

Proof. Assume that π is not of frame-multiplicity one. Then (π(2),H(2)) has a

complete normalized tight frame vector (η1⊕η2). By Proposition 3.13, there exists

a unitary operator V ∈ π(G)′ such that V η1 = η2. Let U = V ⊕ I. Then U is a

unitary operator in M′ and thus U(η1 ⊕ η2) is a complete normalized tight frame

for π(2). However

{π(2)(U(η1 ⊕ η2)) : g ∈ G} = {π(g)η2 ⊕ π(g)η2 : g ∈ G},
which is clearly not a complete normalized tight frame for H(2). Hence (π,G,H)

has frame-multiplicity one. ¤

We note that by Corollary 6.8 (ii), the converse of Proposition 6.9 is not true.

Therefore there exists frame multiplicity one representation which has inequivalent

frame vectors.

Corollary 6.10. If G is an abelian group, then every frame representation has

frame-multiplicity one.

Proposition 6.11. Suppose that (π, G, H) is a frame representation with a com-

plete normalized tight frame vector η. If η is a trace vector for w∗(π(G)), then π

has frame multiplicity one.

Proof. Assume that π has frame multiplicity greater than one. Then there is a

complete normalized tight frame vector ξ such that {π(g)η : g ∈ G} and {π(g)ξ :

g ∈ G} are strongly disjoint. Thus, by Corollary 2.10, for any x ∈ H,
∑

g∈G
< x, π(g)ξ > π(g)η = 0.

In particular we have
∑

g∈G
< η, π(g)ξ >< π(g)η, π(h)η > = 0

for all h ∈ G. Since η is a trace vector for w∗(π(G)), we have

< π(g)η, π(h)η > = < π(h−1)η, π(g−1)η >,

which implies that

< π(h−1)η,
∑

g∈G
< η, π(g)ξ >π(g−1)η >

=
∑

g∈G
< η, π(g)ξ >< π(h−1)η, π(g−1)η >

=
∑

g∈G
< η, π(g)ξ >< π(g)η, π(h)η >= 0
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for all h ∈ G. Hence

ξ =
∑

g∈G
< ξ, π(g−1)η > π(g−1η

=
∑

g∈G
< η, π(g)ξ >π(g−1)η = 0,

which is a contradiction. So π must have frame multiplicity one. ¤

Corollary 6.12. Suppose that (π, G, H) is a frame representation with frame

multi[plicity greater than one. Then for any complete normalized tight frame vector

η, it is a trace vector for π(G)′ but not a trace vector for w∗(π(G)).

Remark 6.13. The converse of this Proposition 6.11 is false. For example, let

π, P and M be as in (ii) of Corollary 6.8. Since M is a factor and tr(P ) > 1
2 ,

there is a subprojection Q < P such that Q ∼ P⊥. Thus, by Lemma 6.4, the

frame representation (λP⊥ ,G) has frame multiplicity greater than one. Therefore,

from Proposition, P⊥χe is not a trace vector for w∗(λP perp(G)). Note that χ is

a trace vector for w∗(λ(G). If Pχe is a trace vector for w∗(λP (G)), then for any

A,B ∈ w∗(λ(G)), we have

< ABP⊥χe, P⊥χe > =< ABχe, χe > − < ABPχe, Pχe >

=< BAχe, χe > − < BAPχe, Pχe >

=< BAP⊥χe, P⊥χe >,

which contradicts the fact that P⊥χe is not a trace vector for w∗(λp⊥(G)).

6.3 Parameterizations of Frame Vectors

Given a frame representation (π, H) for a group G with a complete normalized

tight frame vector η. As pointed out in Proposition 3.13 that in general not every

complete normalized tight frame vector can be obtained by applying a unitary

operator in π(G)′ to η. However we will prove in Theorem 6.17 that the set all of

complete normalized tight frame vectors for π(G) is equal to the set {Uη : U ∈
U(w∗(π(G)))}, where U(S) denotes the set of all unitary operators in S. Thus we

have

U(π(G)′)η ⊆ U(w∗(π(G)))η.

When realizing π as a subrepresentation λP of the left regular representation λ for

some projection P in λ(G)′, then, from Proposition 3.13, the equality holds if and

only if P is in the center of the von Neumann algebra w∗(λ(G)).
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Lemma 6.14. Let π be a subrepresentation of the left regular representation λ of

a group G. Then for every complete normalized tight frame η for π(G), there is a

vector ξ ∈ l2(G) with the property that η + ξ is a complete wandering vector for

λ(G).

Proof. Let π = λP for some projection in λ(G)′ and let ψ = χe. Suppose that

η is complete normalized tight frame vector for π(G). Then, by Proposition 3.1,

there is a partial isometry V ∈ λ(G)′ such that V ψ = η and V V ∗ = P . Write

V ∗V = Q. Then P ∼ Q. Since P and Q are finite projections, we have that

P⊥ ∼ Q⊥ (cf [KR]). Let W be the partial isometry in λ(G)′ such that WW ∗ = P⊥

and W ∗W = Q⊥. Write U = V +W . Then U is a unitary operator in λ(G)′, and so

Uψ is a complete wandering vector for λ(G) (cf [DL], Proposition 1.3). Note that

UQ = (V + W )Q = V Q = V V ∗V

and

PV = P (V + W ) = PV = V V ∗V.

Thus UQ = PU , and therefore

PUψ = UQψ = V Qψ = V V ∗V ψ = Pη = η.

Let ξ = P⊥Uψ. Then ξ will satisfy our requirement. ¤

Corollary 6.15. Let (π, H) be a frame representation of G and let πQ be a sub-

representation of π. Then a vector η ∈ QH is a complete normalized tight frame

vector for πQ(G) if and only if η = Qξ for some complete normalized tight frame

vector ξ of π(G).

Proof. By Theorem 3. 8, we can assume that π = λP for some projection P ∈ λ(G)′

and Q ∈ λ(G)′. From Lemma 6.14, there is a complete wandering vector φ for λ(G)

such that η = Qφ. Let ξ = Pφ. Then ξ is a complete normalized tight frame vector

for π(G) and Qξ = η.

Lemma 6.16. Let R be a von Neumann algebra on a Hilbert space H and let

P ∈ R′ be a projection. Suppose that U ∈ R|PH is a unitary operator. Then there

is a unitary operator W ∈ R such that U = W |PH .

Proof. Let S ∈ R|PH be a self-adjoint operator such that U = eiS . Then there

is a operator A ∈ R such that A|PH = S. Let B = 1
2 (A + A∗). Note that

A∗|PH = S∗ = S. It follows that B|PH = S. Let W = eiB . Then W ∈ R is unitary

and W |PH = U . ¤
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Theorem 6.17. Let (π, G, H) be a frame representation with a complete nor-

malized tight frame vector η. Then the set of all complete normalized tight frame

vectors for π(G) equals U(w∗(π(G)))η.

Proof. By Theorem 3.6, we assume that π = λP for some projection P ∈ λ(G)′ and

η = Pψ, where ψ = χe. For convenience, write R = w∗(π(G)) and M = w∗(λ(G)).

Let J : l2(G) → l2(G) be defined by

JAψ = A∗ψ

for all A ∈ M. Then it is well-known (cf [KR]) that α : A → JAJ is conjugate

linear isomorphism from M onto M′. It is also obvious that J2 = I and Jψ = ψ.

Let B = JAJ ∈M′ for A ∈M. Then

JBψ = J(JAJ)ψ = Aψ = JA∗ψ

= JA∗Jψ = B∗ψ.

Thus JBψ = B∗ψ for all B ∈M′.

Let us first assume that V ∈ U(R) is a unitary operator. Then, by Lemma 6.16,

there is a unitary operator W ∈ M such that V = W |H . Since Wψ = JW ∗ψ =

JW ∗Jψ = α(W ∗)ψ and since α(W ∗) is a unitary operator in M′, we have that

Wψ is a complete wandering vector for λ(G). Note that

Uη = Wη = WPψ = PWψ.

Thus Uη is complete normalized tight frame vector for π(G).

Conversely, suppose that ξ is a complete normalized tight frame vector for π(G).

Then, by Lemma 6.11, there is a vector x in the range of P⊥ such that ξ + x is a

complete wandering vector for λ(G). Thus there is a unitary operator U ∈M′ such

that ξ = PUψ. Let A = PJU∗JP . Then A ∈ R is a unitary operator and

Aη = APψ = PJU∗JPψ = PJU∗Jψ

= PJU∗ψ = PUψ = ξ.

Thus ξ ∈ U(R)η, as required. ¤

6.4 Disjoint Group Representations

Suppose that (π1,G,H1) and (π2,G,H2) are frame representations with normal-

ized tight frame vectors η and ξ, respectively. If {π1(g)η}g∈G and {π2ξ}g∈G are
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unitarily equivalent, then by Proposition 6.1, this equivalence induces the usual

equivalence relation for the representations. It is possible that there exist normal-

ized tight frame vectors η1, ξ1 for (π1,G,H1) and η2, ξ2 for (π2,G,H2), respectively,

such that {π1(g)η1}g∈G and {π2(g)η2}g∈G are strongly disjoint, but {π1(g)ξ1}g∈G
and {π2(g)ξ2}g∈G are unitarily equivalent ( and hence are not strongly disjoint).

For instance, let G be a group such that the corresponding left regular represen-

tation von Neumann algebra M is a factor. Choose a projection P ∈ M′ such

that P ∼ P⊥. Let π1 = λ|P and π2 = λ|P⊥ . Also let η1 = Pχe and η2 = P⊥χe.

Then, clearly {π1(g)η1}g∈G and {π2(g)η2}g∈G are strongly disjoint normalized tight

frames. Let V ∈ M′ be the partial isometry such that V V ∗ = P⊥ and V ∗V = P .

Let ξ = V χe = V Pχe. Then ξ is a normalized tight frame vector for {π2(g) : g ∈ G}.
But V induces a unitary equivalence between {π1(g)η1}g∈G and {π2(g)ξ}g∈G .

We recall from ([KR]) that two representations (π,G,H) and (σ,G, K) are said

to be disjoint if no subrepresentation of π is equivalent to a subrepresentation of

σ. Also recall that for a projection P in a von Neumann algebra R acting on a

Hilbert space K, the central carrier CP is the projection from K onto [RP (K)],

where [·] denotes the norm closure. We conclude this chapter with the following

characterizations for disjoint group representations in terms of disjointness of frame

vectors.

Theorem 6.18. Let P, Q ∈M′ be projections and let

π : g → λ(g)P, σ : g → λ(g)Q

be the corresponding subrepresentations of λ. Then the following are equivalent:

(i) π and σ are disjoint,

(ii) for any complete normalized tight frame vectors η and ξ for {π(g) : g ∈ G}
and {σ(g) : g ∈ G}, respectively, {π(g)η}g∈G and {σ(g)ξ}g∈G are strongly disjoint,

(iii) for any complete normalized tight frame vectors η and ξ for {π(g) : g ∈ G}
and {σ(g) : g ∈ G}, respectively, {π(g)η}g∈G and {σ(g)ξ}g∈G are disjoint,

(iv) for any complete normalized tight frame vectors η and ξ for {π(g) : g ∈ G}
and {σ(g) : g ∈ G}, respectively, {π(g)η}g∈G and {σ(g)ξ}g∈G are weakly disjoint.

Proof. We only need to prove (iv) ⇒ (i) ⇒ (ii). For (iv) ⇒ (i), suppose that π

and σ are not disjoint. Then, by Theorem 10.3.3 and Proposition 6.1.8 in [KR],

there exist nonzero subprojections E < P and F < Q in M′ such that E ∼ F ,

where M = w∗(λ(G)). Let V : EH → FH be the partial isometry inducing the
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equivalence of E and F . Let η = Pχe. Then η is a complete normalized tight frame

vector for {π(g) : g ∈ G}. Since V Eχe is a complete normalized tight frame vector

for λF (G), it follows, by Corollary 6.15, that there is a complete normalized tight

frame vector ξ for σ(G) such that V Eχe = Fξ. Note that

Eπ(g)η = π(g)Eη = π(g)Eχe

and

Fσ(g)ξ = σ(g)Fξ = σ(g)V Eη = σ(g)V Eχe.

Thus {Eπ(g)η}g∈G and {Fσ(g)ξ}g∈G are unitarily equivalent frames, which con-

tradicts (iv). Hence (iv) ⇒ (i).

For (i) ⇒ (ii), let η and ξ be complete normalized tight frame vectors for {π(g) :

g ∈ G} and {σ(g) : g ∈ G}, respectively. Define V and U by

V x =
∑

g

< x, π(g)η > χg

and

Uy =
∑

g

< y, σ(g)ξ > χg,

where x ∈ PH, y ∈ QH and χg is the characteristic function at point g. Let E

and F be the projections onto ran(V ) and ran(U), respectively. Then E ∼ P

and F ∼ Q in M′. By the proof of Lemma 6.4, {π(g)η}g∈G and {σ(g)ξ}g∈G are

strongly disjoint if and only if E ⊥ F . Suppose that E is not orthogonal to F .

Then CECF 6= 0. Thus CP CQ 6= 0 since CP = CE and CF = CQ. By Theorem

10.3.3 (iii), π and σ are not disjoint. Therefore (i) ⇒ (ii). ¤

In the case that G is an abelian group, we know from Proposition 3.18 that

there is only one unitary equivalence class of normalized tight frame vectors. Thus

Theorem 6.18 implies the following:

Corollary 6.19. Let G be an abelian group, and let π and σ be two frame rep-

resentations with normalized tight frame vectors η and ξ, respectively. Then the

following are equivalent:

(i) {π(g)η}g∈G and {σ(g)ξ}g∈G are strongly disjoint,

(ii) {π(g)η}g∈G and {σ(g)ξ}g∈G are disjoint,

(iii) {π(g)η}g∈G and {σ(g)ξ}g∈G are weakly disjoint.
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Chapter 7

Concluding Remarks

7.1. Spectral families of frames:

As in Example A2, if (Ω, µ) is a measurable space and {fn} is an orthonormal

basis for L2(Ω, µ), then for each measurable subset E of Ω, {PEfn} is a normalized

tight frame for L2(E), where PE is the projection from L2(Ω, µ) onto L2(E). We

have pointed out in Corollary 3.10 that every normalized tight frame induced by a

unitary and a frame vector is unitarily equivalent to {eins|E} for some measurable

subset E of T. This is generic for arbitrary normalized tight frames, and in fact for

commutative normalized tight frame families.

We recall that a family of normalized tight normalized tight frames is said to be

commutative if the family of the projections for the ranges of their frame transforms

is commutative. We have the following Spectral Theorem.

Theorem 7.1. Suppose that {{xin}n∈J : i ∈ I} is a commutative family of nor-

malized tight frames. Then there exists a locally compact space Ω, a Borel measure

µ on Ω, a fixed orthonormal basis {fn}n∈J for L2(Ω, µ), and a family {Ei : i ∈ I}
of Borel subsets of Ω such that for each i ∈ I, {xin}n∈J is (separately) unitarily

equivalent to the normalized tight frame {PEifn}n∈J.

Proof. Let θi be the frame transform for {xin}n∈J and let Qi be the orthogonal

projection from l2(J) onto the range of θi. Then {Qi : i ∈ I} is commutative family

of projections. Suppose that M is the maximal von Neumann algebra containing

{Qi}. Then it is well known that there exists a locally compact space Ω and a Borel

measure µ on Ω such that there is a unitary transform W : l2(J) → L2(Ω, µ) with

the property that WMW ∗ = {Mf : f ∈ L∞(Ω, µ), where Mf is the multiplication

operator multiplied by f . In particular WQiW
∗ is a projection in {Mf : f ∈

L∞(Ω, µ). Therefore there is a measurable subset Ei of Ω such that WQiW
∗ = PEi

.

Let {en} be the standard orthonormal basis for l2(J). Then each normalized tight

frame {xin}n∈J is unitarily equivalent (by the frame transform) to {Qien}, which

in turns is unitarily equivalent to {PEifn}, where {fn} = {Wen} is an orthonormal

basis. Thus {xin}n∈J is unitarily equivalent to {PEifn}, as required. ¤

We note that although every normalized tight frame in the commutative family
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is unitarily equivalent to some {PEfn}, the unitary operators implementing the

equivalence can be different from each other. So we pose the following problem:

Problem G: Is there an abstract characterization of those commutative families,

as in Theorem 7.1, for which all the unitary equivalences, as above, can be imple-

mented by a single unitary operator.

7.2. A Joint Project with Pete Casazza

We comment on a subsequent project that was motivated to a large extent by

Remark 1.8 in the present manuscript. In Chapter 1 we pointed out that any frame

can be dilated to a Riesz basis for some larger Hilbert space. This result can be

extended considerably. Given a frame {xn} and one of its alternate duals {yn}
on a Hilbert space H, a natural question is: Can we dilate {xn} to a Riesz basis

{zn} for some Hibert space K ⊇ H such that xn = Pzn and yn = P (z∗n) for all n,

where P is the projection from K onto H and {z∗n} is the unique (canonical) dual

of the Riesz basis {zn}? By using the properties of disjoint frames we can prove

this is true and in fact in a joint work with Casazza, which will appear elsewhere,

we have proven this result even for an appropriate notion of Banach space frames.

Moreover, it turns out that a sequence {xn}n∈J in an infinite dimensional Hilbert

space H can fail to be a frame for H in the (Hilbertian) sense of definition (1) in

Chapter 1, and yet there may be a Banach space M which is not a Hilbert space

and a sequence {yn}n∈J in M such that the inner direct sum {xn ⊕ yn : n ∈ J} is a

bounded unconditional basis for the direct sum Banach space H⊕M . (Since all the

direct sum norms on H ⊕M are equivalent it does not matter which one we take.)

Such sequence is then a non-Hilbertian frame, in the sense of Remark 1.8, for the

Hilbert space H. It turns out that many of the generalized frames for the Hilbert

space L2(Rn) investigated in [FGWW], in particular, are actually non-Hilbertian

frames in this sense: It can be proven that they are inner direct summands of

bounded unconditional bases. There are also connections of our ”direct summand

of bases” interpretation of frames with the established theory in the literature of

Banach frames and atomic decompositions (c.f. [CH]). Because this is a separate

project we will not go into any details on this in the present article.

7.3. A Matrix Completion Characterization of Frames

Suppose that Hn := Cn is a finite dimensional Hilbert space with standard

orthonormal basis {e1, . . . , en}, where ei is the column vector which has i-th

coordinate vector 1 and other coordinates 0. If l ≥ n and if {x1, . . . , xl} ⊂ Hn,
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then Theorem 1.7 implies that {xi}l
i=1 is a frame for Hn if and only if the n × l

matrix whose column vectors are x1, . , . , xl constitutes the first n rows of an

l × l nonsingular matrix. Moreover, {xi}l
i=1 is a normalized tight frame if and

only if the nonsingular matrix can be taken to be unitary. This is true because

an l × l matrix is nonsingular if and only if its column vectors form a basis, and

is unitary if and only if the basis is an orthonormal basis. Viewed like this, the

question of whether a given l-tuple of vectors is a frame is really a matrix-completion

problem of a particularly elementary nature. In fact, it is clear that this matricial

characterization of frames is valid for infinite dimensional Hilbert space as well,

and perhaps adds some addtional perspective to the methods and results in this

manuscript.

7.4 Some Acknowledgements

(a) After this manuscript was nearly completely written it was pointed out to us

by P. Casazza that James R. Holub also made the observation in [Ho] that a general

frame sequence indexed by N is isomorphic to {Pen}, where {en} is the standard

orthonormal basis for l2(N) and P is some projection in B(l2(N)). However, he

used it in [Ho] for completely different purposes than we have used it in this paper.

In particular, our notions of complementary frame and alternate duals seem to be

new in our paper and was not observed in [Ho], and the fact (Corollary 2.7) that the

similarity classes (unitary equivalence classes) of frames (normalized tight frames)

indexed by J is in 1 − 1 correspondence with the set of orthogonal projections in

B(l2(J)) seems to be new.

(b) In September 1997, after this manuscript was complete, we learned in conver-

sations with Ingrid Daubechies and Michael Lacey at the Wabash Mini-Conference

that some other researchers have observed the dilation point of view for frames we

independently observed and utilized in Chapter 1, and we thank both of them for

providing us with this information. This is not at all surprising especially in view

of the simplicity of the concept. These ideas have apparently not yet surfaced in

the literature-at least we were unaware of them. In particular, we learned that

there is a certain degree of overlap between some parts of Chapters 1, 2 and 5 in

the present manuscript and some parts of the thesis work of a current student of

Daubechies, Radu Balan, who has independently worked with the notions of ”dis-

jointness” or ” orthogonality” of frames concerning potential application properties

of frame wavelet n-tuples, and in fact apparently along the same lines we outlined

in our Remark 2.27. Except for these items, we know of no overlap between other
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aspects of the work we present in this manuscript and the work of other researchers

in frame theory. We would not be surprised to hear of more instances. However,

many of the types of problems we have addressed are quite different from those

usually addressed by applications-oriented researchers.
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